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Preface

I am at the moment writing a
lengthy indictment against our
century. When my brain begins
to reel from my literary labors, I
make an occasional cheese dip.

(John Kennedy Toole, A
Confederacy of Dunces)

I wrote this book for myself. The material here was born from notes I kept through
a eight year struggle to find profitable quantitative trading strategies. My notes con-
tained known results and simple exercises. Over time, I made what I thought were
novel discoveries, resulting in a few papers. [121, 123, 125, 129, 130] This is an odd
book–probably too theoretical for most practicing ‘quants’, too basic for most statisti-
cians, and not rigorous enough for most mathematicians; as a textbook it lacks enough
motivation, as a reference, too few citations. I hope you, the reader, will find this book
useful.

It should be no surprise to the reader that I have no formal training in statistics; after
all, no classically trained statistician would devote so much attention to as mundane
a topic as the t-statistic. My initial interest in statistics was sparked by an allergic
reaction to the over-reliance on heuristics during my tenure as a quant. Perhaps only
because I was allowed to discover the topic via my own random walk through papers,
books, and blog posts was it that I came to appreciate and (mis)understand statistics
as I do. The gaps in my education are undeniable, and may appear as the occasional
heterodoxy. I apologize to the reader in advance.

About this edition

My original intent was to write a book with two major parts: one on the Sharpe ratio,
the other on the Markowitz portfolio. This text is a rough draft of the first part,
focused entirely on the Sharpe ratio. The remainder, which explores the statistical
properties of the portfolio that maximizes the Sharpe ratio, overfitting, backtesting,
and market timing will only be available in the book, to be published in August, 2021.
[131]

This document was assembled using the knitr package; the analysis and presentation
relied heavily on the ggplot2, dplyr, xts, and Rcpp packages. [176, 169, 170, 145, 40]
Much of the bespoke analysis of the Sharpe ratio and the Markowitz portfolio is (or
ought to be) via the author’s own SharpeR and MarkowitzR packages. [122, 124]

xiii
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1. Preliminaries

Every journey of a thousand
miles begins with a single
generous donation.

(Matt Groening, Life in Hell)

The trouble with being
educated is that it takes a long
time; it uses up the better part
of your life and when you are
finished what you know is that
you would have benefited more
by going into banking.

(Phillip K. Dick, The
Transmigration of Timothy

Archer)

This chapter contains some preliminary material needed in the rest of the text: a
hodgepodge of definitions, notational declarations, data descriptions, etc.

1.1. Linear Algebra

As much as possible, we will denote vectors by bold lower case Roman letters: v, x,
y, etc. Matrices will typically be denoted in Roman or Greek bold upper case letters:
A, X, Σ. A vector is typically considered a column vector so that Ax and x>Qx are
well-formed. We will denote a vector of all ones by 1; all zeros by 0. The identity
matrix is denoted I; the zero matrix 0. Let ei be the ith column of the identity matrix,
where the size of the vector should be implicit from context. Similarly, define the
‘single entry’ matrix, Jij as the matrix of all zeros but for a single 1 in the i, j location.
Equivalently, we can write Jij = eiej

>.

Definition 1.1.1 (Matrix operations). We will write A−1 for the inverse of non-
singular matrix A. Rarely we will write A+ for the Moore-Penrose pseudoinverse. For
square symmetric non-singular matrix A, let A1/2 be the lower triangular Cholesky
factor of A, defined as the lower triangular matrix such that A1/2A>/2 = A. Let the
inverse of A1/2 be denoted by A−1/2; the inverse of A>/2 is A−>/2.

Definition 1.1.2 (Matrix functionals). For square matrix A, the trace of A, denoted

1
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tr (A) is the sum of the diagonal elements:

tr (A) =
∑
i

Aii.

Let |A| be the determinant of A.

Definition 1.1.3 (Converting between matrices and vectors). For vector x, define
Diag (x) as the diagonal matrix whose diagonal equals x. For matrix A, define diag (A)
as the vector of the diagonal of A. For matrix A, let vec (A), and vech (A) be the vector
and half-space vector operators. The former turns an p × p matrix into an p2 vector
of its columns stacked on top of each other; the latter vectorizes a symmetric (or
lower triangular) matrix into a vector of the non-redundant elements. Let L be the
‘Elimination matrix,’ a matrix of zeros and ones with the property that vech (A) =
L vec (A) . The ‘Duplication matrix,’ D, is the matrix of zeros and ones that reverses
this operation: D vech (A) = vec (A) . [104] Note that this implies that

LD = I (6= DL) .

Let K be the ‘commutation matrix’, the matrix whose rows are a permutation of the
rows of the identity matrix such that K vec (A) = vec

(
A>
)

for square matrix A. [106]
Let N be the ‘symmetric idempotent matrix,’ defined as N =df

1
2 (I + K). (Here we use

‘=df ’ to mean “defined as.” The equation above should be read as “N is defined as
1
2 (I + K).”) This matrix has many interesting properties, for which we refer the reader
to Magnus and Neudecker. [105]

Definition 1.1.4 (Matrix products). For conformable matrices A, B, the matrix prod-
uct is denoted by string concatenation: AB is the product. The Kronecker product will
be denoted by A⊗ B. This is defined blockwise as

A⊗ B =df


A11B A12B . . . A1nB
A21B A22B . . . A2nB

...
...

. . .
...

Am1B Am2B . . . AmnB

 . (1.1)

The Hadamard product, or elementwise product, is denoted by A�B. This is defined
only for matrices of the same size, and is defined elementwise: (A� B)ij = AijBij .
Similarly we may define Hadamard ratios: A�B is the elementwise ratio (A�B)ij =
Aij/Bij . At times we may write the Hadamard power (i.e., elementwise) of a vector
or matrix as vk or Ak.

1.2. The Data

Throughout this text, a number of datasets of real historical returns will be considered.

2
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Example 1.2.1 (Fama-French Four Factor monthly returns). The monthly returns of
‘the Market’ portfolio, the small cap portfolio (known as SMB, for ‘small minus big’),
and the value portfolio (known as HML, for ‘high minus low’), are published peri-
odically by Kenneth French. [50] These are the celebrated three factor portfolios of
Fama and French. [43] Together with these three, we also consider the returns of the
momentum portfolio (know as UMD, for ‘up minus down’), making a total of four
factors. [26] Throughout this text, we refer to these as “the” four factors.

The monthly returns data were downloaded directly from French’s site [50] and
stored in the data package aqfb.data, which is a companion package to this text12. 1. The data are also

[128] One can access this data in R as follows, which puts an xts object called mff4
into the environment:

require(aqfb.data)

data(mff4)

The data are distributed as monthly relative returns, quoted in percents. The Mar-
ket return is quoted as an excess return, with the risk free rate subtracted out. The
risk free rate is also tabulated. For our purposes, the raw market returns are needed,
so the risk free rate is added back to the market returns. The risk free rate, denoted
RF, is kept as a kind of inflationary benchmark.

The set consists of 1104mo. of data, from Jan 1927 through Dec 2018. The cumula-
tive value of the factor returns (and of the risk-free rate) are shown in Figure 1.1. By
‘cumulative value’, we mean the value of a one dollar initial investment in the portfolio
replicating the factor returns, ignoring all costs and trade frictions. These are shown
in nominal dollars, ignoring the changes in the real buying power of a dollar due to
inflation, which is presumably related to the cumulative value of RF. Correlations of
the returns, for a subset of the time history, are given in Example 1.2.2.

Typically in this text, the monthly returns of the factors will be used. However, at
times the daily returns may be needed. These are available in aqfb.data as follows:

library(aqfb.data)

data(dff4)

a
Caution (Factors are not assets). We will use the Fama French factor returns exten-
sively in this text. One should not assume, however, that these returns can easily be
captured. While there are many investment vehicles that track the Market returns very
well, the other factors’ returns are harder to realize, especially under, say, a long-only
investment constraint.

Despite that deficiency, we consider the Fama French factor returns here for a num-
ber of reasons: 1. they exhibit the oddities of investment returns, like correlation,
heteroskedasticity, autocorrelation, etc. 2. they are well defined and freely available.

2Ken French does a great service to the community by computing and publishing his data. However,
there is a ‘last mile’ delivery problem, as the data are published in zipped, oddly named, fixed-
width files with header and footer junk. To simplify access, the data have been repackaged in
aqfb.data.
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		date		Mkt		SMB		HML		UMD		RF

		Jan 1927		0.19		-0.56		4.83		0.44		0.25

		Feb 1927		4.44		-0.1		3.17		-2.01		0.26

		Mar 1927		0.43		-1.6		-2.67		3.59		0.3

		Apr 1927		0.71		0.43		0.6		4.19		0.25

		May 1927		5.74		1.41		4.93		3.01		0.3

		Jun 1927		-2.08		0.47		-1.53		0.51		0.26

		Jul 1927		7.56		-3.23		-1.16		4.32		0.3

		Aug 1927		2.25		-0.72		-3.69		1.12		0.28

		Sep 1927		4.97		-3.57		-0.71		1.93		0.21

		Oct 1927		-4.06		2.13		-4.33		-1.11		0.25

		Nov 1927		6.79		2.76		-0.31		-0.68		0.21

		Dec 1927		2.31		0.93		-1.06		3.19		0.22

		Jan 1928		-0.43		4.25		-0.72		-0.6		0.25

		Feb 1928		-1.37		-2.03		-0.69		-1.02		0.33

		Mar 1928		9.1		-0.26		-1.2		4.87		0.29

		Apr 1928		4.45		3.82		3.67		-5.65		0.22

		May 1928		1.84		2.98		-3.46		2.85		0.32

		Jun 1928		-4.54		-3.5		-0.06		2.05		0.31

		Jul 1928		0.94		-1.35		-0.47		2.75		0.32

		Aug 1928		7		-2.07		-2.11		3.62		0.32

		Sep 1928		3.15		2.18		0.76		3.62		0.27

		Oct 1928		1.74		2.27		-2.26		5.05		0.41

		Nov 1928		12.19		-1.81		2.8		1.93		0.38

		Dec 1928		0.42		-0.85		-0.6		1.71		0.06

		Jan 1929		5		-3.54		-1.21		2.47		0.34

		Feb 1929		0.02		-0.39		1.68		3.09		0.36

		Mar 1929		-0.55		-4.78		1.56		-0.92		0.34

		Apr 1929		1.79		-0.99		0.61		1.89		0.36

		May 1929		-5.95		-5.46		-1.57		-2.04		0.44

		Jun 1929		10.22		-2.17		-2.76		8.79		0.52

		Jul 1929		4.79		-3.88		2.66		2.94		0.33

		Aug 1929		8.58		-9.52		0.06		4.63		0.4

		Sep 1929		-5.12		1.17		-0.63		3.04		0.35

		Oct 1929		-19.66		-4.08		7.85		4.09		0.46

		Nov 1929		-12.37		-1.91		5.33		-2.02		0.37

		Dec 1929		1.7		-4.2		-0.59		5.15		0.37

		Jan 1930		5.75		3.58		-1.01		-5.04		0.14

		Feb 1930		2.8		0.12		0.39		0.42		0.3

		Mar 1930		7.45		3.44		0.15		-4.18		0.35

		Apr 1930		-1.85		-0.17		-0.84		3.94		0.21

		May 1930		-1.4		-2.04		-0.63		-0.01		0.26

		Jun 1930		-16		-3.22		2		6.61		0.27

		Jul 1930		4.32		-0.37		-1.56		-2.16		0.2

		Aug 1930		0.39		-2.22		-0.78		3.95		0.09

		Sep 1930		-12.53		-2.22		-5.27		11.44		0.22

		Oct 1930		-8.69		-0.1		-1.35		6.95		0.09

		Nov 1930		-2.91		2.21		-3.53		-1.17		0.13

		Dec 1930		-7.69		-4.68		-5.39		13.29		0.14

		Jan 1931		6.39		3.81		7.21		-10.94		0.15

		Feb 1931		10.92		3.39		1.6		-14.37		0.04

		Mar 1931		-6.3		3.07		-3.65		9.55		0.13

		Apr 1931		-9.9		-4.61		-3.92		11.42		0.08

		May 1931		-13.15		5.16		-6.57		9.03		0.09

		Jun 1931		13.98		-5.38		11.3		-17.85		0.08

		Jul 1931		-6.56		1.43		-2.1		8.05		0.06

		Aug 1931		0.44		-1.97		-1.49		-3.52		0.03

		Sep 1931		-29.1		0.56		-6.75		10.18		0.03

		Oct 1931		8.14		-1.87		1.7		3.28		0.1

		Nov 1931		-8.91		4.3		-5.05		7.61		0.17

		Dec 1931		-13.41		-0.56		-8.86		14.17		0.12

		Jan 1932		-1.35		3.94		9.04		-10.32		0.23

		Feb 1932		5.69		-2.77		-1.45		1.62		0.23

		Mar 1932		-11.05		2.27		-2.32		10.33		0.16

		Apr 1932		-17.85		1.44		1.42		6.95		0.11

		May 1932		-20.45		3.72		-3.28		12.2		0.06

		Jun 1932		-0.68		0.35		5.32		2.1		0.02

		Jul 1932		33.87		-4.44		35.46		-43.94		0.03

		Aug 1932		37.09		14.29		33.03		-52.26		0.03

		Sep 1932		-2.91		-2.43		-6.82		2.44		0.03

		Oct 1932		-13.15		-2.76		-10.04		4.29		0.02

		Nov 1932		-5.86		2.08		-13.28		-2.09		0.02

		Dec 1932		4.41		-8.27		-8.17		5.26		0.01

		Jan 1933		1.26		0.69		6.23		-1.53		0.01

		Feb 1933		-15.27		-2.75		-2.73		4.19		-0.03

		Mar 1933		3.33		3.9		7.38		2.35		0.04

		Apr 1933		38.95		4.56		17.43		-15.95		0.1

		May 1933		21.47		36.7		19.03		-3.92		0.04

		Jun 1933		13.13		8.67		-1.88		3.54		0.02

		Jul 1933		-9.61		-1.01		3.27		0.41		0.02

		Aug 1933		12.08		-5.45		2.96		7.51		0.03

		Sep 1933		-10.63		-0.32		-11.77		1.65		0.02

		Oct 1933		-8.35		-0.08		-8.46		-2.28		0.01

		Nov 1933		9.99		-6.48		2.33		6.35		0.02

		Dec 1933		1.85		0.66		-1.53		3.96		0.02

		Jan 1934		12.65		12.53		15.54		-3.1		0.05

		Feb 1934		-2.48		5.19		2.12		-0.25		0.02

		Mar 1934		0.11		2.51		-2.73		-0.86		0.02

		Apr 1934		-1.78		2.8		-3.75		-5.12		0.01

		May 1934		-7.24		-0.26		-5.91		-2.83		0.01

		Jun 1934		2.65		-2.14		-2.92		-0.96		0.01

		Jul 1934		-10.95		-6.94		-10.66		8.73		0.01

		Aug 1934		5.59		5.42		0.5		2.41		0.01

		Sep 1934		-0.22		-1.52		-1.24		-0.1		0.01

		Oct 1934		-1.65		1.24		-5.11		6.91		0.01

		Nov 1934		8.34		6.49		-2.24		4.22		0.01

		Dec 1934		0.37		3.08		-3.17		4.63		0.01

		Jan 1935		-3.44		1.07		-1.89		3.6		0.01

		Feb 1935		-1.92		0.42		-7.24		13.75		0.02

		Mar 1935		-3.67		-3.54		-5.06		2.86		0.01

		Apr 1935		9.07		-1.56		4.27		-4.72		0.01

		May 1935		3.48		-3.34		2.61		-3.67		0.01

		Jun 1935		5.94		-2.51		-1.65		2.07		0.01

		Jul 1935		7.52		1.47		6.86		-4.22		0.01

		Aug 1935		2.66		6.28		5.7		-7.69		0.01

		Sep 1935		2.64		1.57		-4.05		8.93		0.01

		Oct 1935		7.04		2.65		-2.33		2.09		0.01

		Nov 1935		4.9		4.3		11.91		-5.91		0.02

		Dec 1935		4.57		0.22		1.07		3.75		0.01

		Jan 1936		6.9		5.1		10.51		-3.36		0.01

		Feb 1936		2.5		1.14		5.04		2.57		0.01

		Mar 1936		1.01		0.66		-1.66		1.73		0.02

		Apr 1936		-8.12		-6.03		-2.08		-7.83		0.02

		May 1936		5.21		0.81		2.63		2.37		0.02

		Jun 1936		2.43		-3.25		-1.2		0.45		0.03

		Jul 1936		6.68		1.14		2.56		2.9		0.01

		Aug 1936		1.01		0.72		3.99		0.61		0.02

		Sep 1936		0.99		3.07		0.88		1.27		0.01

		Oct 1936		7.14		-2.39		2.52		0.99		0.02

		Nov 1936		3.28		9.01		-0.92		2.11		0.01

		Dec 1936		0.21		3.61		3.96		2.11		0

		Jan 1937		3.36		4.31		2.61		-1.85		0.01

		Feb 1937		1.11		1.23		5.05		2.98		0.02

		Mar 1937		-0.26		-1.78		6.39		2.81		0.01

		Apr 1937		-7.33		-3.77		-3.61		-3.71		0.03

		May 1937		-0.77		-0.66		-3.49		0.51		0.06

		Jun 1937		-4.18		-3.65		-3.21		0.68		0.03

		Jul 1937		8.94		0.85		0.82		-0.4		0.03

		Aug 1937		-4.84		0.42		-2.25		-1.79		0.02

		Sep 1937		-13.57		-6.89		-4.57		-7.14		0.04

		Oct 1937		-9.59		0.45		-1.62		-1.56		0.02

		Nov 1937		-8.29		-3.65		0.2		-0.97		0.02

		Dec 1937		-4.24		-7.76		-0.39		4.7		0

		Jan 1938		0.49		4.97		-1.6		-1.44		0

		Feb 1938		5.84		0.35		-2.02		-3.08		0

		Mar 1938		-23.83		-4.24		-3.52		15.75		-0.01

		Apr 1938		14.52		6.37		0.18		-8.88		0.01

		May 1938		-3.83		-2.47		-0.28		7.13		0

		Jun 1938		23.87		4.05		0.3		-24.86		0

		Jul 1938		7.33		6.66		2.18		-6.44		-0.01

		Aug 1938		-2.67		-2.44		-4.72		3.95		0

		Sep 1938		0.83		-2.72		-1.62		2.53		0.02

		Oct 1938		7.81		5.83		5.01		-7.7		0.01

		Nov 1938		-1.78		-2.56		-1.23		3.13		-0.06

		Dec 1938		4.19		-1.8		0.5		2.05		0

		Jan 1939		-5.97		-1.56		-3.92		-3.05		-0.01

		Feb 1939		3.52		0.63		2.95		3.25		0.01

		Mar 1939		-12		-4.76		-8.29		-1.48		-0.01

		Apr 1939		-0.18		1.66		-0.3		2.7		0

		May 1939		6.81		2.81		0.47		3.56		0.01

		Jun 1939		-5.3		-1.02		-5.41		1.96		0.01

		Jul 1939		10.24		4.32		-0.03		-0.57		0

		Aug 1939		-6.69		-4.61		-2.42		5.9		-0.01

		Sep 1939		16.89		20.23		22.22		-30.35		0.01

		Oct 1939		-0.53		-0.01		-4.89		6.48		0

		Nov 1939		-3.62		-5.07		-6.46		-0.22		0

		Dec 1939		3.03		0.79		-4.06		5.4		0

		Jan 1940		-2.41		0.24		-0.77		1.74		0

		Feb 1940		1.44		2.51		-0.32		1.81		0

		Mar 1940		2.05		1.25		-1.27		-0.36		0

		Apr 1940		0.22		3.92		-0.13		3.33		0

		May 1940		-21.97		-6.66		-3.69		2.86		-0.02

		Jun 1940		6.67		-2.13		4.63		-2.14		0

		Jul 1940		3.17		1.01		-0.74		0.85		0.01

		Aug 1940		2.18		-0.11		0.56		-1.61		-0.01

		Sep 1940		2.39		3.22		-1.13		-0.26		0

		Oct 1940		3.02		0.28		4.64		-6.53		0

		Nov 1940		-1.61		1.94		0.12		1.33		0

		Dec 1940		0.69		-2.15		-0.89		3.46		0

		Jan 1941		-4.18		1		3.83		-4.72		-0.01

		Feb 1941		-1.44		-1.57		0.89		0.91		-0.01

		Mar 1941		0.85		0.1		3.04		2.43		0.01

		Apr 1941		-5.47		-1.69		3.41		3.03		-0.01

		May 1941		1.39		-0.66		0.6		2.46		0

		Jun 1941		5.83		1.32		0.59		-0.64		0

		Jul 1941		5.9		5.7		7.25		-1.75		0.03

		Aug 1941		-0.16		-0.41		-1.1		0.17		0.01

		Sep 1941		-0.86		-0.99		-0.28		-1.57		0.01

		Oct 1941		-5.25		-2.02		1.63		4.74		0

		Nov 1941		-1.92		-1.21		-0.64		4.04		0

		Dec 1941		-4.86		-2.98		-5.94		0.28		0.01

		Jan 1942		0.81		7.52		10.1		-3.58		0.02

		Feb 1942		-2.45		1.72		-1.13		-0.71		0.01

		Mar 1942		-6.57		1.78		-0.62		-0.21		0.01

		Apr 1942		-4.36		-0.6		2.09		-0.79		0.01

		May 1942		5.97		-3.05		-2.65		-4.71		0.03

		Jun 1942		2.71		-1.22		0.54		-1.32		0.02

		Jul 1942		3.54		-0.16		2.4		0.77		0.03

		Aug 1942		1.83		-0.09		1.33		-0.13		0.03

		Sep 1942		2.64		0.66		2.39		-0.64		0.03

		Oct 1942		6.85		1.82		6.47		-4.01		0.03

		Nov 1942		0.18		-1.54		-4.24		-0.97		0.03

		Dec 1942		5.15		-2.49		0.56		3.06		0.03

		Jan 1943		7.16		8.78		8.23		-0.36		0.03

		Feb 1943		6.18		4.84		6.51		-1.46		0.03

		Mar 1943		6.04		5.03		5.48		4.74		0.03

		Apr 1943		0.84		2.06		5.86		6.18		0.03

		May 1943		5.77		4.41		3.28		5.61		0.03

		Jun 1943		1.85		-1.06		-0.74		-1.3		0.03

		Jul 1943		-4.74		-2.41		-2.27		-4.59		0.03

		Aug 1943		1.33		-0.62		-0.47		0.71		0.03

		Sep 1943		2.43		1.28		1.43		1.78		0.03

		Oct 1943		-1.12		0.58		1.65		-0.53		0.03

		Nov 1943		-5.88		-1.64		-4.04		-4.72		0.03

		Dec 1943		6.39		3.34		3.22		5.99		0.03

		Jan 1944		1.77		2.56		2.17		0.97		0.03

		Feb 1944		0.4		-0.1		0.83		0.34		0.03

		Mar 1944		2.48		1.71		3.43		2.61		0.02

		Apr 1944		-1.66		-1.35		-1.13		0.52		0.03

		May 1944		5.1		1.67		1.02		2.07		0.03

		Jun 1944		5.52		4.04		1.82		-5.22		0.03

		Jul 1944		-1.46		0.55		-0.43		0.19		0.03

		Aug 1944		1.6		2.41		-1.63		4.68		0.03

		Sep 1944		0.03		0.47		-1.21		-1.08		0.02

		Oct 1944		0.19		-0.14		-0.34		-1.24		0.03

		Nov 1944		1.74		0.37		2.31		1.28		0.03

		Dec 1944		4.05		2.24		5.91		3.36		0.02

		Jan 1945		2.04		2.44		0.71		0.04		0.03

		Feb 1945		6.25		1.56		4.4		3.03		0.02

		Mar 1945		-3.87		-1.61		-1.78		-3.28		0.02

		Apr 1945		7.83		0.32		3.21		4.79		0.03

		May 1945		1.76		1.51		0.35		0.11		0.03

		Jun 1945		0.41		3.1		4.32		4.11		0.02

		Jul 1945		-2.14		-1.46		-2.71		-2.62		0.03

		Aug 1945		6.23		1.61		-4.4		-1.4		0.03

		Sep 1945		4.8		1.71		0.48		1.4		0.03

		Oct 1945		3.92		2.46		2.25		0.25		0.03

		Nov 1945		5.41		4.16		4.34		4.26		0.02

		Dec 1945		1.23		2.12		-2.32		1.25		0.03

		Jan 1946		6.27		4.02		2.21		3.76		0.03

		Feb 1946		-5.8		-0.73		-1.27		-1.45		0.03

		Mar 1946		5.9		0.31		-0.36		2.69		0.03

		Apr 1946		4.26		2.37		0.45		3.03		0.03

		May 1946		3.96		1.46		1.09		-0.61		0.03

		Jun 1946		-3.86		-1.53		-0.59		-2.52		0.03

		Jul 1946		-2.66		-2.06		0.04		-0.1		0.03

		Aug 1946		-6.41		-1.78		0.6		-0.03		0.03

		Sep 1946		-10.14		-4.41		-1.96		0.74		0.03

		Oct 1946		-1.41		0.09		3.44		0.97		0.03

		Nov 1946		0.02		-0.4		1.52		0.2		0.03

		Dec 1946		4.99		0.06		-1.38		-0.1		0.03

		Jan 1947		1.28		2.18		-0.73		-6.44		0.03

		Feb 1947		-1.05		0.68		0.14		-0.49		0.03

		Mar 1947		-1.64		-1.61		0.61		4.06		0.03

		Apr 1947		-4.77		-3.97		0.85		5.05		0.03

		May 1947		-0.94		-3.26		0.34		3.33		0.03

		Jun 1947		5.32		-0.31		-0.6		-1.85		0.03

		Jul 1947		4.17		1.43		2.82		-3.42		0.03

		Aug 1947		-1.71		0.3		0.16		3.38		0.03

		Sep 1947		-0.48		1.64		1.36		-0.02		0.06

		Oct 1947		2.53		0.51		0.08		1.34		0.06

		Nov 1947		-1.91		-1.74		1.06		4.23		0.06

		Dec 1947		3.08		-2.48		3.69		3.6		0.08

		Jan 1948		-3.86		2.49		1.38		-4.29		0.07

		Feb 1948		-4.31		-1.71		0.07		1.47		0.07

		Mar 1948		8.16		0.13		4.49		-0.19		0.09

		Apr 1948		3.73		-1.66		4.1		4.06		0.08

		May 1948		7.38		0.93		-1.23		2.38		0.08

		Jun 1948		-0.01		-1.86		2.75		3.99		0.09

		Jul 1948		-5.01		-0.32		0.07		-1.58		0.08

		Aug 1948		0.34		-1.1		0.27		0.23		0.09

		Sep 1948		-2.93		-1.23		-1.79		-1.26		0.04

		Oct 1948		6		-1.5		0.56		2.79		0.04

		Nov 1948		-9.26		-0.62		-4.14		0.6		0.04

		Dec 1948		3.3		-2.8		-1.94		4.66		0.04

		Jan 1949		0.33		1.81		1.17		-2.92		0.1

		Feb 1949		-2.84		-1.89		-0.91		-0.41		0.09

		Mar 1949		4.14		2.48		1.34		-0.87		0.1

		Apr 1949		-1.78		-0.89		-1.18		3.06		0.09

		May 1949		-2.84		-0.77		-2.42		3.04		0.1

		Jun 1949		0.2		-0.88		-1.76		-1.28		0.1

		Jul 1949		5.63		0.57		0.38		-1.54		0.09

		Aug 1949		2.69		0.13		-0.57		1.7		0.09

		Sep 1949		3.18		1.05		0.23		-1.42		0.09

		Oct 1949		3.23		1.03		-0.49		0		0.09

		Nov 1949		1.9		-0.93		-0.91		1.27		0.08

		Dec 1949		5.22		2.07		1.75		-0.78		0.09

		Jan 1950		1.79		3.36		0.14		-2.32		0.09

		Feb 1950		1.57		0.04		-0.81		1.36		0.09

		Mar 1950		1.36		-1.41		-2.77		1.54		0.1

		Apr 1950		4.03		1.99		1.34		0.33		0.09

		May 1950		4.41		-2.12		0.46		0.38		0.1

		Jun 1950		-5.84		-2.38		-0.78		-1.66		0.1

		Jul 1950		1.46		0.51		13.66		-0.47		0.1

		Aug 1950		4.95		0.73		-1.41		3.21		0.1

		Sep 1950		4.91		0.57		-1.11		-0.13		0.1

		Oct 1950		-0.06		-0.58		1.44		1.42		0.12

		Nov 1950		2.87		-0.84		3.17		3.59		0.11

		Dec 1950		5.65		1.49		7.23		4.97		0.11

		Jan 1951		5.83		1.73		3.72		2		0.13

		Feb 1951		1.51		0.09		-2.83		-1.58		0.1

		Mar 1951		-2.04		-0.64		-4.22		-2.95		0.11

		Apr 1951		4.99		-1.49		3.28		6.02		0.13

		May 1951		-2.22		-0.01		-1.33		-0.93		0.12

		Jun 1951		-2.5		-1.95		-3.96		-2.39		0.12

		Jul 1951		7.07		-1.99		2.01		7.24		0.13

		Aug 1951		4.4		0.99		-0.16		1		0.13

		Sep 1951		0.82		1.9		0.61		0.56		0.12

		Oct 1951		-2.37		-0.22		0.25		-0.31		0.16

		Nov 1951		0.68		-0.29		-0.05		0.63		0.11

		Dec 1951		3.45		-2.25		-1.56		1.7		0.12

		Jan 1952		1.6		-0.61		1.54		1.37		0.15

		Feb 1952		-2.5		0.79		-0.61		-0.75		0.12

		Mar 1952		4.55		-2.99		2.16		1.65		0.11

		Apr 1952		-4.85		0.48		-0.1		-2.04		0.12

		May 1952		3.33		-1.01		0.08		0.49		0.13

		Jun 1952		3.98		-1.61		1.23		1.5		0.15

		Jul 1952		1.06		-0.4		-0.35		-0.52		0.15

		Aug 1952		-0.61		1.18		0.03		0.31		0.15

		Sep 1952		-1.87		1.15		-1.51		1.76		0.16

		Oct 1952		-0.52		-1.06		-0.45		2.75		0.14

		Nov 1952		6.04		-0.71		0.95		0.44		0.1

		Dec 1952		3.09		-1.48		0.18		1.51		0.16

		Jan 1953		-0.18		3.58		1.32		0.72		0.16

		Feb 1953		-0.13		2.15		-0.08		0.86		0.14

		Mar 1953		-1.25		-0.19		-0.8		0.08		0.18

		Apr 1953		-2.67		0.28		1.53		1.85		0.16

		May 1953		0.69		-0.07		0.23		0.94		0.17

		Jun 1953		-1.71		-1.86		-0.47		-0.01		0.18

		Jul 1953		2.55		-1.05		-0.24		-0.31		0.15

		Aug 1953		-4.35		0.36		-3.54		2.21		0.17

		Sep 1953		0.36		-0.85		-2.42		2.88		0.16

		Oct 1953		4.73		-1.37		-0.19		0.27		0.13

		Nov 1953		2.91		-1.29		-0.17		1.95		0.08

		Dec 1953		0.16		-0.84		-2.84		5.19		0.13

		Jan 1954		5.24		0.46		3.51		-5.74		0.11

		Feb 1954		1.74		-0.17		-0.28		1.03		0.07

		Mar 1954		3.73		-0.49		-1.46		2.2		0.08

		Apr 1954		4.36		-3.48		-0.37		4.98		0.09

		May 1954		3.14		0.39		2.46		-1.99		0.05

		Jun 1954		1.13		0.41		-0.03		3.52		0.06

		Jul 1954		5.04		1.07		4.11		0.44		0.05

		Aug 1954		-2.29		2.66		-1.36		-0.64		0.05

		Sep 1954		6.48		-2.54		0.66		1.54		0.09

		Oct 1954		-1.6		0.59		0.72		0.96		0.07

		Nov 1954		9.44		-2.62		4.36		1.93		0.06

		Dec 1954		5.56		2.14		5.71		-1.41		0.08

		Jan 1955		0.68		0.25		2.18		1.36		0.08

		Feb 1955		3.11		1.54		0.62		1.09		0.09

		Mar 1955		-0.06		-0.66		1.95		1.03		0.1

		Apr 1955		3.21		-1.79		0.81		0.09		0.1

		May 1955		1.07		-0.29		-0.86		0.56		0.14

		Jun 1955		6.65		-4.65		1.92		4.66		0.1

		Jul 1955		2		-1.36		0.63		-1.23		0.1

		Aug 1955		0.37		-0.38		0.58		1.79		0.16

		Sep 1955		-0.2		0.3		-1.06		1.77		0.16

		Oct 1955		-2.5		1.5		-0.03		-0.5		0.18

		Nov 1955		7.2		-2.46		0.5		2.67		0.17

		Dec 1955		1.67		2.08		-2.24		-1.33		0.18

		Jan 1956		-2.81		0.44		1.12		-1.48		0.22

		Feb 1956		3.96		-1.04		-0.53		1.97		0.19

		Mar 1956		6.79		-2.42		-0.14		3.59		0.15

		Apr 1956		0.47		0.07		-0.18		2.57		0.19

		May 1956		-4.97		1.5		-1.33		-1.62		0.23

		Jun 1956		3.68		-1.46		-1.32		2.71		0.2

		Jul 1956		5.06		-1.68		-0.01		2.52		0.22

		Aug 1956		-3.01		1.9		-0.71		-0.69		0.17

		Sep 1956		-4.96		1.56		1.79		-0.76		0.18

		Oct 1956		0.77		-0.09		-0.06		2.46		0.25

		Nov 1956		0.56		-0.22		1.78		3.41		0.2

		Dec 1956		3.4		-0.03		-2.1		3.81		0.24

		Jan 1957		-3.31		3.4		2.78		-3.05		0.27

		Feb 1957		-1.82		-0.72		-0.73		0.31		0.24

		Mar 1957		2.36		0.27		-0.47		-0.18		0.23

		Apr 1957		4.51		-1.6		-1.51		0.96		0.25

		May 1957		3.71		-1.07		-2.05		0.44		0.26

		Jun 1957		-0.5		0.55		0.01		0.77		0.24

		Jul 1957		0.96		-0.76		0.38		-0.07		0.3

		Aug 1957		-4.86		0.06		-0.45		0.49		0.25

		Sep 1957		-5.72		0.08		0.88		0.62		0.26

		Oct 1957		-4.03		-2.52		-1.83		1.94		0.29

		Nov 1957		2.58		0.4		-2.9		1.24		0.28

		Dec 1957		-3.67		-0.93		-1.71		7.79		0.24

		Jan 1958		4.94		4.36		4.23		-7.63		0.28

		Feb 1958		-1.4		0.7		0.28		3.75		0.12

		Mar 1958		3.36		0.63		-0.92		-1.85		0.09

		Apr 1958		3.17		-0.59		1.46		1.85		0.08

		May 1958		2.42		2.24		-0.35		-1.82		0.11

		Jun 1958		2.96		-0.24		0.5		-0.87		0.03

		Jul 1958		4.46		0.47		3.12		-3.62		0.07

		Aug 1958		1.95		1.19		0.29		0.28		0.04

		Sep 1958		4.85		0.15		2.96		-1.13		0.19

		Oct 1958		2.71		1.13		-1.18		3.12		0.18

		Nov 1958		3.12		2.06		-1.29		1.57		0.11

		Dec 1958		5.37		-2.07		-0.05		-0.65		0.22

		Jan 1959		0.92		3.02		2.98		-0.24		0.21

		Feb 1959		1.14		1.49		1.05		3.4		0.19

		Mar 1959		0.5		1.48		-0.35		0.13		0.22

		Apr 1959		3.86		-0.58		-1.22		3.15		0.2

		May 1959		1.95		-2.15		1.87		1.5		0.22

		Jun 1959		0		0.68		1.33		2.91		0.25

		Jul 1959		3.42		-0.32		0.26		-0.32		0.25

		Aug 1959		-1.2		-0.78		0.44		-0.95		0.19

		Sep 1959		-4.49		-0.09		0.57		0.85		0.31

		Oct 1959		1.58		1.43		-2.05		3.48		0.3

		Nov 1959		1.86		1.24		-3.27		2.26		0.26

		Dec 1959		2.79		-0.6		-0.03		0.99		0.34

		Jan 1960		-6.65		2.09		2.73		-3.49		0.33

		Feb 1960		1.46		0.51		-1.99		3.86		0.29

		Mar 1960		-1.28		-0.51		-2.85		1.43		0.35

		Apr 1960		-1.52		0.31		-2.23		2.81		0.19

		May 1960		3.39		1.21		-3.76		4.81		0.27

		Jun 1960		2.32		-0.22		-0.34		0.86		0.24

		Jul 1960		-2.24		-0.52		2.03		-0.78		0.13

		Aug 1960		3.18		0.9		-0.19		1.92		0.17

		Sep 1960		-5.83		-1.11		1.58		0.31		0.16

		Oct 1960		-0.49		-3.95		2.6		1.25		0.22

		Nov 1960		4.82		0.35		-2.45		3.64		0.13

		Dec 1960		4.87		-1.56		-0.79		1.39		0.16

		Jan 1961		6.39		0.66		3.7		-3.98		0.19

		Feb 1961		3.71		3.98		-0.74		0.98		0.14

		Mar 1961		3.09		3.27		-0.77		4.51		0.2

		Apr 1961		0.46		0.1		2.05		3.52		0.17

		May 1961		2.58		1.95		0.48		-1.57		0.18

		Jun 1961		-2.88		-2.47		-0.18		0.37		0.2

		Jul 1961		3.01		-1.88		-0.11		0.25		0.18

		Aug 1961		2.71		-1.75		-0.28		1.65		0.14

		Sep 1961		-1.98		-1.05		-0.58		0.83		0.17

		Oct 1961		2.76		-1.61		0.12		3.13		0.19

		Nov 1961		4.6		1.24		-1.19		1.34		0.15

		Dec 1961		0.01		-0.83		1.83		-2.24		0.19

		Jan 1962		-3.63		1.78		5.09		-2.07		0.24

		Feb 1962		2.01		-1.16		0.85		-1.02		0.2

		Mar 1962		-0.48		0.53		-1.43		1.83		0.2

		Apr 1962		-6.37		-0.68		0.03		2.89		0.22

		May 1962		-8.41		-3.33		2.78		0.38		0.24

		Jun 1962		-8.27		-0.57		2.54		6.45		0.2

		Jul 1962		6.55		1.49		-3.44		0.55		0.27

		Aug 1962		2.36		1.23		-1.19		-0.58		0.23

		Sep 1962		-5.01		-2.43		1.23		3.95		0.21

		Oct 1962		0.2		-3.97		1.29		0.75		0.25

		Nov 1962		11.07		2.61		1.01		-7.17		0.2

		Dec 1962		1.24		-3.8		0.33		5.88		0.23

		Jan 1963		5.18		3.06		2.26		-2.1		0.25

		Feb 1963		-2.15		0.5		2.21		2.52		0.23

		Mar 1963		3.31		-2.62		2.1		1.56		0.23

		Apr 1963		4.76		-1.31		1.01		-0.08		0.25

		May 1963		2		1.12		2.5		0.37		0.24

		Jun 1963		-1.77		-0.25		0.7		1.17		0.23

		Jul 1963		-0.12		-0.56		-0.83		1		0.27

		Aug 1963		5.32		-0.94		1.67		1.03		0.25

		Sep 1963		-1.3		-0.31		0.18		0.16		0.27

		Oct 1963		2.82		-0.54		-0.1		3.14		0.29

		Nov 1963		-0.58		-1.13		1.71		-0.75		0.27

		Dec 1963		2.12		-1.97		-0.12		1.7		0.29

		Jan 1964		2.54		-0.19		1.59		1.06		0.3

		Feb 1964		1.8		0.1		2.83		0.24		0.26

		Mar 1964		1.72		0.99		3.32		0.72		0.31

		Apr 1964		0.39		-1.37		-0.55		-0.6		0.29

		May 1964		1.68		-0.9		1.98		2.54		0.26

		Jun 1964		1.57		-0.26		0.68		0.45		0.3

		Jul 1964		2.04		0.28		0.68		-0.37		0.3

		Aug 1964		-1.16		0.09		0.09		-0.19		0.28

		Sep 1964		2.97		-0.51		1.65		-0.39		0.28

		Oct 1964		0.88		0.43		1.14		0.08		0.29

		Nov 1964		0.29		0.61		-1.98		1.08		0.29

		Dec 1964		0.34		-0.26		-2.55		-0.69		0.31

		Jan 1965		3.82		2.7		0.18		-1.28		0.28

		Feb 1965		0.74		3.48		0.22		0.3		0.3

		Mar 1965		-0.98		1.79		1.09		0.1		0.36

		Apr 1965		3.42		1.2		0.71		2.54		0.31

		May 1965		-0.46		0.04		-1.63		0.54		0.31

		Jun 1965		-5.16		-4.35		0.55		-3.12		0.35

		Jul 1965		1.74		0.87		2.18		4.1		0.31

		Aug 1965		3.06		2.81		-0.96		2.58		0.33

		Sep 1965		3.17		0.61		-0.1		3.36		0.31

		Oct 1965		2.91		2.48		1.52		3.45		0.31

		Nov 1965		0.32		4.68		0.21		4.42		0.35

		Dec 1965		1.34		2.08		1.95		0.09		0.33

		Jan 1966		1.1		3.89		3.49		5.41		0.38

		Feb 1966		-0.86		4.54		0.27		4.58		0.35

		Mar 1966		-2.13		0.94		-2.07		1.34		0.38

		Apr 1966		2.48		3.45		-0.54		6.18		0.34

		May 1966		-5.25		-4.7		-1.55		-4.69		0.41

		Jun 1966		-1.06		1.02		0.5		3.28		0.38

		Jul 1966		-1.28		-0.44		0.96		-1.39		0.35

		Aug 1966		-7.5		-3.23		0.47		-2.11		0.41

		Sep 1966		-0.66		-1.07		0.53		-1.73		0.4

		Oct 1966		4.31		-6.64		2.87		-5.13		0.45

		Nov 1966		1.8		4.22		-4.46		5.73		0.4

		Dec 1966		0.53		1.86		-1.22		1.07		0.4

		Jan 1967		8.58		8.32		2.22		-6.75		0.43

		Feb 1967		1.14		3.34		-2.17		3.56		0.36

		Mar 1967		4.38		1.63		0.31		1.42		0.39

		Apr 1967		4.21		0.62		-2.64		0.64		0.32

		May 1967		-4		1.98		0.8		0.67		0.33

		Jun 1967		2.68		5.96		0.96		6.03		0.27

		Jul 1967		4.89		3.08		2.65		-1.07		0.31

		Aug 1967		-0.58		0.47		1.46		-1.41		0.31

		Sep 1967		3.43		3.1		-2.47		2.55		0.32

		Oct 1967		-2.7		1.42		-3.39		3.66		0.39

		Nov 1967		0.73		0.2		-1.71		1.29		0.36

		Dec 1967		3.38		5.73		-0.39		3.23		0.33

		Jan 1968		-3.66		3.91		4.75		-4.64		0.4

		Feb 1968		-3.36		-2.95		1.17		-3.41		0.39

		Mar 1968		0.58		-1.28		-0.59		3.18		0.38

		Apr 1968		9.48		5.73		-1.03		5.15		0.43

		May 1968		2.73		6.43		0.84		3.73		0.45

		Jun 1968		1.12		-0.17		0.67		-1.92		0.43

		Jul 1968		-2.24		-1.3		5.48		-0.84		0.48

		Aug 1968		1.76		2.34		1		1.88		0.42

		Sep 1968		4.46		2.76		0.24		-0.67		0.43

		Oct 1968		0.86		-0.47		2.89		-1.52		0.44

		Nov 1968		5.85		2.36		-0.9		1.73		0.42

		Dec 1968		-3.51		3.44		0.02		0.11		0.43

		Jan 1969		-0.72		-0.78		1.69		-0.15		0.53

		Feb 1969		-5.38		-3.89		0.9		-2.46		0.46

		Mar 1969		3.1		-0.25		-0.46		3.95		0.46

		Apr 1969		1.99		-0.88		0.03		1.17		0.53

		May 1969		0.38		-0.27		0.73		1.68		0.48

		Jun 1969		-6.67		-5.39		-1.09		-2.22		0.51

		Jul 1969		-6.47		-3.21		1.42		1.64		0.53

		Aug 1969		5.18		0.94		-3.87		2.13		0.5

		Sep 1969		-2.36		1.2		-3.19		2.53		0.62

		Oct 1969		5.66		3.81		-3.19		-4.32		0.6

		Nov 1969		-3.27		-2.53		-1.12		3.6		0.52

		Dec 1969		-1.99		-3.67		-3.02		5.05		0.64

		Jan 1970		-7.5		2.9		3.04		0.63		0.6

		Feb 1970		5.75		-2.4		4.04		0.12		0.62

		Mar 1970		-0.49		-2.32		4.25		-0.29		0.57

		Apr 1970		-10.5		-6.11		6.39		-0.73		0.5

		May 1970		-6.39		-4.52		3.6		-2.73		0.53

		Jun 1970		-5.21		-2.16		0.87		5.78		0.58

		Jul 1970		7.45		-0.54		0.96		-2.94		0.52

		Aug 1970		5.02		1.52		1.03		-6.5		0.53

		Sep 1970		4.72		8.62		-5.58		-8.92		0.54

		Oct 1970		-1.82		-4.28		0.27		9.61		0.46

		Nov 1970		5.05		-4.07		1.63		2.89		0.46

		Dec 1970		6.14		2.97		1.01		-2.19		0.42

		Jan 1971		5.22		7.37		1.38		-6.71		0.38

		Feb 1971		1.74		1.88		-1.29		0.81		0.33

		Mar 1971		4.43		2.54		-4.04		-1.21		0.3

		Apr 1971		3.43		-0.49		0.72		1.32		0.28

		May 1971		-3.69		-1.1		-1.38		0.89		0.29

		Jun 1971		0.27		-1.42		-2.06		2.72		0.37

		Jul 1971		-4.1		-1.5		0.17		-2.37		0.4

		Aug 1971		4.26		-0.16		2.67		3.51		0.47

		Sep 1971		-0.48		0.41		-2.96		2.09		0.37

		Oct 1971		-4.05		-1.8		-0.43		0.46		0.37

		Nov 1971		-0.09		-2.85		-1.7		1.48		0.37

		Dec 1971		9.08		3.32		-0.35		-0.68		0.37

		Jan 1972		2.78		6.12		1.99		0.24		0.29

		Feb 1972		3.12		1.37		-2.76		2.7		0.25

		Mar 1972		0.9		-0.27		-1.73		2.91		0.27

		Apr 1972		0.58		0.01		0.23		2.9		0.29

		May 1972		1.55		-2.79		-2.69		3.19		0.3

		Jun 1972		-2.14		0.33		-2.51		1.93		0.29

		Jul 1972		-0.49		-2.89		0.78		2.75		0.31

		Aug 1972		3.55		-4.09		4.69		-5.34		0.29

		Sep 1972		-0.8		-2.67		0.47		1.75		0.34

		Oct 1972		0.92		-2.74		1.37		0.75		0.4

		Nov 1972		4.97		-1.11		4.76		-5.14		0.37

		Dec 1972		0.99		-1.86		-2.27		4.98		0.37

		Jan 1973		-2.85		-3.48		2.68		3.71		0.44

		Feb 1973		-4.44		-3.99		1.7		2.12		0.41

		Mar 1973		-0.84		-2.82		2.78		3.62		0.46

		Apr 1973		-5.16		-3.99		5.69		6.4		0.52

		May 1973		-2.43		-6.12		0.21		7.09		0.51

		Jun 1973		-1.05		-2.95		1.44		4.31		0.51

		Jul 1973		5.69		7.91		-5.31		-11.69		0.64

		Aug 1973		-3.12		-2.03		1.14		3.42		0.7

		Sep 1973		5.43		2.94		2.18		-7.03		0.68

		Oct 1973		-0.18		-0.23		1.74		6.75		0.65

		Nov 1973		-12.19		-7.7		4.04		8.63		0.56

		Dec 1973		1.25		-5.29		4.09		10.39		0.64

		Jan 1974		0.46		9.76		5.99		-8.82		0.63

		Feb 1974		0.11		0.05		2.54		0.14		0.58

		Mar 1974		-2.25		2.51		-0.11		-0.99		0.56

		Apr 1974		-4.54		-0.71		1.06		2		0.75

		May 1974		-3.93		-3.01		-2.04		-0.26		0.75

		Jun 1974		-2.23		-0.2		0.79		2.37		0.6

		Jul 1974		-7.35		0.92		5.14		3.01		0.7

		Aug 1974		-8.75		-0.68		2.5		3		0.6

		Sep 1974		-10.96		0.27		5.49		4.32		0.81

		Oct 1974		16.61		-3.51		-9.99		-0.5		0.51

		Nov 1974		-3.97		-1.17		-0.16		2.17		0.54

		Dec 1974		-2.75		-4.84		0		2.95		0.7

		Jan 1975		14.24		11.01		8.44		-13.89		0.58

		Feb 1975		5.99		0.16		-4.56		-0.55		0.43

		Mar 1975		3.07		3.75		2.49		-1.99		0.41

		Apr 1975		4.67		-0.54		-1.11		1.34		0.44

		May 1975		5.63		3.83		-4.02		-0.47		0.44

		Jun 1975		5.24		0.76		1.32		0.06		0.41

		Jul 1975		-6.11		2.69		1.7		0.42		0.48

		Aug 1975		-2.37		-3.2		-0.9		-0.13		0.48

		Sep 1975		-3.73		-0.13		0.34		0.32		0.53

		Oct 1975		5.87		-4.02		0.3		-0.14		0.56

		Nov 1975		3.05		-1.19		1.99		-0.45		0.41

		Dec 1975		-1.12		-0.76		1.76		-0.12		0.48

		Jan 1976		12.63		4.8		8.58		4.46		0.47

		Feb 1976		0.66		7.03		5.78		0.36		0.34

		Mar 1976		2.72		-1.17		-0.04		0.19		0.4

		Apr 1976		-1.07		-0.03		-0.06		0.5		0.42

		May 1976		-0.97		-1.24		-1.32		-1.1		0.37

		Jun 1976		4.48		-1.35		0.68		-0.42		0.43

		Jul 1976		-0.6		0.31		1.74		-0.12		0.47

		Aug 1976		-0.14		-2.01		0.79		-0.85		0.42

		Sep 1976		2.51		-0.01		-0.29		0.24		0.44

		Oct 1976		-2.01		0.25		-0.13		-0.48		0.41

		Nov 1976		0.76		2.32		1.51		2.9		0.4

		Dec 1976		6.05		3.01		2.22		0.77		0.4

		Jan 1977		-3.69		4.78		4.26		3.98		0.36

		Feb 1977		-1.59		1.08		0.5		0.35		0.35

		Mar 1977		-0.99		0.99		1.02		0.49		0.38

		Apr 1977		0.53		-0.12		3.45		4.22		0.38

		May 1977		-1.08		1.18		0.84		2.01		0.37

		Jun 1977		5.11		2.13		-0.64		1.77		0.4

		Jul 1977		-1.27		2.12		-0.59		0.31		0.42

		Aug 1977		-1.31		1.52		-2.79		-1.78		0.44

		Sep 1977		0.16		1.45		-0.49		2.06		0.43

		Oct 1977		-3.89		1.27		1.72		-0.13		0.49

		Nov 1977		4.5		3.72		0.31		2.19		0.5

		Dec 1977		0.76		1.35		-0.37		1.56		0.49

		Jan 1978		-5.52		2.22		3.31		-0.72		0.49

		Feb 1978		-0.92		3.59		0.76		1.9		0.46

		Mar 1978		3.38		3.48		1.2		1.37		0.53

		Apr 1978		8.42		0.4		-3.54		0.85		0.54

		May 1978		2.27		4.56		-0.62		2.85		0.51

		Jun 1978		-1.15		1.69		0.59		2.78		0.54

		Jul 1978		5.67		0.26		-1.11		4.22		0.56

		Aug 1978		4.31		5.06		-0.46		2.82		0.56

		Sep 1978		-0.81		-0.39		1.87		-3.11		0.62

		Oct 1978		-11.23		-9.88		1.36		-8.39		0.68

		Nov 1978		3.41		3.01		-2.22		5.52		0.7

		Dec 1978		1.66		1.24		-2.19		3.05		0.78

		Jan 1979		5		3.66		2.27		-1.24		0.77

		Feb 1979		-2.83		0.45		1.2		-1.06		0.73

		Mar 1979		6.49		3.19		-0.67		2.88		0.81

		Apr 1979		0.74		2.18		1.05		0.81		0.8

		May 1979		-1.39		0.57		1.92		-0.2		0.82

		Jun 1979		4.66		1.17		1.48		0.82		0.81

		Jul 1979		1.59		1.26		1.7		-1.09		0.77

		Aug 1979		6.3		2.08		-1.55		-0.23		0.77

		Sep 1979		0.01		-0.25		-0.87		5.34		0.83

		Oct 1979		-7.23		-3.34		-1.86		2.12		0.87

		Nov 1979		6.2		2.74		-3.25		7.96		0.99

		Dec 1979		2.74		4.17		-1.98		4.78		0.95

		Jan 1980		6.31		1.65		1.8		7.51		0.8

		Feb 1980		-0.33		-1.82		0.62		7.88		0.89

		Mar 1980		-11.69		-6.64		-1.06		-9.59		1.21

		Apr 1980		5.23		0.97		1.06		-0.42		1.26

		May 1980		6.07		2.16		0.39		-1.11		0.81

		Jun 1980		3.67		1.67		-0.89		1.59		0.61

		Jul 1980		7.02		4.25		-6.3		0.37		0.53

		Aug 1980		2.44		3.92		-2.64		3.19		0.64

		Sep 1980		2.94		0.89		-4.79		5.44		0.75

		Oct 1980		2.01		2.47		-2.74		7.32		0.95

		Nov 1980		10.55		-3.45		-8.35		15.24		0.96

		Dec 1980		-3.21		-0.28		2.68		-6.65		1.31

		Jan 1981		-4		3		6.84		-7.94		1.04

		Feb 1981		1.64		-0.31		0.97		-1.39		1.07

		Mar 1981		4.77		3.58		0.67		0.74		1.21

		Apr 1981		-1.03		4.42		2.26		-0.96		1.08

		May 1981		1.26		2		-0.43		3.75		1.15

		Jun 1981		-1.01		-0.85		5.13		-5.9		1.35

		Jul 1981		-0.3		-2.18		-0.66		-2.52		1.24

		Aug 1981		-5.76		-1.95		4.84		-1.12		1.28

		Sep 1981		-5.93		-2.66		5.2		1.98		1.24

		Oct 1981		6.13		2.13		-4.21		4.07		1.21

		Nov 1981		4.43		-0.96		1.9		-0.27		1.07

		Dec 1981		-2.78		1.17		0.74		1.32		0.87

		Jan 1982		-2.44		-1.29		3.17		1.73		0.8

		Feb 1982		-4.94		0.49		6.1		5		0.92

		Mar 1982		-0.89		-0.19		3.78		2.93		0.98

		Apr 1982		4.4		1.51		-2.78		-0.41		1.13

		May 1982		-2.93		0.47		1.81		2.55		1.06

		Jun 1982		-2.13		-0.4		1.54		5		0.96

		Jul 1982		-2.14		0.84		0.15		4.47		1.05

		Aug 1982		11.9		-4.11		1.16		-3.52		0.76

		Sep 1982		1.8		2.88		0.34		4.17		0.51

		Oct 1982		11.89		2.35		-3.68		0.03		0.59

		Nov 1982		5.3		4.77		-1.96		5.89		0.63

		Dec 1982		1.22		-0.18		0.01		0.02		0.67

		Jan 1983		4.29		2.7		-0.86		-1.7		0.69

		Feb 1983		3.21		3.23		0.67		3.83		0.62

		Mar 1983		3.45		1.77		2.07		0.93		0.63

		Apr 1983		7.38		0.53		0.6		1.8		0.71

		May 1983		1.21		6.16		-1.4		-1.59		0.69

		Jun 1983		3.74		0.91		-3.87		1.78		0.67

		Jul 1983		-3.33		1.46		5.62		-3.13		0.74

		Aug 1983		0.26		-4.3		5.55		-6.04		0.76

		Sep 1983		1.67		0.56		1.09		-0.1		0.76

		Oct 1983		-2.68		-3.6		5.06		-4.56		0.76

		Nov 1983		2.86		2.04		-0.62		-0.09		0.7

		Dec 1983		-1.05		-0.29		1.67		0.74		0.73

		Jan 1984		-1.16		-0.43		7.63		-2.49		0.76

		Feb 1984		-4.11		-1.71		3.36		0.19		0.71

		Mar 1984		1.36		0.07		0.48		1.09		0.73

		Apr 1984		0.3		-1.2		1.29		2.05		0.81

		May 1984		-5.19		0.03		0.26		1.52		0.78

		Jun 1984		2.57		-0.32		-2.6		-0.7		0.75

		Jul 1984		-1.92		-2.21		0.49		2.93		0.82

		Aug 1984		11.11		-0.25		-1.85		-5.69		0.83

		Sep 1984		0.06		0.2		5.32		3.67		0.86

		Oct 1984		0.16		-1.2		0.51		3.21		1

		Nov 1984		-1.03		-0.62		4.08		1.7		0.73

		Dec 1984		2.48		-0.6		-0.17		1.54		0.64

		Jan 1985		8.64		3.27		-5.43		-6.9		0.65

		Feb 1985		1.8		0.76		-0.12		1.82		0.58

		Mar 1985		-0.22		-1.15		4.1		1.68		0.62

		Apr 1985		-0.24		0.14		3.73		3.06		0.72

		May 1985		5.75		-2.25		-0.86		4		0.66

		Jun 1985		1.82		0.65		0.7		3.63		0.55

		Jul 1985		-0.12		2.85		-1.63		-3.94		0.62

		Aug 1985		-0.47		-0.34		2.28		1.82		0.55

		Sep 1985		-3.94		-1.58		1.32		1.48		0.6

		Oct 1985		4.67		-1.57		0.78		4.88		0.65

		Nov 1985		7.09		0.23		-2.87		-0.4		0.61

		Dec 1985		4.53		-0.49		-1.53		-0.13		0.65

		Jan 1986		1.21		1.22		0.53		2.96		0.56

		Feb 1986		7.66		-0.65		-0.94		2.78		0.53

		Mar 1986		5.48		-0.52		-0.44		2.45		0.6

		Apr 1986		-0.79		2.84		-2.85		-0.5		0.52

		May 1986		5.11		-1.32		-0.11		2.02		0.49

		Jun 1986		1.55		-0.91		1.4		5.16		0.52

		Jul 1986		-5.93		-3.38		4.78		1.8		0.52

		Aug 1986		6.53		-4.17		3.52		-5.01		0.46

		Sep 1986		-8.15		2.28		3.19		-5.86		0.45

		Oct 1986		5.12		-2.48		-1.32		2.69		0.46

		Nov 1986		1.56		-1.92		-0.06		-0.32		0.39

		Dec 1986		-2.78		0.08		0.37		0.4		0.49

		Jan 1987		12.89		-1.81		-3.18		2.1		0.42

		Feb 1987		4.82		3.49		-5.99		-2.17		0.43

		Mar 1987		2.11		0.37		1.66		1.6		0.47

		Apr 1987		-1.67		-1.69		-0.33		0.26		0.44

		May 1987		0.49		-0.53		0.13		-0.68		0.38

		Jun 1987		4.42		-2.18		1.07		-0.2		0.48

		Jul 1987		4.31		-0.67		0.66		2.67		0.46

		Aug 1987		3.99		-0.72		-0.9		-0.87		0.47

		Sep 1987		-2.14		0.52		0.28		0.71		0.45

		Oct 1987		-22.64		-8.43		4.23		-7.86		0.6

		Nov 1987		-7.42		2.77		3.14		-1.15		0.35

		Dec 1987		7.2		0.13		-4.49		5.83		0.39

		Jan 1988		4.5		-0.77		5.08		-7.58		0.29

		Feb 1988		5.21		3.36		-1.65		-1.54		0.46

		Mar 1988		-1.83		6.16		0.74		0.63		0.44

		Apr 1988		1.02		0.96		1.69		2.25		0.46

		May 1988		0.22		-2.64		2.3		0.64		0.51

		Jun 1988		5.28		2.16		-1.07		-2.91		0.49

		Jul 1988		-0.74		-0.21		2.27		0.63		0.51

		Aug 1988		-2.72		0.04		2.03		0.33		0.59

		Sep 1988		3.92		-1.25		-0.68		0.24		0.62

		Oct 1988		1.76		-2.9		1.71		1.31		0.61

		Nov 1988		-1.72		-1.74		1.24		0.42		0.57

		Dec 1988		2.12		1.95		-1.55		0.42		0.63

		Jan 1989		6.65		-2.14		0.51		-0.14		0.55

		Feb 1989		-1.64		2.76		0.87		0.94		0.61

		Mar 1989		2.24		0.74		0.46		3.55		0.67

		Apr 1989		5		-0.59		-1.45		1.69		0.67

		May 1989		4.14		-0.04		-0.82		1.56		0.79

		Jun 1989		-0.64		-1.01		2.19		0.65		0.71

		Jul 1989		7.9		-4.02		-2.84		5.44		0.7

		Aug 1989		2.18		0.5		0.72		-0.14		0.74

		Sep 1989		-0.11		0.28		-1.34		3.4		0.65

		Oct 1989		-2.99		-3.3		-1.03		1.37		0.68

		Nov 1989		1.72		-1.24		-1.12		2.58		0.69

		Dec 1989		1.77		-2.41		0.28		2.81		0.61

		Jan 1990		-7.28		-1.29		0.87		-3.28		0.57

		Feb 1990		1.68		1.03		0.61		-0.53		0.57

		Mar 1990		2.47		1.52		-2.9		1.65		0.64

		Apr 1990		-2.67		-0.5		-2.55		2.4		0.69

		May 1990		9.1		-2.57		-3.74		3.05		0.68

		Jun 1990		-0.46		1.43		-1.94		2.43		0.63

		Jul 1990		-1.22		-3.21		-0.01		5.93		0.68

		Aug 1990		-9.49		-3.58		1.58		1.78		0.66

		Sep 1990		-5.52		-3.67		0.73		5.53		0.6

		Oct 1990		-1.24		-5.51		0.22		6.73		0.68

		Nov 1990		6.92		0.33		-3.16		-5.62		0.57

		Dec 1990		3.06		0.79		-1.54		0.16		0.6

		Jan 1991		5.21		3.79		-1.84		-6.53		0.52

		Feb 1991		7.67		3.95		-0.54		-4.73		0.48

		Mar 1991		3.09		3.89		-1.23		2.83		0.44

		Apr 1991		0.25		0.5		1.42		-2.4		0.53

		May 1991		4.12		-0.34		-0.57		-0.1		0.47

		Jun 1991		-4.52		0.07		1.21		0.46		0.42

		Jul 1991		4.73		-0.93		-1.25		4.31		0.49

		Aug 1991		2.78		1.59		-0.78		1.63		0.46

		Sep 1991		-1.13		1.63		-1		1.73		0.46

		Oct 1991		1.71		0.9		-0.43		3.23		0.42

		Nov 1991		-3.8		-0.48		-1.93		1.26		0.39

		Dec 1991		11.22		-2.24		-4.03		8.3		0.38

		Jan 1992		-0.25		8.47		4.51		-2.51		0.34

		Feb 1992		1.37		0.88		6.37		-0.58		0.28

		Mar 1992		-2.32		-1.03		3.65		-0.36		0.34

		Apr 1992		1.39		-6.12		4.31		-2.6		0.32

		May 1992		0.58		0.39		1.28		0.13		0.28

		Jun 1992		-2.02		-3.09		3.4		-0.61		0.32

		Jul 1992		4.08		-0.44		-0.53		1.44		0.31

		Aug 1992		-2.12		-0.12		-1.03		-0.51		0.26

		Sep 1992		1.45		0.56		-0.21		1.43		0.26

		Oct 1992		1.25		2.05		-2.1		2.71		0.23

		Nov 1992		4.36		3.7		-1.48		-0.34		0.23

		Dec 1992		1.81		1.64		2.52		4.44		0.28

		Jan 1993		1.16		2.03		5.87		4.83		0.23

		Feb 1993		0.34		-3.43		6.42		3.1		0.22

		Mar 1993		2.55		0.23		1.22		3.74		0.25

		Apr 1993		-2.81		-0.7		2.61		0.33		0.24

		May 1993		3.11		1.96		-3.41		0.29		0.22

		Jun 1993		0.56		-0.31		2.62		4.58		0.25

		Jul 1993		-0.1		0.93		3.24		3.24		0.24

		Aug 1993		3.96		0.32		-0.45		2.58		0.25

		Sep 1993		0.14		3.11		-0.45		3.41		0.26

		Oct 1993		1.63		1.45		-1.54		-2.67		0.22

		Nov 1993		-1.64		-1.43		-0.27		-4.71		0.25

		Dec 1993		1.88		1.22		0.57		2.28		0.23

		Jan 1994		3.12		0.14		2.09		0.02		0.25

		Feb 1994		-2.34		2.73		-1.44		-0.29		0.21

		Mar 1994		-4.51		-0.98		1.31		-1.33		0.27

		Apr 1994		0.95		-0.93		1.68		0.41		0.27

		May 1994		0.89		-2.02		0.2		-2.15		0.31

		Jun 1994		-2.72		-0.45		1.7		-0.82		0.31

		Jul 1994		3.1		-1.73		0.59		0.19		0.28

		Aug 1994		4.38		1.34		-2.82		1.55		0.37

		Sep 1994		-1.94		2.82		-1.9		1.32		0.37

		Oct 1994		1.72		-2.34		-1.73		1.43		0.38

		Nov 1994		-3.67		0.27		-0.94		-0.2		0.37

		Dec 1994		1.3		0.04		0.55		3.5		0.44

		Jan 1995		2.22		-2.65		0.83		-1.83		0.42

		Feb 1995		4.03		-0.67		1.08		-0.36		0.4

		Mar 1995		2.65		-0.7		-1.07		0.38		0.46

		Apr 1995		2.55		-0.62		2.26		1.8		0.44

		May 1995		3.44		-2.2		1.69		-0.43		0.54

		Jun 1995		3.19		2.93		-2.27		2.9		0.47

		Jul 1995		4.17		2.09		-1.68		2.53		0.45

		Aug 1995		1.02		1.6		2.71		0.09		0.47

		Sep 1995		3.78		-2.1		-0.76		2.71		0.43

		Oct 1995		-1.05		-3.74		-0.75		4.12		0.47

		Nov 1995		4.38		-1.17		0.94		-0.64		0.42

		Dec 1995		1.52		0.57		0.86		2.54		0.49

		Jan 1996		2.69		-2.62		0.3		0.57		0.43

		Feb 1996		1.72		1.88		-1.42		0.58		0.39

		Mar 1996		1.12		1.3		1		-1.88		0.39

		Apr 1996		2.52		4.92		-3.9		-0.91		0.46

		May 1996		2.78		3.04		-1.2		1.56		0.42

		Jun 1996		-0.74		-3.58		1.56		1.01		0.4

		Jul 1996		-5.52		-3.83		4.45		-0.11		0.45

		Aug 1996		3.18		2.3		-0.46		-0.05		0.41

		Sep 1996		5.45		-0.88		-3.14		2.69		0.44

		Oct 1996		1.28		-4.44		5.12		3.91		0.42

		Nov 1996		6.66		-3.89		1.16		-2.23		0.41

		Dec 1996		-1.24		3.2		0.9		0.61		0.46

		Jan 1997		5.43		-1.84		-1.64		1.95		0.45

		Feb 1997		-0.1		-2.9		5.19		-2.05		0.39

		Mar 1997		-4.59		-0.38		3.81		0.97		0.43

		Apr 1997		4.47		-5.66		-0.07		4.92		0.43

		May 1997		7.23		4.89		-3.87		-5.16		0.49

		Jun 1997		4.47		1.32		1.23		2.62		0.37

		Jul 1997		7.76		-2.8		0.84		3.81		0.43

		Aug 1997		-3.74		7.31		1.38		-2.55		0.41

		Sep 1997		5.79		2.61		0.02		1.45		0.44

		Oct 1997		-3.38		-0.68		1.96		-0.38		0.42

		Nov 1997		3.37		-4.94		0.78		0.29		0.39

		Dec 1997		1.8		-2.35		3.46		3.95		0.48

		Jan 1998		0.58		-1.15		-1.45		0.11		0.43

		Feb 1998		7.43		0		-0.13		-1.14		0.39

		Mar 1998		5.15		-0.94		1.06		2.15		0.39

		Apr 1998		1.16		0.21		0.74		0.78		0.43

		May 1998		-2.67		-3.75		4.16		1.88		0.4

		Jun 1998		3.59		-3.16		-2.32		7.26		0.41

		Jul 1998		-2.06		-5.12		-0.97		3.68		0.4

		Aug 1998		-15.65		-5.3		3.41		1.88		0.43

		Sep 1998		6.61		-0.12		-3.31		-0.71		0.46

		Oct 1998		7.45		-3.32		-2.2		-5.36		0.32

		Nov 1998		6.41		1.07		-3.14		1.16		0.31

		Dec 1998		6.54		-0.33		-4.46		8.99		0.38

		Jan 1999		3.85		0.39		-4.03		3.04		0.35

		Feb 1999		-3.73		-5.68		1.4		-0.16		0.35

		Mar 1999		3.88		-3.94		-2.64		-1.29		0.43

		Apr 1999		4.7		3.99		2.51		-9.06		0.37

		May 1999		-2.12		3.42		2.4		-5.28		0.34

		Jun 1999		5.17		3.06		-3.59		4.89		0.4

		Jul 1999		-3.11		2.67		-0.76		1.51		0.38

		Aug 1999		-0.99		-1.28		-1.31		2.92		0.39

		Sep 1999		-2.4		3.32		-3.4		6.46		0.39

		Oct 1999		6.51		-6.94		-2.88		5.47		0.39

		Nov 1999		3.73		7.37		-6.51		5.62		0.36

		Dec 1999		8.16		7.11		-8.74		13.19		0.44

		Jan 2000		-4.33		4.96		-0.29		1.86		0.41

		Feb 2000		2.88		21.71		-9.93		18.36		0.43

		Mar 2000		5.67		-16.87		7.37		-6.39		0.47

		Apr 2000		-5.94		-7.73		8.61		-8.58		0.46

		May 2000		-3.92		-5.1		2.56		-9.08		0.5

		Jun 2000		5.04		13.86		-9.86		16.6		0.4

		Jul 2000		-2.03		-2.79		8.14		-0.11		0.48

		Aug 2000		7.53		-1.13		-0.68		5.71		0.5

		Sep 2000		-4.94		-1.39		6.24		2.18		0.51

		Oct 2000		-2.2		-3.76		5.52		-4.63		0.56

		Nov 2000		-10.21		-2.79		11.3		-2.41		0.51

		Dec 2000		1.69		0.97		7.33		6.7		0.5

		Jan 2001		3.67		6.57		-4.9		-25.06		0.54

		Feb 2001		-9.67		-0.74		12.9		12.51		0.38

		Mar 2001		-6.84		0.34		6.45		8.35		0.42

		Apr 2001		8.33		0.52		-4.69		-7.97		0.39

		May 2001		1.04		2.6		3.14		2.12		0.32

		Jun 2001		-1.66		6.05		-1.06		0.35		0.28

		Jul 2001		-1.83		-4.35		5.58		5.47		0.3

		Aug 2001		-6.15		2.49		2.5		5.54		0.31

		Sep 2001		-8.97		-6.13		1.6		11.53		0.28

		Oct 2001		2.68		7.63		-8.1		-8.41		0.22

		Nov 2001		7.71		-0.41		2		-8.58		0.17

		Dec 2001		1.76		4.57		1.1		-0.02		0.15

		Jan 2002		-1.3		1.19		3.33		3.69		0.14

		Feb 2002		-2.16		-1.1		2.5		6.76		0.13

		Mar 2002		4.37		4.23		1.11		-1.67		0.13

		Apr 2002		-5.05		5.94		3.93		7.96		0.15

		May 2002		-1.24		-3.21		1.69		2.97		0.14

		Jun 2002		-7.08		4.26		0.13		6.15		0.13

		Jul 2002		-8.03		-5.3		-3.41		3.34		0.15

		Aug 2002		0.64		-2.44		2.49		1.77		0.14

		Sep 2002		-10.21		2.57		1.31		9.09		0.14

		Oct 2002		7.98		-2.9		-5.46		-5.3		0.14

		Nov 2002		6.08		2.84		-1.15		-16.17		0.12

		Dec 2002		-5.65		0		2.25		9.65		0.11

		Jan 2003		-2.47		1.39		-0.93		1.62		0.1

		Feb 2003		-1.79		-0.34		-1.46		1.25		0.09

		Mar 2003		1.19		0.89		-2.09		1.61		0.1

		Apr 2003		8.32		0.57		1.03		-9.46		0.1

		May 2003		6.14		4.7		-0.3		-10.77		0.09

		Jun 2003		1.52		1.67		0.66		-1.06		0.1

		Jul 2003		2.42		5.25		-1.15		-0.31		0.07

		Aug 2003		2.41		2.6		2.03		-0.56		0.07

		Sep 2003		-1.16		0.79		0.02		-0.19		0.08

		Oct 2003		6.15		2.68		1.76		3.73		0.07

		Nov 2003		1.42		2.01		1.86		1.62		0.07

		Dec 2003		4.37		-3.01		2.42		-5.71		0.08

		Jan 2004		2.22		2.8		1.97		2.6		0.07

		Feb 2004		1.46		-1.43		0.49		-1.09		0.06

		Mar 2004		-1.23		1.75		0.21		0.21		0.09

		Apr 2004		-1.75		-2.06		-2.62		-5.39		0.08

		May 2004		1.23		-0.21		-0.39		1.61		0.06

		Jun 2004		1.94		2.26		1.38		2.1		0.08

		Jul 2004		-3.96		-3.8		4.1		-2.29		0.1

		Aug 2004		0.19		-1.63		1.03		-1.55		0.11

		Sep 2004		1.71		3.03		-0.25		5.24		0.11

		Oct 2004		1.54		0.31		-0.62		-1.52		0.11

		Nov 2004		4.69		3.91		1.79		3.23		0.15

		Dec 2004		3.59		0.12		-0.06		-2.84		0.16

		Jan 2005		-2.6		-1.51		1.97		3.21		0.16

		Feb 2005		2.05		-0.51		1.63		3.16		0.16

		Mar 2005		-1.76		-1.39		1.58		0.54		0.21

		Apr 2005		-2.4		-3.99		-0.34		-0.85		0.21

		May 2005		3.89		2.89		-0.81		0.43		0.24

		Jun 2005		0.8		2.62		2.62		2.05		0.23

		Jul 2005		4.16		2.93		-0.51		-0.01		0.24

		Aug 2005		-0.92		-0.92		1.27		2.27		0.3

		Sep 2005		0.78		-0.58		0.77		3.46		0.29

		Oct 2005		-1.75		-1.21		0.23		-1.28		0.27

		Nov 2005		3.92		0.91		-1.18		0.25		0.31

		Dec 2005		0.07		-0.46		0.44		0.77		0.32

		Jan 2006		3.39		5.42		1.12		2.68		0.35

		Feb 2006		0.04		-0.38		-0.25		-1.84		0.34

		Mar 2006		1.83		3.55		0.61		1.26		0.37

		Apr 2006		1.09		-1.34		2.59		0.61		0.36

		May 2006		-3.14		-3.04		2.55		-3.65		0.43

		Jun 2006		0.05		-0.35		0.87		1.49		0.4

		Jul 2006		-0.38		-4.08		2.94		-2.21		0.4

		Aug 2006		2.45		0.9		-1.72		-3.47		0.42

		Sep 2006		2.25		-1.37		0.05		-0.94		0.41

		Oct 2006		3.64		1.73		-0.04		-0.24		0.41

		Nov 2006		2.13		0.86		0.07		-1.01		0.42

		Dec 2006		1.27		-1.1		3.16		0.84		0.4

		Jan 2007		1.84		0.1		-0.11		0.21		0.44

		Feb 2007		-1.58		1.32		-0.09		-1.35		0.38

		Mar 2007		1.11		-0.06		-0.22		2.49		0.43

		Apr 2007		3.93		-2.06		-1.15		-0.16		0.44

		May 2007		3.65		0.03		-0.05		-0.26		0.41

		Jun 2007		-1.56		0.77		-1.13		0.38		0.4

		Jul 2007		-3.33		-2.51		-3.34		2.8		0.4

		Aug 2007		1.34		-0.13		-2.24		0.11		0.42

		Sep 2007		3.54		-2.29		-1.87		4.59		0.32

		Oct 2007		2.12		0.22		-2.59		4.96		0.32

		Nov 2007		-4.49		-2.63		-1.18		0.93		0.34

		Dec 2007		-0.6		0.2		-0.52		6.52		0.27

		Jan 2008		-6.15		-0.89		3.65		-7.89		0.21

		Feb 2008		-2.96		-0.23		-0.95		6.14		0.13

		Mar 2008		-0.76		0.94		-0.15		4.1		0.17

		Apr 2008		4.78		-1.64		-0.96		-0.2		0.18

		May 2008		2.04		3.22		-1.38		3.21		0.18

		Jun 2008		-8.27		1.27		-2.43		12.54		0.17

		Jul 2008		-0.62		2.47		5.81		-5.15		0.15

		Aug 2008		1.66		3.61		1.56		-4.05		0.13

		Sep 2008		-9.09		-1.13		6.33		0.35		0.15

		Oct 2008		-17.15		-2.34		-2.9		7.79		0.08

		Nov 2008		-7.83		-2.99		-5.94		7.11		0.03

		Dec 2008		1.74		3.59		-0.24		-5.07		0

		Jan 2009		-8.12		-0.01		-11.1		-1.83		0

		Feb 2009		-10.09		0.16		-7.25		4.18		0.01

		Mar 2009		8.97		-0.08		3.52		-11.38		0.02

		Apr 2009		10.2		4.83		5.46		-34.39		0.01

		May 2009		5.21		-2.33		-0.21		-12.44		0

		Jun 2009		0.44		2.61		-2.71		5.29		0.01

		Jul 2009		7.73		2.07		5.27		-5.36		0.01

		Aug 2009		3.34		-0.9		7.76		-8.84		0.01

		Sep 2009		4.09		2.45		0.92		-4.93		0.01

		Oct 2009		-2.59		-4.23		-4.18		2.65		0

		Nov 2009		5.56		-2.49		-0.17		0.29		0

		Dec 2009		2.76		6.11		0.01		2.91		0.01

		Jan 2010		-3.36		0.38		0.31		-5.38		0

		Feb 2010		3.4		1.21		3.17		3.6		0

		Mar 2010		6.32		1.43		2.1		3.66		0.01

		Apr 2010		2.01		4.98		2.81		3.22		0.01

		May 2010		-7.88		0.05		-2.38		-0.13		0.01

		Jun 2010		-5.55		-1.98		-4.5		-3		0.01

		Jul 2010		6.94		0.17		-0.26		1.88		0.01

		Aug 2010		-4.76		-3		-1.96		-0.19		0.01

		Sep 2010		9.55		3.92		-3.12		1.35		0.01

		Oct 2010		3.89		1.14		-2.59		1.64		0.01

		Nov 2010		0.61		3.71		-0.9		2.53		0.01

		Dec 2010		6.83		0.69		3.82		-3.19		0.01

		Jan 2011		2		-2.46		0.83		-0.32		0.01

		Feb 2011		3.5		1.52		1.08		2.03		0.01

		Mar 2011		0.46		2.6		-1.57		3.51		0.01

		Apr 2011		2.9		-0.35		-2.53		0.07		0

		May 2011		-1.27		-0.71		-2.07		-0.56		0

		Jun 2011		-1.75		-0.17		-0.33		1.78		0

		Jul 2011		-2.36		-1.3		-1.23		0.08		0

		Aug 2011		-5.98		-3.06		-2.44		-0.31		0.01

		Sep 2011		-7.59		-3.49		-1.46		-2.55		0

		Oct 2011		11.35		3.41		-0.17		-1.42		0

		Nov 2011		-0.28		-0.17		-0.34		3.99		0

		Dec 2011		0.74		-0.71		1.75		1.94		0

		Jan 2012		5.05		2.15		-1.11		-7.97		0

		Feb 2012		4.42		-1.75		0.09		-0.3		0

		Mar 2012		3.11		-0.6		0.87		1.5		0

		Apr 2012		-0.85		-0.51		-0.46		3.83		0

		May 2012		-6.18		0.02		-0.62		6.6		0.01

		Jun 2012		3.89		0.77		0.44		-1.12		0

		Jul 2012		0.79		-2.59		-0.26		3.07		0

		Aug 2012		2.56		0.42		1.32		-2.49		0.01

		Sep 2012		2.74		0.51		1.54		-1.02		0.01

		Oct 2012		-1.75		-1.14		3.79		0.1		0.01

		Nov 2012		0.79		0.58		-0.96		0.38		0.01

		Dec 2012		1.19		1.47		3.56		-2.97		0.01

		Jan 2013		5.57		0.39		0.95		-1.88		0

		Feb 2013		1.29		-0.45		0.03		1.31		0

		Mar 2013		4.03		0.78		-0.29		1.94		0

		Apr 2013		1.55		-2.42		0.63		0.25		0

		May 2013		2.8		1.67		2.6		-1.8		0

		Jun 2013		-1.2		1.22		-0.18		0.59		0

		Jul 2013		5.65		1.86		0.56		1.74		0

		Aug 2013		-2.71		0.3		-2.78		0.05		0

		Sep 2013		3.77		2.93		-1.19		2.97		0

		Oct 2013		4.18		-1.49		1.14		0.16		0

		Nov 2013		3.12		1.24		0.24		0.4		0

		Dec 2013		2.81		-0.5		-0.31		0.07		0

		Jan 2014		-3.32		0.86		-2.09		1.72		0

		Feb 2014		4.65		0.32		-0.4		2.08		0

		Mar 2014		0.43		-1.89		5.08		-3.3		0

		Apr 2014		-0.19		-4.25		1.14		-3.85		0

		May 2014		2.06		-1.85		-0.27		1.15		0

		Jun 2014		2.61		3.07		-0.74		0.68		0

		Jul 2014		-2.04		-4.24		0.01		-0.24		0

		Aug 2014		4.24		0.36		-0.58		0.82		0

		Sep 2014		-1.97		-3.83		-1.23		0.53		0

		Oct 2014		2.52		4.23		-1.68		0		0

		Nov 2014		2.55		-2.09		-2.99		1.05		0

		Dec 2014		-0.06		2.54		2.06		1.06		0

		Jan 2015		-3.11		-0.56		-3.47		3.87		0

		Feb 2015		6.13		0.48		-1.79		-2.84		0

		Mar 2015		-1.12		3.02		-0.46		2.98		0

		Apr 2015		0.59		-2.97		1.86		-7.37		0

		May 2015		1.36		0.87		-1.37		6.01		0

		Jun 2015		-1.53		2.83		-0.79		3.04		0

		Jul 2015		1.54		-4.14		-4.12		10.28		0

		Aug 2015		-6.04		0.48		2.68		-2.07		0

		Sep 2015		-3.08		-2.64		0.52		5.32		0

		Oct 2015		7.75		-1.97		-0.08		-3.97		0

		Nov 2015		0.56		3.64		-0.52		2.28		0

		Dec 2015		-2.16		-2.82		-2.58		3.44		0.01

		Jan 2016		-5.76		-3.36		2.1		1.37		0.01

		Feb 2016		-0.05		0.78		-0.48		-4.09		0.02

		Mar 2016		6.98		0.87		1.12		-5.14		0.02

		Apr 2016		0.93		0.68		3.26		-6.23		0.01

		May 2016		1.79		-0.26		-1.81		1.94		0.01

		Jun 2016		-0.03		0.65		-1.49		4.21		0.02

		Jul 2016		3.97		2.65		-1.1		-3.06		0.02

		Aug 2016		0.52		1.14		3.33		-3.11		0.02

		Sep 2016		0.27		2.01		-1.5		-0.55		0.02

		Oct 2016		-2		-4.36		4.17		0.65		0.02

		Nov 2016		4.87		5.51		8.32		-4.22		0.01

		Dec 2016		1.85		0.05		3.55		-0.39		0.03

		Jan 2017		1.98		-1.01		-2.76		-0.97		0.04

		Feb 2017		3.61		-2		-1.78		-1.65		0.04

		Mar 2017		0.2		1.19		-3.16		-0.88		0.03

		Apr 2017		1.14		0.73		-1.87		0.51		0.05

		May 2017		1.12		-2.54		-3.77		1.47		0.06

		Jun 2017		0.84		2.15		1.35		-0.25		0.06

		Jul 2017		1.94		-1.4		-0.28		1.63		0.07

		Aug 2017		0.25		-1.69		-2.24		3.53		0.09

		Sep 2017		2.6		4.52		3.03		-1.23		0.09

		Oct 2017		2.34		-1.94		-0.06		4.3		0.09

		Nov 2017		3.2		-0.66		-0.05		-0.75		0.08

		Dec 2017		1.15		-1.26		0.14		-1.62		0.09

		Jan 2018		5.69		-3.03		-1.37		3.94		0.11

		Feb 2018		-3.54		0.28		-1.19		3.98		0.11

		Mar 2018		-2.23		3.93		-0.11		-1.28		0.12

		Apr 2018		0.43		1.1		0.53		0.27		0.14

		May 2018		2.79		5.24		-3.16		3.77		0.14

		Jun 2018		0.62		1.17		-2.39		-2.41		0.14

		Jul 2018		3.35		-2.17		0.4		-1.62		0.16

		Aug 2018		3.6		1.26		-4.11		5.29		0.16

		Sep 2018		0.21		-2.35		-1.35		-0.07		0.15

		Oct 2018		-7.49		-4.69		3.41		-1.82		0.19

		Nov 2018		1.87		-0.78		0.2		-1.4		0.18

		Dec 2018		-9.36		-2.58		-1.51		1.73		0.19
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Figure 1.1.: The cumulative value of the four Fama French factors, plus the risk-free
rate, are shown, from Jan 1927 through Dec 2018. Cumulative value is
normalized to the initial investment, ignores all trading costs, and is not
adjusted for inflation.

Example 1.2.2 (Fama-French Six Factor monthly returns). Fama and French also con-
sider a five-factor model of returns, adding profitability (yclept RMW, for ‘robust
minus weak’) and investment (CMA, for ‘conservative minus aggressive’) factors to
the classic three factor model. [44, 8] These are computed and distributed by Ken
French, and available via the aqfb.data package3. [50, 128] 3. Data are

The monthly returns can be loaded via:

# a0c1a9e8-aeb3-41b5-b1da-522d8e5a2c04

require(xts)

library(aqfb.data)

data(mff6)

Again, the data are distributed as monthly relative returns, quoted in percents. The
risk free rate is added back to excess market returns to get raw market returns. Since
the upstream data used to determine the RMW and CMA factors ‘only’ goes back
to the 1960’s, the set consists of ‘only’ 666mo. of data, from Jul 1963 through Dec
2018. The cumulative value of the six factors, and RF, are shown in Figure 1.2. The
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		date		Mkt		SMB		HML		RMW		CMA		UMD		RF

		Jul 1963		-0.12		-0.47		-0.83		0.66		-1.15		1		0.27

		Aug 1963		5.32		-0.79		1.67		0.39		-0.4		1.03		0.25

		Sep 1963		-1.3		-0.48		0.18		-0.76		0.24		0.16		0.27

		Oct 1963		2.82		-1.29		-0.1		2.75		-2.24		3.14		0.29

		Nov 1963		-0.58		-0.84		1.71		-0.45		2.22		-0.75		0.27

		Dec 1963		2.12		-1.89		-0.12		0.08		-0.3		1.7		0.29

		Jan 1964		2.54		0.08		1.59		0.22		1.5		1.06		0.3

		Feb 1964		1.8		0.32		2.83		0.06		0.85		0.24		0.26

		Mar 1964		1.72		1.41		3.32		-2.01		2.93		0.72		0.31

		Apr 1964		0.39		-1.52		-0.55		-1.35		-1.08		-0.6		0.29

		May 1964		1.68		-0.68		1.98		-0.26		0.24		2.54		0.26

		Jun 1964		1.57		0.09		0.68		-0.42		0.14		0.45		0.3

		Jul 1964		2.04		0.53		0.68		0.14		1.84		-0.37		0.3

		Aug 1964		-1.16		0.3		0.09		0.06		0.36		-0.19		0.28

		Sep 1964		2.97		-0.31		1.65		-0.48		0.58		-0.39		0.28

		Oct 1964		0.88		0.88		1.14		-0.29		0.48		0.08		0.29

		Nov 1964		0.29		-0.27		-1.98		0.6		-0.16		1.08		0.29

		Dec 1964		0.34		-0.58		-2.55		1.13		-1.63		-0.69		0.31

		Jan 1965		3.82		2.49		0.18		0.84		0.11		-1.28		0.28

		Feb 1965		0.74		3.31		0.22		0.4		-0.69		0.3		0.3

		Mar 1965		-0.98		2.03		1.09		-0.3		0.73		0.1		0.36

		Apr 1965		3.42		1.18		0.71		0.26		-2.3		2.54		0.31

		May 1965		-0.46		0.06		-1.63		-0.37		0.7		0.54		0.31

		Jun 1965		-5.16		-4.3		0.55		0.12		0.41		-3.12		0.35

		Jul 1965		1.74		1.07		2.18		-1.41		-0.02		4.1		0.31

		Aug 1965		3.06		2.72		-0.96		2.06		-0.76		2.58		0.33

		Sep 1965		3.17		0.62		-0.1		-0.82		0.82		3.36		0.31

		Oct 1965		2.91		3.43		1.52		1.22		-0.76		3.45		0.31

		Nov 1965		0.32		5.19		0.21		-1.06		-0.9		4.42		0.35

		Dec 1965		1.34		2.65		1.95		-1.28		-0.45		0.09		0.33

		Jan 1966		1.1		4.72		3.49		-2.83		-0.07		5.41		0.38

		Feb 1966		-0.86		4.86		0.27		-0.15		-1.44		4.58		0.35

		Mar 1966		-2.13		0.22		-2.07		1.3		-0.01		1.34		0.38

		Apr 1966		2.48		3.38		-0.54		0.41		-0.91		6.18		0.34

		May 1966		-5.25		-5.19		-1.55		1.66		-1.52		-4.69		0.41

		Jun 1966		-1.06		1.34		0.5		0.06		0.8		3.28		0.38

		Jul 1966		-1.28		-0.5		0.96		-0.45		1.78		-1.39		0.35

		Aug 1966		-7.5		-3.03		0.47		0.05		0.77		-2.11		0.41

		Sep 1966		-0.66		-1.19		0.53		-1.65		2.5		-1.73		0.4

		Oct 1966		4.31		-6.53		2.87		-3.64		4.28		-5.13		0.45

		Nov 1966		1.8		3.37		-4.46		4.17		-6.53		5.73		0.4

		Dec 1966		0.53		1.93		-1.22		0.68		-0.13		1.07		0.4

		Jan 1967		8.58		9		2.22		0.62		-2.98		-6.75		0.43

		Feb 1967		1.14		3.03		-2.17		1.94		-0.94		3.56		0.36

		Mar 1967		4.38		1.91		0.31		0.9		-1.51		1.42		0.39

		Apr 1967		4.21		0.46		-2.64		2.43		-3.75		0.64		0.32

		May 1967		-4		2.37		0.8		-1.75		1.61		0.67		0.33

		Jun 1967		2.68		6.47		0.96		-0.64		-2.38		6.03		0.27

		Jul 1967		4.89		3.48		2.65		0.51		2.73		-1.07		0.31

		Aug 1967		-0.58		0.76		1.46		0.42		1.4		-1.41		0.31

		Sep 1967		3.43		2.46		-2.47		0.22		-0.96		2.55		0.32

		Oct 1967		-2.7		0.46		-3.39		0.81		-2.57		3.66		0.39

		Nov 1967		0.73		-0.05		-1.71		1.29		-2.29		1.29		0.36

		Dec 1967		3.38		5.76		-0.39		-0.65		0.04		3.23		0.33

		Jan 1968		-3.66		4.48		4.75		-4.58		6.45		-4.64		0.4

		Feb 1968		-3.36		-2.92		1.17		-0.14		2.48		-3.41		0.39

		Mar 1968		0.58		-1.52		-0.59		1.17		-1.15		3.18		0.38

		Apr 1968		9.48		6.25		-1.03		2.79		-3.66		5.15		0.43

		May 1968		2.73		7.02		0.84		0.39		-1.85		3.73		0.45

		Jun 1968		1.12		-0.28		0.67		-1.33		2.65		-1.92		0.43

		Jul 1968		-2.24		-1.33		5.48		-3		3.59		-0.84		0.48

		Aug 1968		1.76		2.29		1		-0.6		0.42		1.88		0.42

		Sep 1968		4.46		2.78		0.24		-2.03		0.89		-0.67		0.43

		Oct 1968		0.86		-0.42		2.89		-1.28		2.79		-1.52		0.44

		Nov 1968		5.85		2.41		-0.9		0.45		-2.5		1.73		0.42

		Dec 1968		-3.51		3.6		0.02		-1.78		1.66		0.11		0.43

		Jan 1969		-0.72		-0.46		1.69		-1.56		1.38		-0.15		0.53

		Feb 1969		-5.38		-4.12		0.9		2.18		0.79		-2.46		0.46

		Mar 1969		3.1		-0.4		-0.46		-1.35		-0.41		3.95		0.46

		Apr 1969		1.99		-0.82		0.03		0.39		0.08		1.17		0.53

		May 1969		0.38		-0.18		0.73		-0.98		1.51		1.68		0.48

		Jun 1969		-6.67		-5.49		-1.09		4.26		-1.53		-2.22		0.51

		Jul 1969		-6.47		-3.37		1.42		1.4		1.97		1.64		0.53

		Aug 1969		5.18		0.71		-3.87		1.16		-4.08		2.13		0.5

		Sep 1969		-2.36		1.29		-3.19		3.42		-0.83		2.53		0.62

		Oct 1969		5.66		3.89		-3.19		0.01		-2.03		-4.32		0.6

		Nov 1969		-3.27		-2.41		-1.12		1.44		0.32		3.6		0.52

		Dec 1969		-1.99		-3.7		-3.02		2.47		-2.04		5.05		0.64

		Jan 1970		-7.5		3.09		3.04		-1.77		3.92		0.63		0.6

		Feb 1970		5.75		-2.58		4.04		-2.28		3.06		0.12		0.62

		Mar 1970		-0.49		-2.4		4.25		-0.87		4.43		-0.29		0.57

		Apr 1970		-10.5		-6.3		6.39		-0.64		5.88		-0.73		0.5

		May 1970		-6.39		-4.42		3.6		-1.3		3.62		-2.73		0.53

		Jun 1970		-5.21		-2.17		0.87		0.19		2.9		5.78		0.58

		Jul 1970		7.45		-0.69		0.96		-0.07		1.9		-2.94		0.52

		Aug 1970		5.02		1.54		1.03		0.57		-0.15		-6.5		0.53

		Sep 1970		4.72		8.49		-5.58		0.24		-5.93		-8.92		0.54

		Oct 1970		-1.82		-4.5		0.27		1.83		2.38		9.61		0.46

		Nov 1970		5.05		-4		1.63		1.75		1.59		2.89		0.46

		Dec 1970		6.14		3.02		1.01		0.14		0.28		-2.19		0.42

		Jan 1971		5.22		7.54		1.38		-2.19		-0.14		-6.71		0.38

		Feb 1971		1.74		2.05		-1.29		0.65		-0.72		0.81		0.33

		Mar 1971		4.43		2.15		-4.04		1.97		-2.69		-1.21		0.3

		Apr 1971		3.43		-0.37		0.72		-1.56		0.72		1.32		0.28

		May 1971		-3.69		-1.17		-1.38		1.46		0.3		0.89		0.29

		Jun 1971		0.27		-1.45		-2.06		1.52		-1.74		2.72		0.37

		Jul 1971		-4.1		-1.41		0.17		0.48		1.62		-2.37		0.4

		Aug 1971		4.26		-0.18		2.67		-0.34		2.6		3.51		0.47

		Sep 1971		-0.48		0.19		-2.96		2.59		-1.56		2.09		0.37

		Oct 1971		-4.05		-1.65		-0.43		1.48		-1.24		0.46		0.37

		Nov 1971		-0.09		-2.9		-1.7		2.45		-0.36		1.48		0.37

		Dec 1971		9.08		3.27		-0.35		-0.43		-1.83		-0.68		0.37

		Jan 1972		2.78		6.33		1.99		-1.48		0.29		0.24		0.29

		Feb 1972		3.12		0.96		-2.76		1.65		-0.52		2.7		0.25

		Mar 1972		0.9		-0.49		-1.73		1.58		-0.19		2.91		0.27

		Apr 1972		0.58		0.15		0.23		-0.59		-0.89		2.9		0.29

		May 1972		1.55		-3.15		-2.69		2.33		-1.85		3.19		0.3

		Jun 1972		-2.14		-0.35		-2.51		1.75		-0.36		1.93		0.29

		Jul 1972		-0.49		-2.74		0.78		1.08		-0.59		2.75		0.31

		Aug 1972		3.55		-3.53		4.69		-2.02		2.95		-5.34		0.29

		Sep 1972		-0.8		-2.25		0.47		1.67		-1.98		1.75		0.34

		Oct 1972		0.92		-2.53		1.37		-0.12		-0.05		0.75		0.4

		Nov 1972		4.97		-0.53		4.76		-1.98		3.35		-5.14		0.37

		Dec 1972		0.99		-1.82		-2.27		2.6		-2.2		4.98		0.37

		Jan 1973		-2.85		-2.79		2.68		0.4		0.92		3.71		0.44

		Feb 1973		-4.44		-4.01		1.7		-0.34		-0.01		2.12		0.41

		Mar 1973		-0.84		-2.31		2.78		-1.07		0.73		3.62		0.46

		Apr 1973		-5.16		-3		5.69		-1.63		2.71		6.4		0.52

		May 1973		-2.43		-5.98		0.21		2.02		-1.79		7.09		0.51

		Jun 1973		-1.05		-2.54		1.44		-0.27		0.22		4.31		0.51

		Jul 1973		5.69		7.25		-5.31		-0.1		-3.45		-11.69		0.64

		Aug 1973		-3.12		-1.75		1.14		-1.36		1.2		3.42		0.7

		Sep 1973		5.43		3.54		2.18		-2.3		1.82		-7.03		0.68

		Oct 1973		-0.18		-0.26		1.74		-1.94		2.59		6.75		0.65

		Nov 1973		-12.19		-7.25		4.04		-2.71		1.49		8.63		0.56

		Dec 1973		1.25		-4.6		4.09		-2.8		2.3		10.39		0.64

		Jan 1974		0.46		10.41		5.99		-3.01		4.47		-8.82		0.63

		Feb 1974		0.11		0.16		2.54		-1.93		2.67		0.14		0.58

		Mar 1974		-2.25		2.64		-0.11		2.82		0.36		-0.99		0.56

		Apr 1974		-4.54		-0.63		1.06		2.86		1.85		2		0.75

		May 1974		-3.93		-3.17		-2.04		5.08		0		-0.26		0.75

		Jun 1974		-2.23		-0.02		0.79		0.62		3.06		2.37		0.6

		Jul 1974		-7.35		1.99		5.14		-3.26		4.58		3.01		0.7

		Aug 1974		-8.75		0.3		2.5		-0.26		2.55		3		0.6

		Sep 1974		-10.96		1.46		5.49		-4.28		5.91		4.32		0.81

		Oct 1974		16.61		-6.85		-9.99		-0.03		-2.94		-0.5		0.51

		Nov 1974		-3.97		-1.44		-0.16		-3.39		2.95		2.17		0.54

		Dec 1974		-2.75		-4.36		0		-0.65		3.23		2.95		0.7

		Jan 1975		14.24		12.79		8.44		-0.89		-0.86		-13.89		0.58

		Feb 1975		5.99		-0.65		-4.56		1.15		-2.14		-0.55		0.43

		Mar 1975		3.07		3.98		2.49		1.23		-1.25		-1.99		0.41

		Apr 1975		4.67		-0.59		-1.11		1.37		-1.35		1.34		0.44

		May 1975		5.63		2.89		-4.02		-1.05		-0.61		-0.47		0.44

		Jun 1975		5.24		1.32		1.32		-2.62		1.06		0.06		0.41

		Jul 1975		-6.11		3.42		1.7		0.43		1.19		0.42		0.48

		Aug 1975		-2.37		-2.79		-0.9		1.03		-0.89		-0.13		0.48

		Sep 1975		-3.73		0.02		0.34		0.53		0.5		0.32		0.53

		Oct 1975		5.87		-4.23		0.3		-0.46		2.27		-0.14		0.56

		Nov 1975		3.05		-1.07		1.99		-0.62		1.71		-0.45		0.41

		Dec 1975		-1.12		-0.03		1.76		-0.12		0.6		-0.12		0.48

		Jan 1976		12.63		6.35		8.58		-1.9		2.36		4.46		0.47

		Feb 1976		0.66		7.97		5.78		-2.58		3.84		0.36		0.34

		Mar 1976		2.72		-1.34		-0.04		-0.38		1.09		0.19		0.4

		Apr 1976		-1.07		0.14		-0.06		0.39		-1.1		0.5		0.42

		May 1976		-0.97		-1.12		-1.32		2.47		-1.42		-1.1		0.37

		Jun 1976		4.48		-1.13		0.68		-0.59		0.93		-0.42		0.43

		Jul 1976		-0.6		0.62		1.74		-1.09		0.29		-0.12		0.47

		Aug 1976		-0.14		-2.03		0.79		-0.46		-0.59		-0.85		0.42

		Sep 1976		2.51		0.12		-0.29		0.99		-1.14		0.24		0.44

		Oct 1976		-2.01		0.16		-0.13		-0.22		-0.31		-0.48		0.41

		Nov 1976		0.76		2.65		1.51		-1.39		0.08		2.9		0.4

		Dec 1976		6.05		3.61		2.22		-0.62		2.23		0.77		0.4

		Jan 1977		-3.69		5.9		4.26		-0.53		1.93		3.98		0.36

		Feb 1977		-1.59		1.11		0.5		-0.13		-0.19		0.35		0.35

		Mar 1977		-0.99		1.29		1.02		-0.32		-0.09		0.49		0.38

		Apr 1977		0.53		0.59		3.45		-2.03		1.16		4.22		0.38

		May 1977		-1.08		1.28		0.84		0.33		0.11		2.01		0.37

		Jun 1977		5.11		2.07		-0.64		0.88		-1.22		1.77		0.4

		Jul 1977		-1.27		1.82		-0.59		0.83		0.01		0.31		0.42

		Aug 1977		-1.31		0.89		-2.79		0.96		-0.62		-1.78		0.44

		Sep 1977		0.16		1.56		-0.49		1.23		-0.84		2.06		0.43

		Oct 1977		-3.89		1.5		1.72		-0.3		-0.46		-0.13		0.49

		Nov 1977		4.5		3.62		0.31		-0.05		0.65		2.19		0.5

		Dec 1977		0.76		1.6		-0.37		0.94		-0.65		1.56		0.49

		Jan 1978		-5.52		2.69		3.31		-1.67		1.53		-0.72		0.49

		Feb 1978		-0.92		3.67		0.76		0.36		1.04		1.9		0.46

		Mar 1978		3.38		3.72		1.2		-0.6		1.88		1.37		0.53

		Apr 1978		8.42		-0.31		-3.54		2.82		-1.35		0.85		0.54

		May 1978		2.27		4.56		-0.62		0.27		0.36		2.85		0.51

		Jun 1978		-1.15		1.59		0.59		-1.44		-0.02		2.78		0.54

		Jul 1978		5.67		0.15		-1.11		1.58		-0.78		4.22		0.56

		Aug 1978		4.31		4.93		-0.46		1.39		0.42		2.82		0.56

		Sep 1978		-0.81		-0.28		1.87		-0.68		1.8		-3.11		0.62

		Oct 1978		-11.23		-10.05		1.36		0.17		1.03		-8.39		0.68

		Nov 1978		3.41		2.85		-2.22		1.09		-1.21		5.52		0.7

		Dec 1978		1.66		1.07		-2.19		1.96		-1.38		3.05		0.78

		Jan 1979		5		3.84		2.27		-2.5		1.57		-1.24		0.77

		Feb 1979		-2.83		0.55		1.2		-1.14		1.04		-1.06		0.73

		Mar 1979		6.49		3.16		-0.67		0.62		0.28		2.88		0.81

		Apr 1979		0.74		2.4		1.05		1.05		0.21		0.81		0.8

		May 1979		-1.39		0.5		1.92		-0.88		-0.84		-0.2		0.82

		Jun 1979		4.66		0.99		1.48		-1.61		-0.45		0.82		0.81

		Jul 1979		1.59		1.24		1.7		-0.2		0.59		-1.09		0.77

		Aug 1979		6.3		1.97		-1.55		1.58		-1.45		-0.23		0.77

		Sep 1979		0.01		-0.27		-0.87		1.02		0.54		5.34		0.83

		Oct 1979		-7.23		-3.46		-1.86		1.04		0.24		2.12		0.87

		Nov 1979		6.2		2.44		-3.25		0.11		-2		7.96		0.99

		Dec 1979		2.74		4.34		-1.98		-0.67		-1.01		4.78		0.95

		Jan 1980		6.31		1.9		1.8		-1.67		2.01		7.51		0.8

		Feb 1980		-0.33		-1.49		0.62		0.11		3.04		7.88		0.89

		Mar 1980		-11.69		-6.97		-1.06		1.38		-1.34		-9.59		1.21

		Apr 1980		5.23		1		1.06		-2.09		0.54		-0.42		1.26

		May 1980		6.07		2.1		0.39		0.31		-0.47		-1.11		0.81

		Jun 1980		3.67		1.47		-0.89		-0.09		-0.95		1.59		0.61

		Jul 1980		7.02		3.93		-6.3		3.94		-2.46		0.37		0.53

		Aug 1980		2.44		4.26		-2.64		2.1		-0.8		3.19		0.64

		Sep 1980		2.94		0.58		-4.79		2.03		-2.81		5.44		0.75

		Oct 1980		2.01		2.33		-2.74		1.67		-1.22		7.32		0.95

		Nov 1980		10.55		-3.4		-8.35		4.53		-5.74		15.24		0.96

		Dec 1980		-3.21		-0.31		2.68		-1.25		1.18		-6.65		1.31

		Jan 1981		-4		3.37		6.84		-3.54		4.35		-7.94		1.04

		Feb 1981		1.64		-0.49		0.97		0.19		2.25		-1.39		1.07

		Mar 1981		4.77		3.08		0.67		-2.34		-0.53		0.74		1.21

		Apr 1981		-1.03		4.6		2.26		0.82		1.2		-0.96		1.08

		May 1981		1.26		2.45		-0.43		0.33		-1.6		3.75		1.15

		Jun 1981		-1.01		-0.97		5.13		-1.35		2.68		-5.9		1.35

		Jul 1981		-0.3		-1.97		-0.66		1.08		-3.04		-2.52		1.24

		Aug 1981		-5.76		-1.81		4.84		-0.25		1.46		-1.12		1.28

		Sep 1981		-5.93		-2.49		5.2		-0.02		2.79		1.98		1.24

		Oct 1981		6.13		2.24		-4.21		3.29		-2.76		4.07		1.21

		Nov 1981		4.43		-1.38		1.9		0.1		0.63		-0.27		1.07

		Dec 1981		-2.78		1.19		0.74		0.19		2.41		1.32		0.87

		Jan 1982		-2.44		-1.18		3.17		-1.52		2.08		1.73		0.8

		Feb 1982		-4.94		0.37		6.1		-3.38		4.57		5		0.92

		Mar 1982		-0.89		0		3.78		-1.44		2.37		2.93		0.98

		Apr 1982		4.4		1.15		-2.78		1.51		-0.15		-0.41		1.13

		May 1982		-2.93		0.56		1.81		0.91		-0.09		2.55		1.06

		Jun 1982		-2.13		-0.51		1.54		0.03		2.72		5		0.96

		Jul 1982		-2.14		0.95		0.15		1.03		1.54		4.47		1.05

		Aug 1982		11.9		-4.29		1.16		-1.96		0.18		-3.52		0.76

		Sep 1982		1.8		2.57		0.34		2.12		-0.04		4.17		0.51

		Oct 1982		11.89		1.92		-3.68		0.3		-0.37		0.03		0.59

		Nov 1982		5.3		4.53		-1.96		-1.05		0.32		5.89		0.63

		Dec 1982		1.22		-0.01		0.01		-0.07		1.03		0.02		0.67

		Jan 1983		4.29		3.28		-0.86		-1.5		-0.46		-1.7		0.69

		Feb 1983		3.21		2.9		0.67		-0.57		1.02		3.83		0.62

		Mar 1983		3.45		1.42		2.07		-0.07		2.81		0.93		0.63

		Apr 1983		7.38		0.49		0.6		-0.16		1.6		1.8		0.71

		May 1983		1.21		6.22		-1.4		-1.85		-1.53		-1.59		0.69

		Jun 1983		3.74		1.15		-3.87		2.52		-0.89		1.78		0.67

		Jul 1983		-3.33		0.98		5.62		-0.03		2.84		-3.13		0.74

		Aug 1983		0.26		-4.34		5.55		0.45		1.95		-6.04		0.76

		Sep 1983		1.67		0.25		1.09		1.21		0.59		-0.1		0.76

		Oct 1983		-2.68		-3.82		5.06		-0.81		2.97		-4.56		0.76

		Nov 1983		2.86		1.88		-0.62		-0.48		0.64		-0.09		0.7

		Dec 1983		-1.05		-0.47		1.67		1.59		1.21		0.74		0.73

		Jan 1984		-1.16		-0.07		7.63		-0.93		3		-2.49		0.76

		Feb 1984		-4.11		-1.62		3.36		0.82		1.57		0.19		0.71

		Mar 1984		1.36		-0.28		0.48		-0.93		1.09		1.09		0.73

		Apr 1984		0.3		-1.01		1.29		3.27		0.76		2.05		0.81

		May 1984		-5.19		0.08		0.26		2.32		-0.5		1.52		0.78

		Jun 1984		2.57		0.07		-2.6		3.08		-1.51		-0.7		0.75

		Jul 1984		-1.92		-2.22		0.49		3.69		-2.17		2.93		0.82

		Aug 1984		11.11		-0.3		-1.85		-0.89		-0.81		-5.69		0.83

		Sep 1984		0.06		0		5.32		1.4		2.53		3.67		0.86

		Oct 1984		0.16		-1.43		0.51		1.17		-1.16		3.21		1

		Nov 1984		-1.03		-0.98		4.08		0.81		2.08		1.7		0.73

		Dec 1984		2.48		-0.69		-0.17		1.21		-1.26		1.54		0.64

		Jan 1985		8.64		3.49		-5.43		-0.83		-3.36		-6.9		0.65

		Feb 1985		1.8		1		-0.12		1.26		1.03		1.82		0.58

		Mar 1985		-0.22		-1.48		4.1		1.18		2.94		1.68		0.62

		Apr 1985		-0.24		-0.1		3.73		1.59		0.71		3.06		0.72

		May 1985		5.75		-2.33		-0.86		1.3		-1.39		4		0.66

		Jun 1985		1.82		0.48		0.7		1.5		-0.59		3.63		0.55

		Jul 1985		-0.12		2.89		-1.63		-0.45		-0.31		-3.94		0.62

		Aug 1985		-0.47		-0.32		2.28		-0.04		1.88		1.82		0.55

		Sep 1985		-3.94		-1.81		1.32		1.16		1.61		1.48		0.6

		Oct 1985		4.67		-1.55		0.78		0.92		-1.11		4.88		0.65

		Nov 1985		7.09		0		-2.87		0.29		-2.33		-0.4		0.61

		Dec 1985		4.53		-0.39		-1.53		0.97		-1.8		-0.13		0.65

		Jan 1986		1.21		1.01		0.53		-2.02		-2.05		2.96		0.56

		Feb 1986		7.66		-0.76		-0.94		1.15		-1.39		2.78		0.53

		Mar 1986		5.48		-0.57		-0.44		1.12		0.99		2.45		0.6

		Apr 1986		-0.79		2.92		-2.85		2.91		0.02		-0.5		0.52

		May 1986		5.11		-1.26		-0.11		2.08		1.11		2.02		0.49

		Jun 1986		1.55		-0.87		1.4		1.83		0.87		5.16		0.52

		Jul 1986		-5.93		-3.54		4.78		-0.57		0.61		1.8		0.52

		Aug 1986		6.53		-4.36		3.52		-1.74		3.24		-5.01		0.46

		Sep 1986		-8.15		1.97		3.19		-0.05		3.62		-5.86		0.45

		Oct 1986		5.12		-2.33		-1.32		0.13		0.89		2.69		0.46

		Nov 1986		1.56		-1.88		-0.06		1.12		0.61		-0.32		0.39

		Dec 1986		-2.78		0.07		0.37		0.83		-0.03		0.4		0.49

		Jan 1987		12.89		-1.51		-3.18		0.2		-1.09		2.1		0.42

		Feb 1987		4.82		3.41		-5.99		-0.9		-2.76		-2.17		0.43

		Mar 1987		2.11		0.21		1.66		1.36		4.03		1.6		0.47

		Apr 1987		-1.67		-1.55		-0.33		-0.46		1.22		0.26		0.44

		May 1987		0.49		-0.59		0.13		0.52		1.32		-0.68		0.38

		Jun 1987		4.42		-2.29		1.07		1.73		0.83		-0.2		0.48

		Jul 1987		4.31		-1.11		0.66		-0.5		1.56		2.67		0.46

		Aug 1987		3.99		-0.9		-0.9		2.03		-1.59		-0.87		0.47

		Sep 1987		-2.14		0.37		0.28		-0.9		1.89		0.71		0.45

		Oct 1987		-22.64		-8.09		4.23		2.01		2.39		-7.86		0.6

		Nov 1987		-7.42		2.83		3.14		-1.92		0.71		-1.15		0.35

		Dec 1987		7.2		0.09		-4.49		3.01		-2.36		5.83		0.39

		Jan 1988		4.5		-0.54		5.08		-1.12		2.09		-7.58		0.29

		Feb 1988		5.21		3.32		-1.65		1.56		-0.11		-1.54		0.46

		Mar 1988		-1.83		6.26		0.74		-0.16		1.91		0.63		0.44

		Apr 1988		1.02		1.12		1.69		-0.23		1.9		2.25		0.46

		May 1988		0.22		-2.59		2.3		-0.7		0.38		0.64		0.51

		Jun 1988		5.28		2.19		-1.07		1.42		-3.25		-2.91		0.49

		Jul 1988		-0.74		-0.17		2.27		-0.59		1.45		0.63		0.51

		Aug 1988		-2.72		-0.02		2.03		-0.76		1.74		0.33		0.59

		Sep 1988		3.92		-1.31		-0.68		1.72		-0.48		0.24		0.62

		Oct 1988		1.76		-2.95		1.71		1.4		1.04		1.31		0.61

		Nov 1988		-1.72		-1.66		1.24		-0.31		1.6		0.42		0.57

		Dec 1988		2.12		2.01		-1.55		0.64		-0.37		0.42		0.63

		Jan 1989		6.65		-2.23		0.51		-1.03		0.16		-0.14		0.55

		Feb 1989		-1.64		2.67		0.87		-0.82		1.89		0.94		0.61

		Mar 1989		2.24		0.76		0.46		0.01		0.79		3.55		0.67

		Apr 1989		5		-0.7		-1.45		0.76		-0.54		1.69		0.67

		May 1989		4.14		-0.01		-0.82		0.49		-0.04		1.56		0.79

		Jun 1989		-0.64		-1.08		2.19		0.24		1.52		0.65		0.71

		Jul 1989		7.9		-4.04		-2.84		1.99		-0.62		5.44		0.7

		Aug 1989		2.18		0.43		0.72		0.41		-0.5		-0.14		0.74

		Sep 1989		-0.11		0.46		-1.34		1.4		0.59		3.4		0.65

		Oct 1989		-2.99		-3.33		-1.03		0		0.02		1.37		0.68

		Nov 1989		1.72		-1.3		-1.12		-0.91		1.47		2.58		0.69

		Dec 1989		1.77		-2.3		0.28		-0.1		1.45		2.81		0.61

		Jan 1990		-7.28		-1.33		0.87		-1.13		1.32		-3.28		0.57

		Feb 1990		1.68		1.18		0.61		-0.19		-0.64		-0.53		0.57

		Mar 1990		2.47		1.64		-2.9		2.15		-1.02		1.65		0.64

		Apr 1990		-2.67		-0.4		-2.55		1.72		-0.98		2.4		0.69

		May 1990		9.1		-2.4		-3.74		1.65		-1.57		3.05		0.68

		Jun 1990		-0.46		1.38		-1.94		-1		-0.34		2.43		0.63

		Jul 1990		-1.22		-3.27		-0.01		-0.27		3.1		5.93		0.68

		Aug 1990		-9.49		-3.85		1.58		-0.43		2.99		1.78		0.66

		Sep 1990		-5.52		-3.78		0.73		-0.16		3.71		5.53		0.6

		Oct 1990		-1.24		-5.07		0.22		2.87		-0.49		6.73		0.68

		Nov 1990		6.92		-0.06		-3.16		0.82		-4.75		-5.62		0.57

		Dec 1990		3.06		0.61		-1.54		2.86		-2		0.16		0.6

		Jan 1991		5.21		3.86		-1.84		1.55		-4.08		-6.53		0.52

		Feb 1991		7.67		3.96		-0.54		-0.27		-0.16		-4.73		0.48

		Mar 1991		3.09		3.82		-1.23		-0.39		-0.99		2.83		0.44

		Apr 1991		0.25		0.33		1.42		0.53		0.71		-2.4		0.53

		May 1991		4.12		0.17		-0.57		2.11		-2.45		-0.1		0.47

		Jun 1991		-4.52		0.17		1.21		1.75		0.63		0.46		0.42

		Jul 1991		4.73		-0.96		-1.25		1.61		-1.41		4.31		0.49

		Aug 1991		2.78		1.44		-0.78		0.88		-0.55		1.63		0.46

		Sep 1991		-1.13		1.55		-1		-1.81		0.16		1.73		0.46

		Oct 1991		1.71		0.95		-0.43		-1.73		-0.29		3.23		0.42

		Nov 1991		-3.8		-0.87		-1.93		1.08		0.12		1.26		0.39

		Dec 1991		11.22		-2.42		-4.03		3.58		-3.12		8.3		0.38

		Jan 1992		-0.25		9.26		4.51		-1.33		3.15		-2.51		0.34

		Feb 1992		1.37		1.35		6.37		0.09		2.04		-0.58		0.28

		Mar 1992		-2.32		-0.9		3.65		-0.08		1.93		-0.36		0.34

		Apr 1992		1.39		-5.73		4.31		1.71		2.22		-2.6		0.32

		May 1992		0.58		0.21		1.28		-0.96		0.43		0.13		0.28

		Jun 1992		-2.02		-2.71		3.4		-0.03		1.07		-0.61		0.32

		Jul 1992		4.08		-0.61		-0.53		1.56		-0.72		1.44		0.31

		Aug 1992		-2.12		-0.42		-1.03		3.79		-1.62		-0.51		0.26

		Sep 1992		1.45		0.48		-0.21		1.54		-0.5		1.43		0.26

		Oct 1992		1.25		2.02		-2.1		1.31		-0.8		2.71		0.23

		Nov 1992		4.36		3.91		-1.48		-0.84		-1.91		-0.34		0.23

		Dec 1992		1.81		1.64		2.52		-0.44		0.75		4.44		0.28

		Jan 1993		1.16		2.09		5.87		-1.77		2.78		4.83		0.23

		Feb 1993		0.34		-3.42		6.42		-0.5		4.05		3.1		0.22

		Mar 1993		2.55		0.05		1.22		-0.29		0.92		3.74		0.25

		Apr 1993		-2.81		-0.86		2.61		-3.69		1.52		0.33		0.24

		May 1993		3.11		1.88		-3.41		-0.01		-1.18		0.29		0.22

		Jun 1993		0.56		0.11		2.62		-1.06		1.09		4.58		0.25

		Jul 1993		-0.1		0.9		3.24		-2.18		2.02		3.24		0.24

		Aug 1993		3.96		0.25		-0.45		-1.16		-0.03		2.58		0.25

		Sep 1993		0.14		3.07		-0.45		0.77		-0.09		3.41		0.26

		Oct 1993		1.63		1.61		-1.54		-0.1		0.6		-2.67		0.22

		Nov 1993		-1.64		-1.43		-0.27		1.55		-0.96		-4.71		0.25

		Dec 1993		1.88		1.36		0.57		0.7		-0.3		2.28		0.23

		Jan 1994		3.12		-0.15		2.09		-2.28		1.47		0.02		0.25

		Feb 1994		-2.34		2.65		-1.44		2.45		-1.05		-0.29		0.21

		Mar 1994		-4.51		-1.02		1.31		0.77		1.25		-1.33		0.27

		Apr 1994		0.95		-1.05		1.68		1.01		1.12		0.41		0.27

		May 1994		0.89		-2.47		0.2		0.9		0.71		-2.15		0.31

		Jun 1994		-2.72		-0.52		1.7		1.16		1.51		-0.82		0.31

		Jul 1994		3.1		-1.84		0.59		-0.88		0.14		0.19		0.28

		Aug 1994		4.38		1.28		-2.82		0.87		-1.45		1.55		0.37

		Sep 1994		-1.94		2.66		-1.9		0.61		0.95		1.32		0.37

		Oct 1994		1.72		-2.29		-1.73		0.58		-0.64		1.43		0.38

		Nov 1994		-3.67		0.12		-0.94		0.8		-0.45		-0.2		0.37

		Dec 1994		1.3		-0.02		0.55		0.42		0.31		3.5		0.44

		Jan 1995		2.22		-2.76		0.83		0.61		-0.84		-1.83		0.42

		Feb 1995		4.03		-0.55		1.08		0.58		-0.33		-0.36		0.4

		Mar 1995		2.65		-0.73		-1.07		-0.33		0.19		0.38		0.46

		Apr 1995		2.55		-0.34		2.26		0.05		1.01		1.8		0.44

		May 1995		3.44		-2.06		1.69		0.46		0.09		-0.43		0.54

		Jun 1995		3.19		2.95		-2.27		-0.48		-2.43		2.9		0.47

		Jul 1995		4.17		2.1		-1.68		0.51		-1.71		2.53		0.45

		Aug 1995		1.02		1.84		2.71		-1.38		1.64		0.09		0.47

		Sep 1995		3.78		-1.88		-0.76		1.31		0.36		2.71		0.43

		Oct 1995		-1.05		-4.04		-0.75		2.17		-0.04		4.12		0.47

		Nov 1995		4.38		-1.17		0.94		-0.83		1.19		-0.64		0.42

		Dec 1995		1.52		0.67		0.86		-1.32		2.99		2.54		0.49

		Jan 1996		2.69		-2.59		0.3		-0.63		2.28		0.57		0.43

		Feb 1996		1.72		1.82		-1.42		0.4		-1.8		0.58		0.39

		Mar 1996		1.12		1.54		1		1.3		-0.97		-1.88		0.39

		Apr 1996		2.52		4.64		-3.9		0.17		-2.2		-0.91		0.46

		May 1996		2.78		3.17		-1.2		0.43		-0.22		1.56		0.42

		Jun 1996		-0.74		-3.47		1.56		3.47		1.08		1.01		0.4

		Jul 1996		-5.52		-3.68		4.45		2.84		2.6		-0.11		0.45

		Aug 1996		3.18		2.54		-0.46		-0.3		-2.43		-0.05		0.41

		Sep 1996		5.45		-1.32		-3.14		1.51		-2.18		2.69		0.44

		Oct 1996		1.28		-3.89		5.12		1.32		2.97		3.91		0.42

		Nov 1996		6.66		-3.79		1.16		2.01		-0.73		-2.23		0.41

		Dec 1996		-1.24		3.22		0.9		0.57		1.51		0.61		0.46

		Jan 1997		5.43		-1.82		-1.64		1.27		-0.27		1.95		0.45

		Feb 1997		-0.1		-2.52		5.19		0.73		3.4		-2.05		0.39

		Mar 1997		-4.59		-0.48		3.81		0.35		1.67		0.97		0.43

		Apr 1997		4.47		-5.74		-0.07		3.29		-0.91		4.92		0.43

		May 1997		7.23		4.65		-3.87		-0.98		-2.9		-5.16		0.49

		Jun 1997		4.47		1.26		1.23		1.02		0.54		2.62		0.37

		Jul 1997		7.76		-2.83		0.84		-0.24		-2.54		3.81		0.43

		Aug 1997		-3.74		7.66		1.38		-0.94		-0.03		-2.55		0.41

		Sep 1997		5.79		2.56		0.02		-1.39		-0.91		1.45		0.44

		Oct 1997		-3.38		-0.5		1.96		1.09		1.89		-0.38		0.42

		Nov 1997		3.37		-5.03		0.78		3.07		1.66		0.29		0.39

		Dec 1997		1.8		-2.01		3.46		1.18		1.91		3.95		0.48

		Jan 1998		0.58		-1.4		-1.45		0.46		-0.83		0.11		0.43

		Feb 1998		7.43		-0.02		-0.13		-0.87		-2.42		-1.14		0.39

		Mar 1998		5.15		-0.66		1.06		-1.02		-0.48		2.15		0.39

		Apr 1998		1.16		-0.01		0.74		-2.13		-0.23		0.78		0.43

		May 1998		-2.67		-3.11		4.16		0.97		2.54		1.88		0.4

		Jun 1998		3.59		-3.67		-2.32		-0.52		-2.91		7.26		0.41

		Jul 1998		-2.06		-5.32		-0.97		1.82		0.45		3.68		0.4

		Aug 1998		-15.65		-5.01		3.41		3.48		5.84		1.88		0.43

		Sep 1998		6.61		-0.82		-3.31		-1.52		-2.9		-0.71		0.46

		Oct 1998		7.45		-3.53		-2.2		0.59		0.27		-5.36		0.32

		Nov 1998		6.41		0.65		-3.14		-1.25		-1.15		1.16		0.31

		Dec 1998		6.54		-1.5		-4.46		-0.75		-3.35		8.99		0.38

		Jan 1999		3.85		-0.75		-4.03		-2.69		-6.88		3.04		0.35

		Feb 1999		-3.73		-5.15		1.4		-1.71		4.09		-0.16		0.35

		Mar 1999		3.88		-4.3		-2.64		-4.2		-1.38		-1.29		0.43

		Apr 1999		4.7		4.65		2.51		-2.42		0.92		-9.06		0.37

		May 1999		-2.12		3.73		2.4		1.09		3.34		-5.28		0.34

		Jun 1999		5.17		2.26		-3.59		1.32		-3.39		4.89		0.4

		Jul 1999		-3.11		2.53		-0.76		0.48		3.11		1.51		0.38

		Aug 1999		-0.99		-1.93		-1.31		-0.29		0.31		2.92		0.39

		Sep 1999		-2.4		2.56		-3.4		-0.74		-1.06		6.46		0.39

		Oct 1999		6.51		-7.08		-2.88		-1.71		-1.25		5.47		0.39

		Nov 1999		3.73		5.9		-6.51		-3.85		-1.58		5.62		0.36

		Dec 1999		8.16		5.41		-8.74		-7.9		-5.29		13.19		0.44

		Jan 2000		-4.33		4.16		-0.29		-6.05		4.73		1.86		0.41

		Feb 2000		2.88		18.32		-9.93		-18.33		-0.5		18.36		0.43

		Mar 2000		5.67		-14.91		7.37		11.67		-1.05		-6.39		0.47

		Apr 2000		-5.94		-5.55		8.61		7.54		5.27		-8.58		0.46

		May 2000		-3.92		-3.67		2.56		4.63		0.74		-9.08		0.5

		Jun 2000		5.04		10.39		-9.86		-6.82		-3.07		16.6		0.4

		Jul 2000		-2.03		-0.97		8.14		5.98		3		-0.11		0.48

		Aug 2000		7.53		-1.1		-0.68		-3.06		0.61		5.71		0.5

		Sep 2000		-4.94		0.21		6.24		3.07		6.38		2.18		0.51

		Oct 2000		-2.2		-2.8		5.52		9.65		4.7		-4.63		0.56

		Nov 2000		-10.21		-0.46		11.3		13.31		8.51		-2.41		0.51

		Dec 2000		1.69		3.16		7.33		1.83		5.72		6.7		0.5

		Jan 2001		3.67		5.81		-4.9		-4.43		-6.54		-25.06		0.54

		Feb 2001		-9.67		2.66		12.9		9		9.58		12.51		0.38

		Mar 2001		-6.84		2.31		6.45		3.38		3.95		8.35		0.42

		Apr 2001		8.33		-0.64		-4.69		-2.71		-3.97		-7.97		0.39

		May 2001		1.04		3.58		3.14		0.18		2.19		2.12		0.32

		Jun 2001		-1.66		6.62		-1.06		2.04		-1.8		0.35		0.28

		Jul 2001		-1.83		-2.91		5.58		7.17		3		5.47		0.3

		Aug 2001		-6.15		2.72		2.5		3.95		6.5		5.54		0.31

		Sep 2001		-8.97		-5.69		1.6		4.93		3.28		11.53		0.28

		Oct 2001		2.68		5.41		-8.1		-2.62		-4.6		-8.41		0.22

		Nov 2001		7.71		-0.31		2		-3.76		-1.66		-8.58		0.17

		Dec 2001		1.76		5.13		1.1		0.31		-0.32		-0.02		0.15

		Jan 2002		-1.3		1.19		3.33		4.36		2.84		3.69		0.14

		Feb 2002		-2.16		-0.47		2.5		7.62		5.14		6.76		0.13

		Mar 2002		4.37		4.27		1.11		-1.35		0.58		-1.67		0.13

		Apr 2002		-5.05		6.66		3.93		4.57		5.39		7.96		0.15

		May 2002		-1.24		-3.07		1.69		2.27		2.41		2.97		0.14

		Jun 2002		-7.08		3.77		0.13		3.62		2.54		6.15		0.13

		Jul 2002		-8.03		-6.24		-3.41		4.2		-0.73		3.34		0.15

		Aug 2002		0.64		-1.27		2.49		1.15		-1.61		1.77		0.14

		Sep 2002		-10.21		3.07		1.31		3.27		-2.29		9.09		0.14

		Oct 2002		7.98		-4.12		-5.46		-3.29		0.92		-5.3		0.14

		Nov 2002		6.08		2.9		-1.15		-9.14		5.16		-16.17		0.12

		Dec 2002		-5.65		0.49		2.25		6.05		-1.61		9.65		0.11

		Jan 2003		-2.47		0.81		-0.93		-0.61		0.81		1.62		0.1

		Feb 2003		-1.79		-0.89		-1.46		1.04		-0.54		1.25		0.09

		Mar 2003		1.19		0.55		-2.09		1.81		-0.69		1.61		0.1

		Apr 2003		8.32		1.06		1.03		-4.58		1.15		-9.46		0.1

		May 2003		6.14		4.83		-0.3		-6.92		3.22		-10.77		0.09

		Jun 2003		1.52		1.68		0.66		0.54		-0.32		-1.06		0.1

		Jul 2003		2.42		4.73		-1.15		-4.17		1.89		-0.31		0.07

		Aug 2003		2.41		2.54		2.03		-2.48		2.19		-0.56		0.07

		Sep 2003		-1.16		0.52		0.02		1.34		0.28		-0.19		0.08

		Oct 2003		6.15		2.64		1.76		-1.58		1.58		3.73		0.07

		Nov 2003		1.42		2.2		1.86		0.07		1.69		1.62		0.07

		Dec 2003		4.37		-2.7		2.42		0		1		-5.71		0.08

		Jan 2004		2.22		2.56		1.97		-3.54		3.34		2.6		0.07

		Feb 2004		1.46		-0.91		0.49		2.28		-1.35		-1.09		0.06

		Mar 2004		-1.23		2.1		0.21		1.5		-1.04		0.21		0.09

		Apr 2004		-1.75		-2.18		-2.62		3.3		-2.82		-5.39		0.08

		May 2004		1.23		-0.4		-0.39		-0.98		-0.09		1.61		0.06

		Jun 2004		1.94		2.56		1.38		1.12		-0.39		2.1		0.08

		Jul 2004		-3.96		-3.01		4.1		5.08		-1.64		-2.29		0.1

		Aug 2004		0.19		-1.28		1.03		1.31		-1.42		-1.55		0.11

		Sep 2004		1.71		3.28		-0.25		-1.34		-1.88		5.24		0.11

		Oct 2004		1.54		0.29		-0.62		-0.08		0.41		-1.52		0.11

		Nov 2004		4.69		4.12		1.79		-1.05		-0.23		3.23		0.15

		Dec 2004		3.59		0.01		-0.06		-1.27		0.5		-2.84		0.16

		Jan 2005		-2.6		-1.11		1.97		3.05		-1.37		3.21		0.16

		Feb 2005		2.05		-0.3		1.63		1.21		-0.06		3.16		0.16

		Mar 2005		-1.76		-1.41		1.58		0.48		1.1		0.54		0.21

		Apr 2005		-2.4		-4.03		-0.34		0.96		-0.88		-0.85		0.21

		May 2005		3.89		2.72		-0.81		-1.31		0.27		0.43		0.24

		Jun 2005		0.8		3.27		2.62		0.98		-0.53		2.05		0.23

		Jul 2005		4.16		2.83		-0.51		-1.17		-0.98		-0.01		0.24

		Aug 2005		-0.92		-0.86		1.27		-2.24		0.45		2.27		0.3

		Sep 2005		0.78		-0.31		0.77		0.5		-0.57		3.46		0.29

		Oct 2005		-1.75		-1.41		0.23		-0.56		-1.26		-1.28		0.27

		Nov 2005		3.92		0.8		-1.18		-0.58		-1.17		0.25		0.31

		Dec 2005		0.07		-0.28		0.44		0.12		0.21		0.77		0.32

		Jan 2006		3.39		5.78		1.12		-0.94		-0.53		2.68		0.35

		Feb 2006		0.04		-0.45		-0.25		-0.71		2.03		-1.84		0.34

		Mar 2006		1.83		3.45		0.61		-0.04		-0.53		1.26		0.37

		Apr 2006		1.09		-0.82		2.59		1.16		-0.2		0.61		0.36

		May 2006		-3.14		-2.99		2.55		0.93		1.31		-3.65		0.43

		Jun 2006		0.05		-0.24		0.87		1.37		-0.12		1.49		0.4

		Jul 2006		-0.38		-3.69		2.94		1.6		0.93		-2.21		0.4

		Aug 2006		2.45		0.44		-1.72		-1.73		2.15		-3.47		0.42

		Sep 2006		2.25		-1.44		0.05		0.89		0.54		-0.94		0.41

		Oct 2006		3.64		1.93		-0.04		-0.21		0.24		-0.24		0.41

		Nov 2006		2.13		0.82		0.07		0.12		-0.87		-1.01		0.42

		Dec 2006		1.27		-0.79		3.16		-0.81		2.05		0.84		0.4

		Jan 2007		1.84		0.08		-0.11		0.23		0.23		0.21		0.44

		Feb 2007		-1.58		1.4		-0.09		-0.46		-0.75		-1.35		0.38

		Mar 2007		1.11		0.07		-0.22		0.26		-0.59		2.49		0.43

		Apr 2007		3.93		-2.02		-1.15		1.01		1.01		-0.16		0.44

		May 2007		3.65		0.29		-0.05		1.14		-1.3		-0.26		0.41

		Jun 2007		-1.56		0.76		-1.13		0.55		0.07		0.38		0.4

		Jul 2007		-3.33		-2.88		-3.34		0.6		-1.04		2.8		0.4

		Aug 2007		1.34		-0.34		-2.24		-0.9		-0.55		0.11		0.42

		Sep 2007		3.54		-2.42		-1.87		-0.56		-3.17		4.59		0.32

		Oct 2007		2.12		0.03		-2.59		-0.31		-0.1		4.96		0.32

		Nov 2007		-4.49		-2.82		-1.18		1.9		-0.33		0.93		0.34

		Dec 2007		-0.6		0.17		-0.52		0.71		-1.09		6.52		0.27

		Jan 2008		-6.15		-0.51		3.65		1.96		2.2		-7.89		0.21

		Feb 2008		-2.96		-0.52		-0.95		0.74		-1.07		6.14		0.13

		Mar 2008		-0.76		0.74		-0.15		1.11		0.47		4.1		0.17

		Apr 2008		4.78		-1.15		-0.96		1.29		-2.56		-0.2		0.18

		May 2008		2.04		3.21		-1.38		0.81		0.04		3.21		0.18

		Jun 2008		-8.27		1.14		-2.43		4.31		-0.42		12.54		0.17

		Jul 2008		-0.62		3.67		5.81		-0.99		1.06		-5.15		0.15

		Aug 2008		1.66		3.42		1.56		1.84		0.82		-4.05		0.13

		Sep 2008		-9.09		0.38		6.33		2.91		1.82		0.35		0.15

		Oct 2008		-17.15		-3.22		-2.9		3.61		1.89		7.79		0.08

		Nov 2008		-7.83		-3.89		-5.94		4.82		2.72		7.11		0.03

		Dec 2008		1.74		3.36		-0.24		-0.07		-1.41		-5.07		0

		Jan 2009		-8.12		-2.06		-11.1		0.26		-1.19		-1.83		0

		Feb 2009		-10.09		-1.19		-7.25		1.72		-1.11		4.18		0.01

		Mar 2009		8.97		0.66		3.52		-2.3		-2.25		-11.38		0.02

		Apr 2009		10.2		6.73		5.46		0.28		0.14		-34.39		0.01

		May 2009		5.21		-2.33		-0.21		-0.99		-2.12		-12.44		0

		Jun 2009		0.44		2.32		-2.71		-1.07		-0.16		5.29		0.01

		Jul 2009		7.73		2.43		5.27		-0.65		3.21		-5.36		0.01

		Aug 2009		3.34		-0.04		7.76		-3.04		3.2		-8.84		0.01

		Sep 2009		4.09		2.74		0.92		1.49		0.4		-4.93		0.01

		Oct 2009		-2.59		-4.78		-4.18		4.2		-1.68		2.65		0

		Nov 2009		5.56		-2.79		-0.17		0.81		0.15		0.29		0

		Dec 2009		2.76		6.22		0.01		0.44		-0.08		2.91		0.01

		Jan 2010		-3.36		0.3		0.31		-1.37		0.43		-5.38		0

		Feb 2010		3.4		1.46		3.17		-0.35		1.41		3.6		0

		Mar 2010		6.32		1.78		2.1		-0.56		1.69		3.66		0.01

		Apr 2010		2.01		5.05		2.81		1.05		1.72		3.22		0.01

		May 2010		-7.88		0.06		-2.38		1.37		-0.22		-0.13		0.01

		Jun 2010		-5.55		-2.5		-4.5		-0.21		-1.52		-3		0.01

		Jul 2010		6.94		0.09		-0.26		0.23		1.99		1.88		0.01

		Aug 2010		-4.76		-3.12		-1.96		0.61		-1.7		-0.19		0.01

		Sep 2010		9.55		3.73		-3.12		-0.16		0.48		1.35		0.01

		Oct 2010		3.89		0.79		-2.59		1.34		-0.23		1.64		0.01

		Nov 2010		0.61		3.6		-0.9		0.29		1.63		2.53		0.01

		Dec 2010		6.83		0.97		3.82		-3.66		3.23		-3.19		0.01

		Jan 2011		2		-2.4		0.83		-0.81		0.7		-0.32		0.01

		Feb 2011		3.5		1.63		1.08		-1.92		0.94		2.03		0.01

		Mar 2011		0.46		2.66		-1.57		1.55		-0.03		3.51		0.01

		Apr 2011		2.9		-0.52		-2.53		1.1		-0.85		0.07		0

		May 2011		-1.27		-0.7		-2.07		1.99		-1.5		-0.56		0

		Jun 2011		-1.75		0.1		-0.33		2.38		-1.46		1.78		0

		Jul 2011		-2.36		-1.29		-1.23		2.41		-1.82		0.08		0

		Aug 2011		-5.98		-3.21		-2.44		3.2		-0.23		-0.31		0.01

		Sep 2011		-7.59		-3.74		-1.46		1.89		0.23		-2.55		0

		Oct 2011		11.35		3.56		-0.17		-1.92		-0.85		-1.42		0

		Nov 2011		-0.28		-0.27		-0.34		1.78		1.52		3.99		0

		Dec 2011		0.74		-0.45		1.75		0.77		2.39		1.94		0

		Jan 2012		5.05		2.15		-1.11		-1.82		-1.38		-7.97		0

		Feb 2012		4.42		-1.63		0.09		-0.19		-0.08		-0.3		0

		Mar 2012		3.11		-0.45		0.87		-0.39		0.79		1.5		0

		Apr 2012		-0.85		-0.59		-0.46		1.11		0.65		3.83		0

		May 2012		-6.18		-0.08		-0.62		2.25		2.37		6.6		0.01

		Jun 2012		3.89		0.96		0.44		-1.24		0.34		-1.12		0

		Jul 2012		0.79		-2.65		-0.26		1.14		0.1		3.07		0

		Aug 2012		2.56		0.46		1.32		-1.21		-0.75		-2.49		0.01

		Sep 2012		2.74		0.68		1.54		-1.37		1.58		-1.02		0.01

		Oct 2012		-1.75		-0.8		3.79		-1.34		2.29		0.1		0.01

		Nov 2012		0.79		0.35		-0.96		0.68		0.93		0.38		0.01

		Dec 2012		1.19		1.87		3.56		-1.98		0.86		-2.97		0.01

		Jan 2013		5.57		0.56		0.95		-1.67		1.49		-1.88		0

		Feb 2013		1.29		-0.37		0.03		-0.66		0.47		1.31		0

		Mar 2013		4.03		0.78		-0.29		0.07		1.37		1.94		0

		Apr 2013		1.55		-2.29		0.63		0.1		0.49		0.25		0

		May 2013		2.8		2.07		2.6		-1.65		-0.8		-1.8		0

		Jun 2013		-1.2		1.4		-0.18		-0.34		-0.07		0.59		0

		Jul 2013		5.65		1.8		0.56		-1.46		0.58		1.74		0

		Aug 2013		-2.71		-0.02		-2.78		0.61		-2.17		0.05		0

		Sep 2013		3.77		2.68		-1.19		-0.74		-1.29		2.97		0

		Oct 2013		4.18		-1.51		1.14		2.69		0.89		0.16		0

		Nov 2013		3.12		1.35		0.24		0.14		0.07		0.4		0

		Dec 2013		2.81		-0.53		-0.31		-0.52		0.07		0.07		0

		Jan 2014		-3.32		0.59		-2.09		-4		-1.38		1.72		0

		Feb 2014		4.65		0.13		-0.4		-0.24		-0.44		2.08		0

		Mar 2014		0.43		-1.17		5.08		2.15		1.89		-3.3		0

		Apr 2014		-0.19		-4.17		1.14		3.51		1.05		-3.85		0

		May 2014		2.06		-1.89		-0.27		0.09		-1.06		1.15		0

		Jun 2014		2.61		3.08		-0.74		-1.99		-1.94		0.68		0

		Jul 2014		-2.04		-4.25		0.01		0.95		0.48		-0.24		0

		Aug 2014		4.24		0.29		-0.58		-0.64		-0.68		0.82		0

		Sep 2014		-1.97		-3.79		-1.23		1.14		-0.53		0.53		0

		Oct 2014		2.52		3.79		-1.68		-0.48		-0.14		0		0

		Nov 2014		2.55		-2.31		-2.99		1.4		0.2		1.05		0

		Dec 2014		-0.06		2.87		2.06		-1.16		0.88		1.06		0

		Jan 2015		-3.11		-0.86		-3.47		1.66		-1.71		3.87		0

		Feb 2015		6.13		0.2		-1.79		-1.07		-1.71		-2.84		0

		Mar 2015		-1.12		3.04		-0.46		0.08		-0.52		2.98		0

		Apr 2015		0.59		-3.02		1.86		-0.16		-0.5		-7.37		0

		May 2015		1.36		0.76		-1.37		-1.71		-0.75		6.01		0

		Jun 2015		-1.53		2.87		-0.79		0.52		-1.49		3.04		0

		Jul 2015		1.54		-4.55		-4.12		0.03		-2.57		10.28		0

		Aug 2015		-6.04		0.4		2.68		0.76		1.22		-2.07		0

		Sep 2015		-3.08		-2.78		0.52		1.81		-0.52		5.32		0

		Oct 2015		7.75		-2.16		-0.08		0.82		0.46		-3.97		0

		Nov 2015		0.56		3.34		-0.52		-2.57		-1.13		2.28		0

		Dec 2015		-2.16		-2.98		-2.58		0.3		0.08		3.44		0.01

		Jan 2016		-5.76		-3.43		2.1		2.61		3		1.37		0.01

		Feb 2016		-0.05		0.94		-0.48		3.29		2.1		-4.09		0.02

		Mar 2016		6.98		1.1		1.12		0.82		-0.06		-5.14		0.02

		Apr 2016		0.93		1.17		3.26		-2.88		1.96		-6.23		0.01

		May 2016		1.79		-0.7		-1.81		-1.03		-2.6		1.94		0.01

		Jun 2016		-0.03		0.49		-1.49		1.2		1.92		4.21		0.02

		Jul 2016		3.97		2.65		-1.1		1.33		-1.27		-3.06		0.02

		Aug 2016		0.52		1.71		3.33		-1.3		-0.38		-3.11		0.02

		Sep 2016		0.27		1.71		-1.5		-2.44		-0.03		-0.55		0.02

		Oct 2016		-2		-4		4.17		1.12		0.19		0.65		0.02

		Nov 2016		4.87		6.87		8.32		0.01		3.63		-4.22		0.01

		Dec 2016		1.85		0.37		3.55		1.04		-0.26		-0.39		0.03

		Jan 2017		1.98		-1.28		-2.76		-0.13		-0.97		-0.97		0.04

		Feb 2017		3.61		-2.11		-1.78		0.72		-1.75		-1.65		0.04

		Mar 2017		0.2		0.76		-3.16		0.6		-0.98		-0.88		0.03

		Apr 2017		1.14		0.49		-1.87		1.94		-1.57		0.51		0.05

		May 2017		1.12		-3.07		-3.77		1.17		-1.87		1.47		0.06

		Jun 2017		0.84		2.48		1.35		-1.99		-0.06		-0.25		0.06

		Jul 2017		1.94		-1.58		-0.28		-0.69		-0.15		1.63		0.07

		Aug 2017		0.25		-1.86		-2.24		0.32		-2.44		3.53		0.09

		Sep 2017		2.6		4.82		3.03		-1.18		1.64		-1.23		0.09

		Oct 2017		2.34		-1.97		-0.06		1.05		-3.34		4.3		0.09

		Nov 2017		3.2		-0.43		-0.05		3.16		0		-0.75		0.08

		Dec 2017		1.15		-1.02		0.14		0.62		1.65		-1.62		0.09

		Jan 2018		5.69		-3.15		-1.37		-0.49		-0.89		3.94		0.11

		Feb 2018		-3.54		0.35		-1.19		0.46		-2.25		3.98		0.11

		Mar 2018		-2.23		3.52		-0.11		-0.48		-0.01		-1.28		0.12

		Apr 2018		0.43		0.94		0.53		-2.08		1.18		0.27		0.14

		May 2018		2.79		4.72		-3.16		-1.94		-1.39		3.77		0.14

		Jun 2018		0.62		0.85		-2.39		0.73		0.33		-2.41		0.14

		Jul 2018		3.35		-1.92		0.4		1.6		0.56		-1.62		0.16

		Aug 2018		3.6		0.76		-4.11		-0.34		-2.65		5.29		0.16

		Sep 2018		0.21		-2.51		-1.35		0.61		1.19		-0.07		0.15

		Oct 2018		-7.49		-4.43		3.41		0.72		3.49		-1.82		0.19

		Nov 2018		1.87		-0.81		0.2		-0.63		0.42		-1.4		0.18

		Dec 2018		-9.36		-3		-1.51		-0.27		0.1		1.73		0.19
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Figure 1.2.: The cumulative value of the six Fama French factors, plus the risk-free
rate, are shown, from Jul 1963 through Dec 2018. Cumulative value is
normalized to the initial investment, ignores all trading costs, and is not
adjusted for inflation.

monthly returns of the six factors and RF are shown in Figure 1.3. The monthly
returns are scattered against each other in Figure 1.3, which also shows the Pearson
correlations on the upper triangle. The maximum correlation is approximately 0.7,
achieved between CMA and HML.

a
Example 1.2.3 (French 5 Industry monthly returns). Kenneth French tabulates the
returns of five portfolios constructed by industry classification. The five portfo-
lios correspond to ‘Consumer goods,’ ‘Manufacturing,’ ‘High-Tech,’ ‘Healthcare,’ and
‘Other’. [51, 50] The monthly returns of value-weighted portfolios were downloaded
from French’s library and available in the aqfb.data package4: [50, 128] 4. Data are

library(aqfb.data)

data(mind5)

The data are distributed as monthly relative returns, quoted in percents. The set
consists of 1104mo. of data, from Jan 1927 through Dec 2018. The cumulative values
of the industry portfolios are shown in Figure 1.4. The portfolios are clearly highly
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		date		Consumer		Manufacturing		Technology		Healthcare		Other

		Jan 1927		-1.19		0.15		0.46		5.05		1.51

		Feb 1927		5.28		4		4.19		1.71		5.06

		Mar 1927		1.64		-1.43		3.65		1.01		1.27

		Apr 1927		3.52		-1.13		1.35		2.74		0.86

		May 1927		6.09		5.67		5.28		4.12		6.43

		Jun 1927		-1.95		-3.03		0.51		0.54		-2.11

		Jul 1927		8.69		7.51		7.59		9.84		6.09

		Aug 1927		5.23		1.97		2.94		0.28		-1.06

		Sep 1927		5.89		4.9		3.93		5.65		4.6

		Oct 1927		-3		-4.7		-4.54		5.13		-3.79

		Nov 1927		7.75		7.7		6.52		3.68		4.5

		Dec 1927		3.61		2.2		1.28		-0.46		1.98

		Jan 1928		-1.21		0.18		-0.03		2.69		-0.99

		Feb 1928		-1.53		-1.11		-0.38		-1.38		-2

		Mar 1928		13.88		6.96		10.32		10.54		6.09

		Apr 1928		0.44		7.69		2.7		2.35		4.22

		May 1928		3.51		0.1		4.36		9.27		0.01

		Jun 1928		-4.05		-4.35		-5.12		-3.15		-4.27

		Jul 1928		2.2		1.03		-0.29		2.39		-0.36

		Aug 1928		8.99		6.28		7.23		14.57		4.75

		Sep 1928		3.66		4.44		0.42		-1.14		1.98

		Oct 1928		1.69		2.39		2.38		0.05		-0.42

		Nov 1928		7.8		16.03		13.46		5.05		10.02

		Dec 1928		-1.01		0.51		3.78		-0.41		0.45

		Jan 1929		0.68		6.04		11.7		3.43		5.59

		Feb 1929		-1.52		1.35		-0.9		0.05		0.02

		Mar 1929		-3.62		1.09		4.41		-1.5		-2.16

		Apr 1929		1.1		2.44		2.48		1.48		0.44

		May 1929		-9.68		-5.66		-3.68		-7.84		0.03

		Jun 1929		7.03		12.44		15.73		4.52		5.73

		Jul 1929		0.38		4.56		10.97		2.59		6.61

		Aug 1929		4.94		9.73		11.92		3.09		7.82

		Sep 1929		-5.72		-3.94		-5.1		-7.02		-6.44

		Oct 1929		-20.45		-20.47		-22.65		-18.02		-11.88

		Nov 1929		-12.2		-12.35		-14.84		-7.9		-9.58

		Dec 1929		0.15		2.35		6.1		1.11		-0.49

		Jan 1930		5.54		5.04		6.32		2.55		4.76

		Feb 1930		0.47		2.23		7.45		3.15		3.29

		Mar 1930		3.86		10.15		8.41		5.99		4.79

		Apr 1930		-1.71		-1.07		-0.84		-1.27		-6.55

		May 1930		1.86		-2.14		-2.4		-1.49		-0.93

		Jun 1930		-15.66		-16.95		-14.85		-13.34		-11.82

		Jul 1930		5.4		4.64		2.78		6.52		3.46

		Aug 1930		1.56		-0.43		2		7.71		-0.36

		Sep 1930		-11.51		-13.57		-12.35		-8.7		-10.56

		Oct 1930		-7.46		-9.06		-10.87		-4.37		-8.43

		Nov 1930		2.04		-3.75		-3.27		-3.23		-5.17

		Dec 1930		-5.83		-7.8		-7.09		-6.79		-8.81

		Jan 1931		6.47		4.5		4.99		8.23		11.83

		Feb 1931		11.35		12.07		13.43		7.81		5.52

		Mar 1931		-2.64		-7.06		-5.64		1.8		-9.41

		Apr 1931		-5.9		-12.3		-8.48		-3.62		-9.88

		May 1931		-10.64		-13.86		-10.76		-10.26		-17.44

		Jun 1931		11.01		15.12		13.99		9.69		16.34

		Jul 1931		-2.84		-7.23		-7.25		2.61		-9.91

		Aug 1931		-0.32		1.32		2.02		0.39		-3.9

		Sep 1931		-28.58		-30.86		-26.78		-29.45		-26.5

		Oct 1931		9.99		9.38		7.02		11.26		1.88

		Nov 1931		-5.42		-7.29		-9.77		-2.79		-19.2

		Dec 1931		-10.69		-15.53		-10.06		-4.1		-16.48

		Jan 1932		-0.41		-2.19		-6.74		-2.66		6.71

		Feb 1932		4.33		6.96		9.78		2.05		-0.19

		Mar 1932		-10.33		-9.7		-11.41		-6.41		-15.99

		Apr 1932		-15.89		-18.19		-16.23		-19.77		-22.36

		May 1932		-22.7		-17.82		-16.06		-34.08		-30.03

		Jun 1932		-0.75		1.25		-5.41		11.05		-2.01

		Jul 1932		28.44		35.86		24.4		29.18		55.78

		Aug 1932		28.96		37.21		33.84		35.87		58.75

		Sep 1932		1.9		-5.19		-1.82		-11.92		-4.13

		Oct 1932		-14.57		-11.22		-11.87		-18.56		-18.01

		Nov 1932		-5.92		-6.63		-3.36		5.53		-6.88

		Dec 1932		4.21		4.23		4.82		6.82		4.9

		Jan 1933		2.25		-0.93		0.65		-1.13		8.54

		Feb 1933		-14.05		-17.32		-11.55		-10.82		-16.42

		Mar 1933		9.79		1.84		-2.51		-3.16		3.8

		Apr 1933		43.67		43.53		25.52		37.13		30.73

		May 1933		16.46		22.17		18.29		23.49		31.5

		Jun 1933		13.98		13.16		10.62		10.39		14.51

		Jul 1933		-8.18		-12.04		-6.94		-19.11		-6.67

		Aug 1933		12.01		13.05		7.59		-0.38		14.6

		Sep 1933		-9.79		-9.93		-8.79		-1.31		-16.41

		Oct 1933		-9.1		-6.99		-8.08		-6.02		-10.84

		Nov 1933		12.06		10.72		8.12		9.4		5.34

		Dec 1933		2.04		2.21		-1.86		-11.73		4.7

		Jan 1934		12.49		11.77		9.78		16.77		18.55

		Feb 1934		-2.36		-2.99		-1.24		-3.59		-1.89

		Mar 1934		1		-1.36		1.99		-0.64		0.83

		Apr 1934		-0.9		-2.69		-1.67		8		-1.65

		May 1934		-6.92		-8.07		-5.18		-0.38		-7.35

		Jun 1934		1.78		3.31		1.87		2.04		3.1

		Jul 1934		-8.05		-11.92		-7.27		-1.89		-17.28

		Aug 1934		5.9		6.26		4.05		-3.05		4.44

		Sep 1934		0.88		-1.11		1.07		0.8		-0.35

		Oct 1934		0.21		-2.81		-1.33		-0.71		-2.21

		Nov 1934		10.93		9.14		4.01		4.07		5.63

		Dec 1934		0.17		0.37		1.16		0.62		-0.17

		Jan 1935		-4.3		-3.07		0.21		-0.86		-6.71

		Feb 1935		-0.12		-3.45		0.68		4.25		-4.7

		Mar 1935		-4.84		-2.72		-2.18		-3.14		-5.32

		Apr 1935		5.9		11.11		9.6		3.18		8.75

		May 1935		1.88		3.79		5.96		-4.02		3.89

		Jun 1935		6.72		5.35		6.57		4.09		6.32

		Jul 1935		8.13		7.27		7.35		3.19		7.27

		Aug 1935		2.42		2.3		3.7		0.29		3.39

		Sep 1935		3.88		1.24		5.76		1.11		0.63

		Oct 1935		6.59		9.02		5.59		5.97		2.4

		Nov 1935		2.28		3.54		7.97		1.74		13.19

		Dec 1935		2.65		6.81		1.45		2.35		4.3

		Jan 1936		2.21		9.03		5.21		3.46		12.15

		Feb 1936		1.78		2.51		3.73		3.45		2.79

		Mar 1936		2.93		2		-1.91		3.52		-2.96

		Apr 1936		-6.79		-9.26		-7		-9.19		-7.43

		May 1936		4.97		4.6		5.91		4.8		7.4

		Jun 1936		4.56		1.73		1.93		1.29		1.78

		Jul 1936		4.32		7.39		6.69		4.65		9.65

		Aug 1936		0.76		0.64		2.06		-1.48		1.83

		Sep 1936		1.5		1.32		-0.4		0.77		0.89

		Oct 1936		5.64		8.72		5.39		3.78		8.11

		Nov 1936		3.79		3.27		4.63		3.4		0.49

		Dec 1936		-5.01		3.43		1.01		-2.04		-1.18

		Jan 1937		3.54		3.75		3.66		3.47		1.04

		Feb 1937		0.88		1.54		-2.2		-3.72		4.76

		Mar 1937		-2.47		1.08		-3.3		-5.03		2.68

		Apr 1937		-7.09		-7.9		-6.43		-3.32		-6.83

		May 1937		-1.87		0		1.17		1.68		-3.33

		Jun 1937		-5.41		-3.49		-0.01		-4.12		-8.94

		Jul 1937		8.88		9.9		6.32		4.14		8.74

		Aug 1937		-2.83		-5.6		-3.65		1.09		-8.34

		Sep 1937		-11.45		-15.74		-8.04		-10.76		-15.89

		Oct 1937		-8.94		-11		-6.21		-3.55		-10.13

		Nov 1937		-10.75		-8.7		-4.05		-5.12		-6.85

		Dec 1937		-7.29		-3.05		-1.84		-2.41		-6.63

		Jan 1938		5.76		-1.2		-2.45		3.52		0.49

		Feb 1938		4.82		8.38		0.69		8.61		4.88

		Mar 1938		-20.45		-24.96		-22.25		-14.44		-29.74

		Apr 1938		13.81		14.6		14.91		11.82		14.53

		May 1938		-2.78		-5.6		-0.87		1.71		-3.96

		Jun 1938		21.24		27.74		18.89		10.07		24.86

		Jul 1938		10.87		6.26		3.41		5.8		10

		Aug 1938		-0.65		-4.32		-0.42		0.36		-3.73

		Sep 1938		0.46		1.39		1.2		-0.01		-1.25

		Oct 1938		6.24		8.37		6.67		5.63		11.1

		Nov 1938		-1.58		-1.77		-1.81		1.44		-2.02

		Dec 1938		2.15		5.22		2.81		0.85		6.32

		Jan 1939		-4.28		-7.38		-2.69		-0.96		-8.65

		Feb 1939		4.76		2.63		3.17		3.72		4.7

		Mar 1939		-10.42		-13.53		-8.06		-4.33		-14.95

		Apr 1939		0.47		-0.7		0.43		1		-1.83

		May 1939		7.58		6.16		6.68		5.49		8.01

		Jun 1939		-3.59		-5.94		-5.55		1.1		-7.62

		Jul 1939		10.02		10.44		9.61		3.08		11.59

		Aug 1939		-7.23		-6.02		-5.86		-5.43		-9.97

		Sep 1939		9.65		23.43		6.5		7.07		25.59

		Oct 1939		2.26		-2.35		1.31		0.21		-1.59

		Nov 1939		-1.7		-5.48		-0.57		1.22		-5.05

		Dec 1939		3.37		2.9		3.18		3.77		2.38

		Jan 1940		-0.71		-3.49		-1.85		-1.79		-2.66

		Feb 1940		1.67		1.79		0.37		1.48		0.88

		Mar 1940		2.65		1.6		1.93		1.9		2.63

		Apr 1940		0.58		0.36		-0.43		-0.31		-0.77

		May 1940		-23.34		-22.45		-16.86		-21.21		-24.01

		Jun 1940		7.21		6.22		6.48		4.91		8.56

		Jul 1940		2.83		3.47		3.12		-0.52		3.38

		Aug 1940		3.61		1.77		1.06		-2.29		2.88

		Sep 1940		2.92		1.92		2.67		4.61		2.46

		Oct 1940		0.68		4.52		1.94		-3		5.3

		Nov 1940		-1.15		-2.47		-0.77		-1.82		-0.09

		Dec 1940		-0.77		1.5		1.21		-0.23		0.24

		Jan 1941		-4.11		-5.44		-2.28		-2.19		-1.62

		Feb 1941		-1.33		-1.64		-1.5		-4.69		-0.31

		Mar 1941		0		0.96		1.21		1.77		1.81

		Apr 1941		-6.4		-4.46		-7.32		-5.22		-4.44

		May 1941		0.03		3.24		0.09		-1.45		-0.93

		Jun 1941		5.28		5.91		7.22		6.72		4.51

		Jul 1941		4.87		7.93		0.48		8.03		7.52

		Aug 1941		1.65		-1.52		0.93		0.08		0.2

		Sep 1941		2.13		-2.32		-0.16		-0.21		-2.57

		Oct 1941		-6.86		-4.5		-5.66		-3.69		-4.11

		Nov 1941		-3.64		-0.61		-3.28		-2.93		-1.54

		Dec 1941		-7.7		-3.35		-5.13		-1.59		-5.36

		Jan 1942		3.11		-1.52		-0.43		-2.99		9.54

		Feb 1942		-1.58		-3.32		-1.35		-5.35		-1.86

		Mar 1942		-5.03		-6.83		-6.65		-5.54		-8.98

		Apr 1942		-4.6		-4.23		-5.81		-4.45		-2

		May 1942		9.84		3.59		7.78		14.69		3.55

		Jun 1942		2.73		3.6		0.61		2.85		1.97

		Jul 1942		2.9		3.36		3.3		1.6		6.59

		Aug 1942		1.51		1.89		1.72		2.43		2.41

		Sep 1942		0.97		3.21		3.38		0.26		3.38

		Oct 1942		4.03		8.2		6.22		4.13		8.91

		Nov 1942		2.63		-1.36		2.36		1.58		-2.06

		Dec 1942		5.39		5.82		2.88		8.69		4.47

		Jan 1943		7.31		7.47		6.5		2.47		7.06

		Feb 1943		4.81		6.25		6.3		3.64		9.43

		Mar 1943		5.56		6.17		3.7		4.56		10.07

		Apr 1943		1.06		-0.23		2.75		1.4		2.19

		May 1943		6.78		5.39		5.35		5.13		5.58

		Jun 1943		3.81		1.28		2.34		0.5		-0.78

		Jul 1943		-4.84		-5.02		-3.54		-3.26		-5.21

		Aug 1943		2.44		0.92		0.72		0.26		1.41

		Sep 1943		2.01		2.4		3.13		4.02		2.18

		Oct 1943		-1.07		-1.07		-1.19		0.57		-1.08

		Nov 1943		-4.8		-6.79		-3.85		-3.93		-7.97

		Dec 1943		6.91		6.44		5.27		3.94		7.16

		Jan 1944		2.23		1.3		0.75		0.29		4.48

		Feb 1944		1.22		-0.03		-0.47		-2.64		2.06

		Mar 1944		3.34		2.1		2.09		2.46		2.65

		Apr 1944		-1.47		-1.72		-1.18		-2.36		-2.45

		May 1944		6.14		5.09		3.19		5.68		4.28

		Jun 1944		6.94		4.89		5.14		3.85		5.94

		Jul 1944		-1.89		-1.5		-1.04		-1.24		-0.8

		Aug 1944		3.17		1.07		1.26		0.76		0.36

		Sep 1944		0.54		-0.24		-0.16		0.43		0.11

		Oct 1944		-0.84		0.49		0.78		1.09		0.69

		Nov 1944		1.95		1.25		1.11		0.52		4.29

		Dec 1944		2.71		4.39		2.54		1.71		8.45

		Jan 1945		1.59		3.74		-0.79		0.56		0.61

		Feb 1945		5.34		6.97		4.66		4.25		7.85

		Mar 1945		-3.66		-4.75		-1.93		-1.83		-3.53

		Apr 1945		8.49		8.13		5.19		6.33		8.82

		May 1945		2.73		0.42		2.8		4.11		3.09

		Jun 1945		-0.93		0.32		0.41		-4.65		4.46

		Jul 1945		-0.95		-2.75		0.32		-1.62		-5.47

		Aug 1945		8.42		6		5.48		9.19		2.56

		Sep 1945		4.92		5.05		2.63		6.51		6.08

		Oct 1945		4.39		3.82		1.57		6.61		5.76

		Nov 1945		4.17		5.81		3.05		8.58		9.14

		Dec 1945		2.25		0.75		1.52		1.53		0.15

		Jan 1946		7.05		6.07		4.14		7.76		7.4

		Feb 1946		-5.95		-5.67		-5.1		-4.31		-6.14

		Mar 1946		6.15		7.17		1.65		14.57		4.67

		Apr 1946		4.01		5.56		1.64		14.67		1.7

		May 1946		3.41		4.4		3.97		5.64		3.38

		Jun 1946		-5.49		-3.37		-2.48		-5.52		-3.26

		Jul 1946		-2.5		-2.43		-1.64		-3.22		-4.95

		Aug 1946		-6.54		-6.23		-6.95		-3.24		-6.78

		Sep 1946		-10.7		-9.55		-7.15		-7.03		-14.38

		Oct 1946		-1.32		-1.13		-4.05		-0.24		-0.46

		Nov 1946		-2.34		1.28		-0.05		1.67		0

		Dec 1946		4.44		5.92		4.21		7.23		2.77

		Jan 1947		3.08		0.33		3.05		-5.32		0.46

		Feb 1947		0.18		-1.28		-2.06		-4.19		-1.27

		Mar 1947		-2.34		-0.67		-2.21		-1.26		-3.33

		Apr 1947		-6.31		-3.98		-2.59		-8.6		-6.26

		May 1947		-0.93		-0.77		-0.72		-2.68		-2.07

		Jun 1947		7.26		6.15		0.09		4.19		3.18

		Jul 1947		4.79		3.7		3.46		2.6		5.99

		Aug 1947		-1.82		-1.24		-1.89		-3.83		-3.18

		Sep 1947		-0.56		-0.59		0.98		-2.62		-0.97

		Oct 1947		2.25		3.43		0.95		1.22		1.01

		Nov 1947		-2.16		-1.75		-1.59		-3.04		-1.98

		Dec 1947		1.04		4.48		1.44		3.1		3.7

		Jan 1948		-3.6		-4.7		-2.68		-8.23		-0.86

		Feb 1948		-5.29		-4.37		-2.45		-3.53		-4.11

		Mar 1948		6.29		9.35		6.28		6.33		9.93

		Apr 1948		2.31		5.14		1.04		2.14		3.24

		May 1948		8.67		7.03		7.51		6.78		6.79

		Jun 1948		-1.13		0.9		-0.51		-2.19		-0.82

		Jul 1948		-4.17		-5.66		-4.11		-4.25		-4.96

		Aug 1948		1.01		-0.44		1.51		-1.9		1.53

		Sep 1948		-3.1		-3.04		-1.67		-3.08		-3.42

		Oct 1948		5.05		7.23		3.89		5.19		4.95

		Nov 1948		-7.78		-10.69		-5.64		-5.74		-10.58

		Dec 1948		1.72		4.09		3.58		4.54		2.87

		Jan 1949		2.6		-0.51		-1.3		4.57		0.31

		Feb 1949		-2.54		-3.19		-2.22		-0.93		-3.17

		Mar 1949		3.6		4.38		3.5		5.5		4.89

		Apr 1949		-2.38		-1.36		-2.66		0.24		-1.54

		May 1949		-0.93		-3.7		-3.7		-1.88		-2.67

		Jun 1949		1.62		-0.39		0.64		2.16		-1.37

		Jul 1949		6.24		5.85		4.48		6		4.19

		Aug 1949		2.78		3.44		0.87		0.19		1.45

		Sep 1949		2.63		3.66		2.36		1.86		3.4

		Oct 1949		2.91		3.68		2.77		3.38		2.44

		Nov 1949		2.76		1.32		2.74		4.81		1.21

		Dec 1949		5.94		4.35		5.27		8.7		7.17

		Jan 1950		1.26		1.47		3.21		1.06		3.19

		Feb 1950		1.91		1.29		2.06		1.92		1.02

		Mar 1950		0.28		1.93		3.46		-2.9		-0.68

		Apr 1950		3.22		5.21		3.58		5.52		1.5

		May 1950		3.81		6.18		1.07		3.96		1.36

		Jun 1950		-4.8		-6.11		-6.17		-4.19		-6.8

		Jul 1950		-1.01		2.81		-2.09		-6.94		7.49

		Aug 1950		5.84		5.25		3.84		3.68		2.3

		Sep 1950		7.16		4.21		2.17		6.15		6.52

		Oct 1950		0.29		0.22		-0.63		-1.76		-1.52

		Nov 1950		-0.6		4.64		1.18		4.68		3.94

		Dec 1950		2.37		6.84		2.88		6.06		11.04

		Jan 1951		5.86		6.03		4.82		3.1		6.4

		Feb 1951		2.17		1.41		2.46		1.46		-0.41

		Mar 1951		-1.24		-2.6		-1		1.7		-2.84

		Apr 1951		1.66		7.12		2.03		10.41		3.74

		May 1951		-2.73		-2.13		-1.62		1.57		-3.26

		Jun 1951		-4.46		-1.77		-0.91		0.83		-5.11

		Jul 1951		3.06		8.92		4.41		14.42		7.39

		Aug 1951		4.43		4.76		4.31		-1.38		3.46

		Sep 1951		1.63		0.06		1.76		-1.84		3.59

		Oct 1951		-2.74		-1.67		-3.55		-5.94		-3.62

		Nov 1951		1.08		0.2		1.33		-0.5		2.12

		Dec 1951		1.5		4.42		3.03		5.11		2.13

		Jan 1952		-0.35		2.56		-0.91		0.73		3.32

		Feb 1952		-1.61		-3		-2.09		-4.22		-1.58

		Mar 1952		4.27		4.88		3.16		0.37		5.85

		Apr 1952		-2.79		-6.27		-2.17		-5.46		-3.38

		May 1952		2.96		3.8		2.03		2.53		2.94

		Jun 1952		3.76		4.22		3.94		-0.97		4.02

		Jul 1952		1.7		1.06		0.95		-4.39		1.15

		Aug 1952		1.03		-1.42		0.27		-0.55		-0.13

		Sep 1952		-1.49		-2.44		0.29		-4.1		-1.36

		Oct 1952		-0.26		-0.54		-0.12		-1.47		-1.57

		Nov 1952		5.79		5.81		6.49		7.25		7.27

		Dec 1952		3.6		3.13		1.86		-1.96		3.74

		Jan 1953		0.75		-0.51		-0.62		-5.12		1.07

		Feb 1953		0.07		-0.31		0.04		2.09		-0.22

		Mar 1953		-2.43		-0.96		-0.63		-0.16		-1.44

		Apr 1953		-1.06		-3.6		-0.95		-5.35		-3.21

		May 1953		0.46		0.72		0.72		-0.03		1.44

		Jun 1953		-2.16		-1.72		-0.82		-3.29		-2.05

		Jul 1953		1.75		3.18		1.54		3.66		1.42

		Aug 1953		-4.22		-4.53		-2.61		0.05		-6.77

		Sep 1953		-0.21		0.26		2.39		0.43		-0.99

		Oct 1953		3.26		5.61		4.13		2.66		3.69

		Nov 1953		1.28		3.26		3.51		7.98		2.77

		Dec 1953		-0.28		0.57		0.52		-1.34		-2.29

		Jan 1954		4.34		5.59		4.37		5.65		6.64

		Feb 1954		0.67		1.67		3.98		-0.18		1.54

		Mar 1954		1.91		4.33		5.25		0.28		1.8

		Apr 1954		2.28		5.05		5.65		1.2		2.87

		May 1954		3.34		3.63		0.42		1.61		4.39

		Jun 1954		1.39		0.12		5.3		-2.43		1.49

		Jul 1954		7.13		4.95		2		8.21		6.83

		Aug 1954		-2.31		-2.09		-2.97		-2.57		-2.25

		Sep 1954		8.26		6.77		5.06		2.82		4.33

		Oct 1954		-1.71		-1.88		-1.36		-1.62		0.58

		Nov 1954		6.04		10.48		8.89		12.55		11.15

		Dec 1954		4.98		6.01		2.33		6.13		9.36

		Jan 1955		0.76		0.3		2.71		-2.88		0.89

		Feb 1955		0.42		3.54		4.61		2.85		3.77

		Mar 1955		-0.63		0		-0.97		6.1		0.93

		Apr 1955		4.12		2.88		3.95		0.01		3.44

		May 1955		0.21		1.4		0.68		3.14		1.63

		Jun 1955		6.18		8.77		2.88		0.17		2.37

		Jul 1955		9.37		0.61		-0.57		0.14		-1.79

		Aug 1955		-1.86		1.38		-1.05		0.15		0.46

		Sep 1955		4.38		-0.83		-1.84		-3.2		-2.5

		Oct 1955		-3.18		-2.2		-3.48		0.81		-2.83

		Nov 1955		6.77		7.48		6.54		6.26		8.05

		Dec 1955		-1.82		2.81		3.16		6.22		-0.73

		Jan 1956		-4.64		-2.49		-2.18		-6.5		-2.76

		Feb 1956		3.68		4.25		3.37		8.25		3.17

		Mar 1956		2.53		8.46		6.42		7.24		5.67

		Apr 1956		-2.64		1.52		-0.66		2.74		0.5

		May 1956		-4.11		-5.58		-3.55		-1.24		-5.47

		Jun 1956		3.79		3.83		4.32		3.58		1.58

		Jul 1956		3.92		6.03		4.12		3.1		2.42

		Aug 1956		-0.65		-3.77		-2.58		-3.07		-3.56

		Sep 1956		-2.32		-5.73		-5.07		-3.69		-4.4

		Oct 1956		-0.29		0.87		1.14		0.58		1.1

		Nov 1956		-2.42		1.2		1.05		-1.31		0.22

		Dec 1956		0.65		4.19		3.58		6.05		2

		Jan 1957		-2.32		-4.05		-1.87		-2.26		-0.55

		Feb 1957		-1.42		-2.25		-0.2		-0.35		-2.56

		Mar 1957		1.13		2.33		3.26		8.21		2.3

		Apr 1957		4.12		4.63		4.76		5.43		3.15

		May 1957		1.28		4.71		3.71		4.78		1.37

		Jun 1957		-0.75		-1.21		2.1		6.45		-1.1

		Jul 1957		2.55		0.62		0.51		2.98		1.12

		Aug 1957		-2.53		-5.57		-4.13		-2.26		-5.41

		Sep 1957		-3.93		-6.52		-4.55		-3.71		-6.63

		Oct 1957		-3.62		-4.46		-1.93		-0.45		-6.87

		Nov 1957		-1.51		3.21		4.26		7.77		0.33

		Dec 1957		-4.19		-4.25		-1.31		-0.38		-4.37

		Jan 1958		6.58		4.32		4.12		-0.05		11

		Feb 1958		0.34		-2.24		-0.64		4.92		-1.76

		Mar 1958		3.49		3.57		1.94		7.53		2.51

		Apr 1958		3.74		3.27		1.13		7.52		4.55

		May 1958		3.8		2.06		1.8		1.07		3.75

		Jun 1958		2.53		3.16		2.71		3.23		2.88

		Jul 1958		5.12		4.64		2.48		5.97		5.31

		Aug 1958		2.07		1.67		2.22		1.98		3.07

		Sep 1958		6.91		3.96		5.68		11.72		4.64

		Oct 1958		1.91		2.73		3.13		1.05		3.64

		Nov 1958		3.54		2.62		3.4		8.03		4.69

		Dec 1958		3.55		4.13		13.16		4.61		3.04

		Jan 1959		1.92		0.79		0.41		-0.62		1.97

		Feb 1959		0.95		-0.04		5.01		3.86		1.68

		Mar 1959		-0.63		0.75		1.11		4.26		-0.72

		Apr 1959		5.6		2.54		6.76		11.92		2.07

		May 1959		3.87		1.79		2.29		-1.07		0.65

		Jun 1959		1.25		-0.37		-1.01		6.59		1.41

		Jul 1959		5.24		4.06		0.55		4.74		0.17

		Aug 1959		1.53		-1.68		-1.21		-3.52		-2.21

		Sep 1959		-3.45		-5.35		-2.82		-4.96		-4.07

		Oct 1959		0.84		1.26		3.43		2.38		0.18

		Nov 1959		1.02		1.22		4.76		5.62		-0.51

		Dec 1959		3.65		2.67		3.79		-1.63		2.08

		Jan 1960		-7.56		-7.09		-5.49		-6.35		-4.42

		Feb 1960		1.01		-0.09		6.67		0.27		0.01

		Mar 1960		-2.65		-1.9		0.95		1.61		-2.33

		Apr 1960		-0.41		-2.77		-0.14		1.68		-1.11

		May 1960		2.83		1.62		6.89		13.77		0.34

		Jun 1960		2.76		2.92		0.69		-0.16		2.83

		Jul 1960		-1.32		-2.44		-2.45		-3.86		-1.52

		Aug 1960		3.66		2.85		3.65		2.46		3.01

		Sep 1960		-5.42		-5.07		-7.51		-8.71		-5.77

		Oct 1960		0.29		0.01		-1.77		-3.49		-0.85

		Nov 1960		4.73		4.25		5.76		4.04		6.74

		Dec 1960		2.24		4.81		7.19		6.22		4.17

		Jan 1961		5.86		7.03		5.19		6.05		7.82

		Feb 1961		5.44		3.64		1.78		5.19		5.66

		Mar 1961		4.76		1.59		4.96		3.8		3.45

		Apr 1961		-0.76		0.87		0.63		-0.3		0.51

		May 1961		3.08		2.98		1		2.28		4.21

		Jun 1961		-1.07		-2.98		-3.65		-3.38		-3.87

		Jul 1961		4.14		2.51		3.96		3.45		1.25

		Aug 1961		3.58		2.19		2.47		3.84		5.3

		Sep 1961		2		-3.63		-1.18		-1.31		-1.82

		Oct 1961		3.72		2.66		1.91		3.52		2.28

		Nov 1961		6.88		3.7		5.44		3.27		3.93

		Dec 1961		-0.58		0.01		1.17		-2.02		-1.84

		Jan 1962		-4.94		-2.4		-5.49		-4.62		-1.4

		Feb 1962		-0.07		2.71		1.91		3.76		1.7

		Mar 1962		-0.61		-0.22		-1.3		0.54		-1.85

		Apr 1962		-5.27		-5.6		-8.06		-11.01		-7.12

		May 1962		-8.41		-7.89		-9.19		-10.9		-7.92

		Jun 1962		-8.32		-7.21		-10.05		-12.59		-9.18

		Jul 1962		6.32		5.74		9.21		7.78		5.72

		Aug 1962		2.88		2.44		2.47		-7.92		3.84

		Sep 1962		-4.78		-3.92		-7.46		-4.05		-5.74

		Oct 1962		-0.53		0.37		1.34		2.47		0.65

		Nov 1962		9.82		11.09		10.74		17.59		14.88

		Dec 1962		1.68		1.67		0.45		0.89		1.35

		Jan 1963		5.66		4.74		4.88		5.65		5.24

		Feb 1963		-2.45		-1.94		-3.08		-2.58		-0.37

		Mar 1963		4.41		3.77		2.33		1.18		2.87

		Apr 1963		4.5		4.53		5.05		7.62		5.85

		May 1963		4.6		1.18		1.78		-0.25		3.63

		Jun 1963		-1.99		-1.12		-3.47		-1.09		-1.3

		Jul 1963		-0.48		0.23		-0.41		0.56		-1.61

		Aug 1963		6.03		5.04		4.62		9.56		5.49

		Sep 1963		-0.41		-2.05		1.48		-4.06		-3.16

		Oct 1963		5.66		0.96		5.29		3.38		1.38

		Nov 1963		-3.05		-0.43		2.39		-1.65		0.23

		Dec 1963		1.02		2.84		1.1		1.54		2.8

		Jan 1964		1.35		3.06		3.18		3.68		1.24

		Feb 1964		1.95		1.82		0.6		1.66		5.45

		Mar 1964		1.88		2.04		0.79		-1.94		2.18

		Apr 1964		1.42		0.61		-1.02		-1.42		0.26

		May 1964		1.85		1.7		0.86		0.53		2.42

		Jun 1964		1.64		1.1		3.03		0.59		1.36

		Jul 1964		3.33		2.71		-1.91		4.76		1.34

		Aug 1964		0.65		-1.18		-2.02		-4.22		-3.13

		Sep 1964		3.74		3.62		-0.15		2.73		4.05

		Oct 1964		0.59		1.3		-0.93		2.88		1.84

		Nov 1964		0.25		0.85		-1.42		2.17		-1.8

		Dec 1964		0.91		-0.35		1.83		4.38		-1.78

		Jan 1965		4.24		3.58		3.17		7.66		4.72

		Feb 1965		0.44		0.24		1.38		2.42		2.58

		Mar 1965		0.25		-1.58		-1.17		-0.92		-0.27

		Apr 1965		6.19		2.35		3.51		2.98		2.16

		May 1965		-1.91		-0.21		1.79		-1.24		-1.68

		Jun 1965		-6.21		-4.42		-4.81		-5.31		-6.97

		Jul 1965		1.22		1.77		1.28		3.95		3.4

		Aug 1965		3.25		2.43		3.27		6.29		5.07

		Sep 1965		3.31		3.5		2.93		2.24		1.8

		Oct 1965		3.95		2.96		1.08		3.23		4.26

		Nov 1965		-1.44		0.7		-1.03		3.8		3.88

		Dec 1965		1.26		1.62		-1.19		3.83		3.47

		Jan 1966		-0.16		1.18		-0.02		2.74		5.25

		Feb 1966		-1.27		-2.18		2.71		-1.55		2.09

		Mar 1966		-2.75		-1.61		-2.86		-1.6		-2.84

		Apr 1966		0.83		2.58		4.54		-0.02		3.04

		May 1966		-6.04		-4.54		-4.6		-5.26		-7.87

		Jun 1966		-2.08		-1.5		0.16		0.99		0.74

		Jul 1966		-1.96		-0.71		-1.48		-1.72		-2.05

		Aug 1966		-7.12		-7.6		-5.33		-8.07		-11.75

		Sep 1966		-1.38		0.08		-1.27		-1.13		-1.86

		Oct 1966		1.32		5.76		4.57		4.87		3.12

		Nov 1966		-0.75		0.68		4		6.89		7.95

		Dec 1966		-2.01		0.9		1.61		-0.17		2.09

		Jan 1967		11.19		7.23		8.32		6.41		11.97

		Feb 1967		0.89		0.26		4.3		1.42		-0.24

		Mar 1967		3.92		4.34		4.3		7.83		4.18

		Apr 1967		8.39		2.79		4.34		4.46		2.22

		May 1967		-5.21		-3.38		-4.97		-5.29		-1.89

		Jun 1967		2.4		1.52		4.79		5.38		3.78

		Jul 1967		8.09		5.12		-0.45		3.79		7.85

		Aug 1967		-0.13		-0.79		-1.11		0.66		-0.31

		Sep 1967		3.78		2.86		5.59		2.89		1.35

		Oct 1967		-2.95		-3.6		1.74		-5.01		-5.23

		Nov 1967		0.06		1.12		0.92		1.33		-0.4

		Dec 1967		2.22		4.26		1.48		1.62		5.49

		Jan 1968		-2.21		-3.72		-4.8		-6.57		-1.84

		Feb 1968		-2.07		-3.31		-3.76		-4.24		-3.56

		Mar 1968		1.16		-0.06		2.19		0.1		-0.09

		Apr 1968		11.79		7.76		8.72		11.9		12.1

		May 1968		2.35		2.16		2.27		3.34		6.25

		Jun 1968		-0.18		1.71		0.01		2.25		2.99

		Jul 1968		-3.77		-0.74		-3.81		-4.1		-2.76

		Aug 1968		1.99		1.97		0.78		0.68		2.82

		Sep 1968		6.45		3.52		2.95		0.85		9.17

		Oct 1968		2.41		1.36		-2.19		-0.05		1.1

		Nov 1968		2.63		6.2		7.44		8.1		7.63

		Dec 1968		-3.21		-3.12		-5.82		-1.03		-3.75

		Jan 1969		-1.43		-0.15		-2.62		-0.23		0.88

		Feb 1969		-4.66		-5.35		-3.49		-5.14		-8.35

		Mar 1969		3.61		3.31		3.32		3.34		0.75

		Apr 1969		1.85		0.78		5.25		4.98		1.81

		May 1969		0.53		0.72		-0.71		1.66		-1.11

		Jun 1969		-6.26		-7.64		-1.54		-5.03		-10.67

		Jul 1969		-7.4		-6.45		-5.1		-2.73		-9.13

		Aug 1969		5.08		3.97		5.14		9.2		9.02

		Sep 1969		-0.24		-4.8		-1.21		2.17		-0.74

		Oct 1969		6.15		4.58		5.04		8.97		7.93

		Nov 1969		-3.7		-4.12		-0.83		0.34		-5.54

		Dec 1969		-2.81		-1.66		-2.31		4.3		-3.75

		Jan 1970		-6.22		-7.89		-6.99		-7.11		-8.81

		Feb 1970		5.3		5.58		4.62		5.57		9.4

		Mar 1970		1.04		0.12		-0.91		-5.1		-1.91

		Apr 1970		-9.95		-8.89		-12.38		-10.12		-13.7

		May 1970		-7.59		-4.56		-7.41		-7.74		-8.31

		Jun 1970		-3.09		-4.08		-10.51		-0.48		-6.82

		Jul 1970		9.11		7.89		5.42		2.14		8.02

		Aug 1970		5.1		5.16		5.79		1.8		5.03

		Sep 1970		5.17		2.97		5.88		8.01		7.61

		Oct 1970		-1.02		-0.86		-3.61		0.31		-5.89

		Nov 1970		6.14		5.19		4.81		2.97		3.74

		Dec 1970		6.41		6.04		5.31		5.34		8.37

		Jan 1971		5.42		3.73		7.03		4.92		7.79

		Feb 1971		3.18		1.57		-0.27		1.31		2.22

		Mar 1971		4.76		3.45		5.46		3.68		5.94

		Apr 1971		5.36		3.04		1.84		4.23		4.34

		May 1971		-3.2		-3.21		-5.81		-2.13		-4.53

		Jun 1971		-0.1		1.24		-1.08		2.05		-1.32

		Jul 1971		-3.7		-3.67		-6.95		-2.17		-3.86

		Aug 1971		6.7		2.64		3.63		3.15		6.98

		Sep 1971		0.17		-0.86		-0.95		0.66		-0.42

		Oct 1971		-4.31		-4.22		-3.52		-2.47		-4.21

		Nov 1971		0.01		-0.71		1.31		0.69		-0.27

		Dec 1971		8.88		9.36		10.02		7.79		8.22

		Jan 1972		2.12		1.8		5.97		2.63		3.36

		Feb 1972		3.47		3		1.36		7.12		2.25

		Mar 1972		2.16		-0.17		0.65		0.46		2.29

		Apr 1972		0.23		0.46		0.19		1.1		1.79

		May 1972		0.17		2.17		2.96		3.71		-0.63

		Jun 1972		-2.64		-1.78		-2.58		2.54		-4.51

		Jul 1972		-2.01		-0.03		0.89		3.1		-2.96

		Aug 1972		1.11		5.49		3.54		1.05		3.55

		Sep 1972		-1.38		-0.7		0.45		-0.43		-1.74

		Oct 1972		-0.53		2.52		-1.59		1.5		1.12

		Nov 1972		7		5.13		3.95		-0.53		5.12

		Dec 1972		1.36		0.51		1.81		3.73		-0.76

		Jan 1973		-5.26		-1.22		0.61		-1.18		-7.47

		Feb 1973		-5.6		-3.75		-3.54		-0.71		-6.09

		Mar 1973		-3.14		0.37		-0.68		0.78		-0.29

		Apr 1973		-6.54		-2.89		-4.32		-5.48		-7.79

		May 1973		-2.89		-1.69		-2.01		1.07		-5.03

		Jun 1973		-3.89		-0.13		-0.17		0.02		-0.28

		Jul 1973		8.5		3.29		3.15		6.87		9.56

		Aug 1973		-3.8		-2.31		-3.76		-6.91		-2.24

		Sep 1973		7		6.42		0.67		0.79		7.2

		Oct 1973		-3.41		1.2		0.52		1.83		-1.05

		Nov 1973		-16.3		-11.51		-8.29		-7.77		-13.45

		Dec 1973		-1.93		3.83		-1.34		-4.48		2.47

		Jan 1974		4.99		-1.73		1.52		-2.52		1.11

		Feb 1974		-0.02		-0.49		1.32		-1.23		1.03

		Mar 1974		-1.73		-2.08		-3.43		1.21		-3.64

		Apr 1974		-3.26		-5.06		-4.27		-1.48		-6.39

		May 1974		-0.48		-4.14		-3.28		-0.12		-8.41

		Jun 1974		-1.95		-1.08		-1.77		-1.62		-5.5

		Jul 1974		-11.56		-4.23		-8.14		-14.06		-6.64

		Aug 1974		-10.04		-9.47		-3.09		-8.11		-10.62

		Sep 1974		-12.31		-9.52		-11.89		-15.55		-9.58

		Oct 1974		10.25		17.28		13.17		29.52		20.22

		Nov 1974		-4.68		-4.63		-4.17		-1.2		-2.76

		Dec 1974		-2.45		-2.16		-2.48		-3.37		-4.35

		Jan 1975		21.74		12.4		13.5		-0.61		17.81

		Feb 1975		4.53		5.07		9.85		16.04		2.84

		Mar 1975		8.04		1.79		0.26		1.28		4.11

		Apr 1975		3.2		7.14		2.98		0.72		3.3

		May 1975		4.13		6.35		4.98		6.48		5.69

		Jun 1975		7.46		5.46		2.94		0.91		5.95

		Jul 1975		-5.08		-5.16		-7.46		-12.03		-6.12

		Aug 1975		-2.31		-0.96		-3.21		-3.34		-5.12

		Sep 1975		-2.84		-3.49		-1		-6.54		-6.3

		Oct 1975		9.81		3.45		7.78		10.68		3.91

		Nov 1975		3.99		1.66		4.73		5.12		3.56

		Dec 1975		-1.67		-0.52		-0.82		-6.36		-0.29

		Jan 1976		11.75		12.83		14.98		7.78		12.93

		Feb 1976		2.2		-0.44		2.05		-6.52		3.12

		Mar 1976		2.5		2.72		2.1		6.52		1.94

		Apr 1976		-1.52		-0.04		-1.57		-4.31		-1.56

		May 1976		-3.59		0.8		-0.75		-2.81		-1.67

		Jun 1976		3.16		4.36		6.54		3.66		5.4

		Jul 1976		-0.45		-0.77		-0.98		-0.38		-0.05

		Aug 1976		0.29		-0.64		1.19		2.17		-1.14

		Sep 1976		2.15		3.04		2.41		3.62		0.94

		Oct 1976		-1.26		-2.73		-2.36		-3.75		-0.46

		Nov 1976		1.86		0.55		2.24		-9.69		2.04

		Dec 1976		5.77		6.22		3.69		6.26		8.39

		Jan 1977		-4.97		-2.69		-2.34		-8.82		-4.15

		Feb 1977		-2.23		-1.95		0		-0.21		-1.75

		Mar 1977		-2.43		-0.74		-0.44		-1.79		-0.11

		Apr 1977		0.24		1.47		-1.82		-5.2		2.16

		May 1977		-1.31		-1.16		-0.29		-1.88		-0.84

		Jun 1977		4.87		4.7		5.38		9.04		5.34

		Jul 1977		-0.42		-2.12		-0.45		-2.24		-0.36

		Aug 1977		1.05		-3.07		-0.62		3.79		-1.24

		Sep 1977		0.44		0.18		0.29		-0.84		-0.08

		Oct 1977		-3.64		-3.87		-3.95		-1.68		-4.43

		Nov 1977		3.97		3.97		4.01		6.02		6.46

		Dec 1977		-0.6		0.94		2.31		0.59		0.64

		Jan 1978		-6.25		-5.98		-4.5		-1.86		-5.32

		Feb 1978		0.05		-1.6		-0.48		-3		-0.16

		Mar 1978		4.38		2.97		0.68		4.16		5.43

		Apr 1978		8.93		7.63		8.97		9.2		9.32

		May 1978		2.05		2.48		0.83		5.25		2.55

		Jun 1978		-1.57		-1.79		-0.81		1.1		-0.27

		Jul 1978		4.33		5.4		5.75		8.87		6.57

		Aug 1978		4.15		3.61		5.09		1		6.34

		Sep 1978		-1.06		0.37		-2.16		-2.75		-1.25

		Oct 1978		-12.17		-10.35		-8.39		-12.84		-14.07

		Nov 1978		1.86		4.05		4.25		5.18		2.51

		Dec 1978		0.35		1.46		3.93		3.42		1.32

		Jan 1979		4.85		5.25		4.06		1.42		6.1

		Feb 1979		-3.76		-2.26		-2.29		-4.52		-3.26

		Mar 1979		5.39		7.04		4.75		5.05		8.17

		Apr 1979		1.23		0.83		-0.57		0.42		1.53

		May 1979		-1.68		-1.66		-1.23		-2.64		-0.09

		Jun 1979		3.09		5.76		1.02		4.83		7

		Jul 1979		1.8		1.95		-1		0.14		3.3

		Aug 1979		7		6.68		4.31		8.54		5.84

		Sep 1979		-0.86		1.45		-1.99		-0.54		-0.68

		Oct 1979		-8.55		-5.84		-6.76		-4.34		-10.15

		Nov 1979		2.48		7.01		6.66		8.75		7.01

		Dec 1979		3.26		2.79		0.6		2.08		4.14

		Jan 1980		4.21		9.04		4.07		-1.29		5.51

		Feb 1980		-5.26		3.74		-2.87		-4.63		-3.33

		Mar 1980		-8.44		-13.81		-9.33		-2.84		-12.24

		Apr 1980		3.08		6.16		3.07		4.28		6.05

		May 1980		7.66		4.98		4.89		6.96		8.11

		Jun 1980		2.75		4.25		1.69		0.21		5.16

		Jul 1980		9.71		4.86		10.2		8.89		6.64

		Aug 1980		1.61		2.18		4.56		0.3		2.67

		Sep 1980		0.69		4.26		0.79		3.6		3.65

		Oct 1980		-0.85		4.09		0.23		-1.29		1.56

		Nov 1980		2.63		15.98		6.67		8.81		7.38

		Dec 1980		-0.34		-6.56		-0.63		4.61		-0.72

		Jan 1981		0.32		-6.18		-4.28		-1.57		-2.56

		Feb 1981		3.7		1.32		1		1.85		1.7

		Mar 1981		8.64		1.65		3.83		5.87		8.45

		Apr 1981		1.89		-3.98		1.97		3		0.93

		May 1981		2.73		-1.55		5.14		3.47		2.51

		Jun 1981		-1.77		1.87		-5.16		-5.58		-0.97

		Jul 1981		-2.1		2.65		-2.45		-3.89		-2.69

		Aug 1981		-5.92		-5.72		-5.15		-7.75		-5.49

		Sep 1981		-2.89		-9.14		-1.62		-1.33		-5.46

		Oct 1981		4.14		6.58		5.46		7.95		7.15

		Nov 1981		2.68		5.69		1.93		3.93		5.08

		Dec 1981		-1.35		-3.85		-0.53		-0.75		-3.74

		Jan 1982		-0.02		-5.06		2.03		1.45		-3.25

		Feb 1982		-1.8		-6.94		-5.39		-1.8		-3.92

		Mar 1982		3.33		-1.79		-1.63		-2.58		-1.3

		Apr 1982		5.7		3.75		4.71		7.34		3.71

		May 1982		-2.68		-1.11		-3.98		-3.05		-5.47

		Jun 1982		2.36		-4.04		-2.4		-0.73		-2.43

		Jul 1982		-0.25		-4.47		1.43		0.81		-3.02

		Aug 1982		11.45		11.97		12.13		12.38		11.33

		Sep 1982		3.49		0.48		1.15		1.34		4.16

		Oct 1982		14.22		8.59		14.06		8.34		15.7

		Nov 1982		7.95		1.04		9.21		5.24		7.61

		Dec 1982		0.4		3.04		1.51		0.54		-1.31

		Jan 1983		1.49		4.3		9.55		1.48		2.85

		Feb 1983		5.16		2.05		2.42		2.78		4.61

		Mar 1983		5.44		3.01		0.68		4.61		4.96

		Apr 1983		8.39		7.07		6.81		5.1		8.23

		May 1983		-0.76		1.96		1.59		-2.7		2.47

		Jun 1983		6.08		2.88		4.49		6.87		1.6

		Jul 1983		-3.14		-1.72		-5.33		-5.6		-3.67

		Aug 1983		-2.23		3.09		-0.22		-1.08		-0.59

		Sep 1983		3.72		0.3		2.16		1.29		1.63

		Oct 1983		-0.56		-1.12		-6.45		-2.15		-4.03

		Nov 1983		3.54		2.34		2.52		-3.03		4.68

		Dec 1983		-1.6		-0.62		-0.15		-3.58		-0.86

		Jan 1984		-3.84		1.94		-3.39		-0.61		-1.67

		Feb 1984		-5.4		-2.33		-5.29		-1.99		-4.88

		Mar 1984		1.13		1.41		0.05		-0.69		2.45

		Apr 1984		0.62		1.41		0.29		2.29		-2.08

		May 1984		-4.22		-4.54		-4.94		-6.48		-6.86

		Jun 1984		5.49		0.73		4.8		3.83		2.24

		Jul 1984		0.1		-3.12		-0.48		-3.84		-1.8

		Aug 1984		9.51		11.66		11.4		10.26		11.17

		Sep 1984		0.43		0.49		-1.09		-4.41		2.26

		Oct 1984		0.87		-0.52		-1.63		1.6		0.73

		Nov 1984		-1.72		-0.3		-2.25		-0.03		-0.31

		Dec 1984		2.45		1.43		3.53		2.79		3.71

		Jan 1985		9.21		6.45		9.77		8.28		9.79

		Feb 1985		2.05		2.14		0.41		3.59		2.16

		Mar 1985		0.05		0.58		-2.06		3.01		-0.15

		Apr 1985		-1.69		0.92		-2.45		-1.73		1.46

		May 1985		8		4.18		5.11		9.59		6.35

		Jun 1985		1.99		1.35		1.58		2.29		2.95

		Jul 1985		-1.82		0.35		1.72		-0.4		-0.15

		Aug 1985		-0.63		0.3		-1.66		-0.8		-0.46

		Sep 1985		-2.65		-3.51		-4.59		-3.89		-4.92

		Oct 1985		4.03		4.84		3.34		3.19		6.37

		Nov 1985		8.64		4.8		8.29		9.78		7.41

		Dec 1985		5.56		2.46		7.69		3.48		4.5

		Jan 1986		1.8		-0.14		-1.25		1.14		3.54

		Feb 1986		9.7		6.95		5.61		6.08		8.33

		Mar 1986		8.22		4.11		0.95		12.05		5.76

		Apr 1986		-0.71		-1.72		3.51		0.72		-2.65

		May 1986		7.79		4.91		2.01		7.24		4.67

		Jun 1986		3.54		0.67		-1.34		5.67		1.53

		Jul 1986		-7.97		-3.65		-6.76		-5.36		-6.4

		Aug 1986		3.44		8.91		6.94		4.01		6.92

		Sep 1986		-9.28		-6.09		-7.76		-12.57		-8.82

		Oct 1986		7.75		5.05		1.87		7.93		4.26

		Nov 1986		2.15		2.27		3.65		1.35		-0.62

		Dec 1986		-4.05		-1.94		-3.7		-1.25		-2.53

		Jan 1987		14.59		12.91		12.9		13.16		11.16

		Feb 1987		6.49		1.43		6.63		11.28		4.68

		Mar 1987		2.25		4.21		2.33		0.15		-0.31

		Apr 1987		-1.28		-1.67		2.5		-2.46		-4.08

		May 1987		0.51		0.64		1.09		1.23		-0.02

		Jun 1987		5.64		4.87		1.86		4.76		4.63

		Jul 1987		6.08		4.21		2.61		5.75		3.59

		Aug 1987		4.09		2.66		6.65		2.2		4.35

		Sep 1987		-4.32		-1.29		-0.88		-2.55		-1.8

		Oct 1987		-25.02		-20.82		-21.43		-20.46		-23.58

		Nov 1987		-8.29		-5.89		-9.48		-9.31		-6.62

		Dec 1987		8.13		7.21		9.04		5.34		5.4

		Jan 1988		4.23		4.64		1.89		6.37		6.42

		Feb 1988		7.54		4.27		5.12		4.2		4.32

		Mar 1988		-2.02		-0.72		-4.35		-2.55		-1.34

		Apr 1988		1.28		1.95		1.88		-1.99		-0.39

		May 1988		-0.28		0.52		-0.04		-0.26		0.95

		Jun 1988		5.75		3.94		7.01		2.68		6.02

		Jul 1988		0.26		-0.53		-2.95		0.49		-0.52

		Aug 1988		-2.3		-2.77		-5.97		-1.08		-0.91

		Sep 1988		6.56		1.84		4.86		3.86		4.14

		Oct 1988		4.99		1.38		1.28		1.22		0.01

		Nov 1988		-1.68		-1.32		-1.53		-2.16		-2.13

		Dec 1988		2.21		2.32		3.34		1.83		0.91

		Jan 1989		6.25		6.15		7.96		6.8		6.88

		Feb 1989		-1.83		-1.84		-2.57		-1.15		-0.37

		Mar 1989		3.3		1.7		-0.24		4.96		3.41

		Apr 1989		4.74		4.35		7.42		5.41		4.64

		May 1989		4.8		3.81		4.16		3.43		4.19

		Jun 1989		0.15		-0.95		-1.58		-2.74		0.93

		Jul 1989		9.74		6.29		6		13.89		8.14

		Aug 1989		0.96		3		1.69		0.37		3.41

		Sep 1989		-1.87		-0.95		0.9		2.38		1.42

		Oct 1989		-3.63		-2.03		-3.07		0.39		-4.85

		Nov 1989		1.1		3.31		0.38		4.53		-0.02

		Dec 1989		0.87		4.11		2.9		1.05		-1.5

		Jan 1990		-7.42		-5.53		-8.57		-7.37		-8.83

		Feb 1990		1.32		2.14		1.58		-2.06		2.54

		Mar 1990		4.57		1.72		4.31		3.86		-0.31

		Apr 1990		-1.48		-3.56		-2.81		0.29		-3.47

		May 1990		9.88		6.97		10.8		12.76		9.05

		Jun 1990		1.26		-0.69		-3.11		4.44		-1.56

		Jul 1990		-2.44		2.43		-5.94		2.59		-3.46

		Aug 1990		-10.16		-7.95		-11.34		-6.82		-11.41

		Sep 1990		-6.58		-4.32		-2.41		-4.35		-9.98

		Oct 1990		-0.3		-0.5		-0.01		1.43		-6.36

		Nov 1990		7.65		4.49		6.59		9.45		10.64

		Dec 1990		3.48		1.93		2.84		2.75		5.45

		Jan 1991		6.97		2.33		6.92		4.53		7.48

		Feb 1991		9.43		6.34		4.89		9.85		9.7

		Mar 1991		5.82		1.41		1.54		5.43		3.06

		Apr 1991		0.01		0.86		-0.89		-1.12		1.3

		May 1991		6.28		3.44		1.03		4.61		4.99

		Jun 1991		-4.59		-3.69		-5.38		-4.16		-5.21

		Jul 1991		4.89		3.82		3.91		8.44		4.69

		Aug 1991		3.92		2.24		1.84		2.86		3.1

		Sep 1991		-3.19		-0.55		-0.38		-0.4		-0.56

		Oct 1991		-1.28		1.58		2.05		6.64		2.33

		Nov 1991		-1.52		-4.35		-4.65		-2.55		-5.37

		Dec 1991		13.35		7.55		9.47		16.47		12.6

		Jan 1992		-0.54		-0.9		2.03		-5.55		2.11

		Feb 1992		2.77		0.71		1.46		-2.59		3.15

		Mar 1992		-1.22		-1.43		-3.23		-5.46		-2.15

		Apr 1992		-0.16		4.36		2.69		-2.15		0.52

		May 1992		0.53		1		-0.82		1.08		1.53

		Jun 1992		-1.94		-2.48		-1.54		-4.68		-0.01

		Jul 1992		3.84		4.41		4.16		5.72		3.2

		Aug 1992		-0.87		-1.41		-2.8		-3.31		-3.41

		Sep 1992		2.17		1.18		2.57		-4.9		3.46

		Oct 1992		1.31		-0.48		0.78		3.32		2.96

		Nov 1992		5.62		1.45		5.33		4.87		6.02

		Dec 1992		0.65		1.86		2.74		-1.4		3.83

		Jan 1993		0.66		1.16		2.99		-6.77		3.28

		Feb 1993		-1.63		3.71		2.65		-8.94		0.42

		Mar 1993		1.8		2.55		2.74		0.81		3.9

		Apr 1993		-7.37		0.19		-3.27		1.31		-3.22

		May 1993		3.79		1.64		6.46		3.61		1.71

		Jun 1993		-1.13		0.39		2.1		-2.93		2.21

		Jul 1993		-0.52		0.58		-0.87		-5.99		2.06

		Aug 1993		3.59		3.67		5.92		3.06		3.46

		Sep 1993		-0.8		-0.85		0.4		0.92		1.69

		Oct 1993		5.67		0.69		2.1		6		-2.28

		Nov 1993		0.7		-2.09		-3.08		1.11		-2.8

		Dec 1993		0.42		2.52		1.29		2.49		2.61

		Jan 1994		1.15		3.42		3.41		1.92		4.42

		Feb 1994		-0.45		-2.1		-1.78		-5.55		-3.9

		Mar 1994		-4.66		-4.13		-3.82		-6.72		-4.3

		Apr 1994		0.56		1.41		-0.21		2.4		1.26

		May 1994		-1.79		0.2		1.89		4.37		3

		Jun 1994		-2.4		-2.71		-2.46		-3.69		-2.64

		Jul 1994		2.15		4.38		3.55		1.04		2.65

		Aug 1994		4.45		2.86		5.35		10.71		3.47

		Sep 1994		-1.88		-1.96		-0.77		1.73		-4.23

		Oct 1994		1.24		2.26		3.89		0.88		0.15

		Nov 1994		-2.87		-4.23		-3.59		0.43		-5.18

		Dec 1994		-0.08		2.17		1.81		0.52		1.47

		Jan 1995		0.62		1.06		1.31		6.15		4.72

		Feb 1995		3.15		4.33		4.47		2.24		4.86

		Mar 1995		2.87		2.86		2.72		2.69		1.98

		Apr 1995		0.34		2.72		5.52		3.07		1.61

		May 1995		3.92		3.91		2.11		1.63		4.47

		Jun 1995		2.86		0.43		7.48		4.46		2.15

		Jul 1995		2.42		2.52		6.87		5.31		4.87

		Aug 1995		-0.74		-0.28		1.54		1.04		3.72

		Sep 1995		3.85		2.78		2.92		7.46		4.56

		Oct 1995		-2.84		-1.37		0.85		1.15		-2.05

		Nov 1995		5.31		5.16		0.64		4.95		6.17

		Dec 1995		0.95		3.12		-1.06		5.93		1.12

		Jan 1996		1.63		2.26		2.11		5.95		3.52

		Feb 1996		3.39		0.26		2.95		-1.07		2.23

		Mar 1996		2.57		3.07		-2.84		0.24		1.69

		Apr 1996		2.31		1.28		7.22		-0.6		0.19

		May 1996		4.95		1.76		2.46		3.93		1.58

		Jun 1996		-0.07		0.82		-3.01		-0.19		-0.25

		Jul 1996		-5.46		-4.47		-7.88		-6.06		-4.32

		Aug 1996		2.46		3.12		2.54		4.19		3.91

		Sep 1996		3.39		4.71		7.52		7.34		5.07

		Oct 1996		-0.1		2.9		-1.08		-0.68		3.96

		Nov 1996		4.5		5.38		10		6.66		7.53

		Dec 1996		-1.66		-0.04		-0.96		-2.66		-1.8

		Jan 1997		3.12		3.72		7.18		9.55		6.04

		Feb 1997		3.09		-0.95		-4.55		0.94		2.6

		Mar 1997		-3.52		-1.56		-6.2		-7.4		-5.89

		Apr 1997		3.6		3		6.44		6.16		5.23

		May 1997		6.07		7.1		9.11		6.91		6.25

		Jun 1997		4.14		3.98		2.04		8.89		5.37

		Jul 1997		5.65		6.61		12.08		2.06		9.23

		Aug 1997		-3.74		-3.6		-1.56		-6.14		-4.79

		Sep 1997		5.37		4.23		5.08		6.61		7.91

		Oct 1997		-2.78		-3.99		-5.27		0.26		-2.63

		Nov 1997		4.86		2.64		4.03		2.86		3.02

		Dec 1997		2.17		0.66		-1.47		3.55		5.34

		Jan 1998		-0.9		-1.59		5.12		5.73		-2.12

		Feb 1998		8.26		6.38		7.87		5.45		8.19

		Mar 1998		6.14		5.14		3.96		3.61		5.79

		Apr 1998		-1.38		1.27		2.42		1.92		1.82

		May 1998		2.42		-2.65		-5.3		-2.47		-3.01

		Jun 1998		3.92		-0.27		6.99		6.18		3.13

		Jul 1998		-3.25		-5.94		1.52		-0.22		-1.71

		Aug 1998		-14.44		-10.86		-15.72		-12.26		-21.36

		Sep 1998		1.41		4.69		13.51		12.01		2.68

		Oct 1998		10.82		6.4		6.5		3.85		8.98

		Nov 1998		7.59		2.48		9.14		6.18		6.2

		Dec 1998		4.83		1.62		14.97		5.02		3.6

		Jan 1999		0.4		-1.85		13.22		0.24		1.11

		Feb 1999		-2.75		-2.49		-9.03		0.23		-0.01

		Mar 1999		0.5		5.78		5.78		2.55		2.41

		Apr 1999		2.94		10.37		4.04		-5.54		6.77

		May 1999		-1.6		-1.72		-0.18		-2.05		-3.52

		Jun 1999		4.01		1.82		10.04		4.49		3.24

		Jul 1999		-4.16		-0.43		-1.75		-4.44		-6.06

		Aug 1999		-4.68		0.28		1.71		3.73		-5.12

		Sep 1999		-2.83		-3.28		1		-7.09		-4.39

		Oct 1999		4.62		2.72		4.85		10.78		11.42

		Nov 1999		1.46		-0.91		10.59		1.5		-2.25

		Dec 1999		2.78		6.31		16.58		-5.64		1.43

		Jan 2000		-7.88		-4.61		-4.56		7.56		-4.64

		Feb 2000		-5.17		-4.89		13.27		-2.88		-6.98

		Mar 2000		10.99		8.8		4.64		0.28		14.12

		Apr 2000		-1.93		1.21		-10.14		5.25		-3.41

		May 2000		-0.53		1.4		-10.76		3.94		3.46

		Jun 2000		-1.33		-2.48		11.33		11.52		-2.81

		Jul 2000		-0.05		-0.38		-5.6		-6.16		5.55

		Aug 2000		-1.55		8.27		10.08		3.58		9.08

		Sep 2000		2.27		-0.6		-13.18		3.72		0.36

		Oct 2000		2.02		1.17		-6.02		2.6		-1.07

		Nov 2000		-0.78		-2.27		-21.84		0.79		-5.95

		Dec 2000		5.17		7.21		-7.2		3.53		7.18

		Jan 2001		3.98		-2.87		16.06		-8.94		0.05

		Feb 2001		-3.03		-1.4		-22.62		-0.5		-4.38

		Mar 2001		-3.54		-3.82		-11.68		-8.44		-4.11

		Apr 2001		4.19		8.47		13.98		3.99		5.78

		May 2001		1.83		1.56		-2.86		3.03		3.75

		Jun 2001		-1.63		-5.74		0.43		-2.85		0.03

		Jul 2001		2.72		-1.22		-5.79		2.3		-2.27

		Aug 2001		-4.01		-1.95		-11.72		-3.11		-5.33

		Sep 2001		-7.54		-9.49		-14.33		-0.59		-8.3

		Oct 2001		1.36		3.61		7.69		1.18		-0.58

		Nov 2001		7.35		2.81		13.29		5.04		7.92

		Dec 2001		3.16		3.81		0.25		-2.88		3.3

		Jan 2002		2.47		-0.7		-2.26		-2.36		-2.92

		Feb 2002		1.77		3.69		-10.56		-0.51		-0.52

		Mar 2002		3.05		6.63		4.8		0.46		5.43

		Apr 2002		0.4		-2.1		-12		-7.59		-3.74

		May 2002		-0.13		-1.53		-2.06		-2.23		-0.39

		Jun 2002		-5.6		-2.8		-12.79		-9.6		-5.38

		Jul 2002		-9.57		-10.14		-10.2		-2.55		-6.41

		Aug 2002		2.03		0		-0.55		0.66		1.14

		Sep 2002		-8.82		-8.67		-14.69		-5.86		-10.7

		Oct 2002		4.86		2.96		19.98		5.69		6.38

		Nov 2002		1.27		4.64		14.88		3.7		4.61

		Dec 2002		-4.14		-1.33		-11.92		-4.05		-4.98

		Jan 2003		-4.67		-3.46		-2.06		-0.6		-2.32

		Feb 2003		-2.27		-1.27		-0.92		-1.94		-2.62

		Mar 2003		1.08		1.75		-0.87		3.79		0.75

		Apr 2003		7.61		4.52		9.78		4.32		11.78

		May 2003		5.64		6.72		8.79		3.91		5.3

		Jun 2003		2.65		0.06		0.71		4.11		0.94

		Jul 2003		1.28		0.99		3.59		0.62		3.53

		Aug 2003		4.49		4.39		4.78		-2.53		0.61

		Sep 2003		-2.41		-2.13		-2.12		0.24		0.35

		Oct 2003		7.57		5.59		7.84		0.72		6.42

		Nov 2003		1.95		1.5		1.27		1.63		1.11

		Dec 2003		0.95		8.41		3.39		5.68		4.48

		Jan 2004		0.2		0.08		3.72		3.04		2.72

		Feb 2004		4.91		2.75		-2.4		0.91		2.02

		Mar 2004		-0.04		0.02		-2.51		-3.91		-0.61

		Apr 2004		-0.7		0.04		-3.8		3.57		-3.84

		May 2004		-0.84		1.2		2.82		-0.38		2.08

		Jun 2004		1.13		4.88		2.12		-0.38		1.51

		Jul 2004		-4.75		-1.11		-6.73		-5.87		-2.4

		Aug 2004		-0.49		0.9		-2.96		1.66		1.93

		Sep 2004		0.89		3.9		2.77		-1.41		1.24

		Oct 2004		2.51		0.16		4.6		-2.41		1.22

		Nov 2004		4.24		6.6		5.23		0.66		4.96

		Dec 2004		4.06		1.1		3.47		5.66		4.42

		Jan 2005		-1.17		0.26		-5.58		-4.05		-2.44

		Feb 2005		0.67		8.5		-0.18		2.48		0.22

		Mar 2005		-0.93		-1.76		-1.85		-0.41		-2.4

		Apr 2005		-4.09		-4		-3.9		3.95		-1.64

		May 2005		4.91		2.45		6.15		1.45		3.38

		Jun 2005		0.84		2.29		-1.18		-0.57		1.4

		Jul 2005		4.5		5.42		5.26		3.74		2.44

		Aug 2005		-3.25		1.49		-0.7		-0.33		-1.7

		Sep 2005		-1.21		3.64		0.22		-1.95		1.22

		Oct 2005		-0.13		-6.07		-1.96		-3.25		1.25

		Nov 2005		2.73		2.92		5.66		1.57		4.94

		Dec 2005		-0.44		1.15		-1.77		2.4		0.18

		Jan 2006		1.59		7.41		3.73		2.16		1.54

		Feb 2006		1.21		-2.48		-0.32		1.07		1.09

		Mar 2006		1.99		2.28		2.74		-0.96		1.86

		Apr 2006		-0.51		3.89		-0.53		-1.94		2.24

		May 2006		-0.54		-2.58		-5.42		-2.18		-3.23

		Jun 2006		0.25		1.05		-0.31		-0.14		-0.32

		Jul 2006		-1.3		0.64		-2.4		4.27		-1.11

		Aug 2006		2.46		0.07		5.91		2.29		1.63

		Sep 2006		3.25		-0.71		3.61		1.67		3.36

		Oct 2006		3.5		4.76		4.57		1.65		2.89

		Nov 2006		-0.02		5.2		2.43		0.05		1.74

		Dec 2006		1.48		-0.38		0.34		0.08		3.22

		Jan 2007		2.63		1.16		2.35		3.5		1.09

		Feb 2007		-1.06		0.38		-2.49		-2.8		-2.31

		Mar 2007		1.26		3.55		1.25		-0.21		-0.27

		Apr 2007		3.12		4.65		4.22		6.84		3.39

		May 2007		2.7		5.02		4.56		1.11		3.35

		Jun 2007		-1.21		-0.72		0.04		-3.4		-2.68

		Jul 2007		-4.97		-1.06		-1.78		-4.04		-5.46

		Aug 2007		1.32		0.77		1.74		2.3		0.89

		Sep 2007		1.25		5.97		3.6		3.58		2.68

		Oct 2007		1.53		2.5		4.43		1.44		-0.12

		Nov 2007		-2.16		-2.83		-7.25		0.02		-6.31

		Dec 2007		-1.98		3.36		1.03		-4.07		-3.61

		Jan 2008		-2.75		-8.08		-11.2		-4.55		-1.97

		Feb 2008		-2.98		2.57		-3.73		-0.9		-8.32

		Mar 2008		1.18		-0.95		0.5		-1.79		-1.73

		Apr 2008		2.45		7.41		6.23		0.42		3.64

		May 2008		2.18		3.78		5.27		1.63		-2.43

		Jun 2008		-8.53		-3.02		-9.48		-3.01		-14.83

		Jul 2008		1.41		-8.02		-1.34		6.77		4.33

		Aug 2008		3.66		0.52		2.77		1.79		0.3

		Sep 2008		-4.74		-12.8		-12.58		-5.94		-6.78

		Oct 2008		-14.81		-17.85		-17.78		-10.95		-20.03

		Nov 2008		-7.43		-3.37		-8.95		-7.35		-12.1

		Dec 2008		2.71		-1.07		2.61		6.74		1.38

		Jan 2009		-6.12		-5.29		-5.05		-2.2		-18.34

		Feb 2009		-5.48		-12.71		-5.49		-9.92		-14.02

		Mar 2009		8.51		5.12		10.4		7.05		12.89

		Apr 2009		8.83		9.66		11.92		-0.95		16.36

		May 2009		2.11		7.42		2.79		6.25		7.74

		Jun 2009		0.15		-1.97		3.73		3.54		-1.92

		Jul 2009		7.64		7.76		7.64		5.52		8.91

		Aug 2009		2.48		1.62		2.09		2.2		8.06

		Sep 2009		3.19		5.28		5.47		2.4		3.21

		Oct 2009		-0.26		-0.82		-1.86		-3.68		-5.23

		Nov 2009		4.81		5.36		5.28		8.23		5.76

		Dec 2009		2.43		1.98		5.97		2.45		1.23

		Jan 2010		-1.98		-4.02		-7.63		0		-1.65

		Feb 2010		3.86		3.23		4.37		0.38		3.38

		Mar 2010		6.33		4.74		6.92		3.61		8.43

		Apr 2010		1.53		3.31		2.5		-2.22		2.15

		May 2010		-5.71		-8.88		-7.31		-8.01		-8.82

		Jun 2010		-6.47		-5.19		-5.77		-1.63		-7.65

		Jul 2010		6.44		8.48		7.98		2.15		7.48

		Aug 2010		-3.32		-3.79		-5.54		-1.66		-7.55

		Sep 2010		9.85		8.83		11.41		9.01		8.82

		Oct 2010		3.62		4.33		6.04		2		2.6

		Nov 2010		2.84		2.46		-1.04		-3.34		0.52

		Dec 2010		4.12		7.27		6.18		5.4		9.73

		Jan 2011		-1.31		4.25		3.1		-0.71		1.97

		Feb 2011		2.91		4.88		3.4		3.33		2.66

		Mar 2011		1.89		1.73		-0.86		2.3		-0.87

		Apr 2011		4.36		2.47		3.19		6.38		1.11

		May 2011		0.88		-2.59		-1.15		1.96		-2.38

		Jun 2011		-0.96		-1.27		-2.09		-1.83		-2.06

		Jul 2011		-1.39		-2.04		-1.38		-3.65		-3.76

		Aug 2011		-2.85		-6.7		-6.59		-3.09		-7.59

		Sep 2011		-5.11		-10		-5.1		-3.96		-10.29

		Oct 2011		9.46		13.57		11.01		5.54		13.3

		Nov 2011		0.45		1.45		-1.58		1.27		-1.6

		Dec 2011		1.11		-0.08		-0.48		3.53		1.07

		Jan 2012		3.35		3.1		6.9		3.38		6.76

		Feb 2012		3.72		4.41		6.35		1.23		3.87

		Mar 2012		4.03		-0.67		4.25		3.97		4.76

		Apr 2012		0.27		-0.66		-1.35		0.61		-1.69

		May 2012		-3.31		-7.78		-6.46		-3.28		-7.19

		Jun 2012		2.04		3.23		3.77		6.8		4.75

		Jul 2012		1.24		2.08		0.47		1.65		-1

		Aug 2012		1.82		1.82		3.75		0.97		2.78

		Sep 2012		1.66		2.44		2.29		4.71		3.79

		Oct 2012		-0.78		-0.82		-5.4		-1.88		0.64

		Nov 2012		2.25		0.01		1.46		1.5		-0.02

		Dec 2012		-0.89		1.8		0.45		-0.53		3.42

		Jan 2013		5.22		6.5		3.08		8.07		6.93

		Feb 2013		1.66		1.09		0.94		1.35		1.78

		Mar 2013		4.78		2.88		3.39		6.51		4.02

		Apr 2013		3.17		0.7		1.42		2.59		0.82

		May 2013		1.12		1.51		2.85		1.63		6.05

		Jun 2013		-0.05		-1.71		-1.65		-1.36		-1.16

		Jul 2013		5.06		5.4		5.46		7.88		5.43

		Aug 2013		-3.83		-2.31		-0.79		-3.81		-3.64

		Sep 2013		3.75		3.41		3.94		4.01		3.77

		Oct 2013		4.57		4.4		4.32		3.82		3.76

		Nov 2013		2.66		1.47		2.83		4.5		4.57

		Dec 2013		1.11		2.83		4.09		0.65		3.08

		Jan 2014		-5.94		-4.22		-1.79		1.65		-4.44

		Feb 2014		4.9		5.11		4.71		6.47		3.45

		Mar 2014		0.74		1.42		-0.66		-2.56		2.3

		Apr 2014		0.02		3.01		-0.89		-0.3		-1.6

		May 2014		1.82		0.92		3.56		1.88		1.75

		Jun 2014		1.53		3		2.68		2.86		2.12

		Jul 2014		-3.25		-4.33		0.35		-0.33		-2.18

		Aug 2014		5.3		3.96		3.46		5.43		4.41

		Sep 2014		-1.69		-4.55		-1.39		-0.08		-1.01

		Oct 2014		2.96		0.73		1.33		5.76		3.31

		Nov 2014		6.26		-2.03		3.99		2.67		2.73

		Dec 2014		0.08		0.35		-1.38		-0.88		1.13

		Jan 2015		-0.72		-3.12		-3.63		1.56		-6.19

		Feb 2015		5.57		3.83		8.44		4.31		6.89

		Mar 2015		-0.49		-1.91		-2.4		0.84		-0.77

		Apr 2015		-1.05		1.77		1.77		-1.39		0.48

		May 2015		1.14		-1.16		1.79		4.88		1.73

		Jun 2015		-0.92		-3.06		-2.88		0.08		-0.32

		Jul 2015		4.2		-3.27		2.19		3.66		2.02

		Aug 2015		-5		-4.74		-6.4		-8.35		-6.18

		Sep 2015		-1.51		-3.95		-1.7		-7.29		-3.07

		Oct 2015		5.43		8.68		9.8		7.72		6.51

		Nov 2015		0.29		-0.08		0.57		0.71		1.2

		Dec 2015		0.13		-4.65		-2.59		0.38		-2.67

		Jan 2016		-3.3		-3.45		-5.05		-9.4		-8.23

		Feb 2016		0.51		1.39		-0.51		-1.06		-0.07

		Mar 2016		5.81		8.1		7.91		2.92		7.05

		Apr 2016		-0.13		3.49		-3.06		3.56		2.33

		May 2016		0.74		-0.18		4.09		2.47		0.93

		Jun 2016		1.73		2.65		-0.9		0.14		-2.7

		Jul 2016		2.46		1.21		6.64		6.01		3.52

		Aug 2016		-1		0.37		0.78		-3.21		3.36

		Sep 2016		-1.44		1.05		2.03		0.35		-1.24

		Oct 2016		-2.52		-2.3		-1.46		-7.44		0.61

		Nov 2016		1.53		5.29		1.65		1.38		11.3

		Dec 2016		1.33		1.56		1.62		0.86		2.93

		Jan 2017		1.37		0.69		4.43		2.21		0.98

		Feb 2017		2.99		2.26		3.94		7.1		3.74

		Mar 2017		0.78		-0.18		1.91		-0.16		-1.68

		Apr 2017		1.81		0.32		2.22		1.09		0.24

		May 2017		2		0.32		3.1		-0.43		-0.43

		Jun 2017		-1.18		0.29		-2.13		5.56		4.2

		Jul 2017		-0.1		2.3		4.07		0.53		1.44

		Aug 2017		-1.55		-0.81		1.98		1.78		-0.39

		Sep 2017		1.73		4.68		0.17		1.5		4.31

		Oct 2017		1.66		2.21		4.61		-2.24		2.04

		Nov 2017		5.9		3.14		1.46		2.36		3.77

		Dec 2017		2.02		1.6		0.56		-0.23		1.42

		Jan 2018		6.32		2.55		6.84		6.38		5.9

		Feb 2018		-5.31		-5.94		-1.21		-3.9		-3.31

		Mar 2018		-2.31		0.11		-3.18		-2		-2.65

		Apr 2018		1.07		1.32		-0.48		-0.28		0.44

		May 2018		0.59		2.4		5.76		2.43		1.2

		Jun 2018		3.3		0.12		0.52		1.52		-1.02

		Jul 2018		2.7		3.38		2.36		6.12		3.98

		Aug 2018		4.71		-0.8		6.73		4.46		2.45

		Sep 2018		0.32		1.6		0.02		1.99		-1.22

		Oct 2018		-5.95		-8.81		-7.66		-8.84		-6.6

		Nov 2018		2.06		2.44		-1.03		6.32		3.07

		Dec 2018		-9.86		-9.08		-8.23		-8.4		-10.62
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Figure 1.3.: The monthly returns of the six Fama French factors, plus the risk-free
rate, from Jul 1963 through Dec 2018 are scattered against each other.
In the lower triangle, returns are scattered against each other. Pearson
correlations are given in the upper triangle. On the diagonal, the empirical
distribution of returns are plotted.

correlated. Monthly returns are scattered against each other in Figure 1.5; the smallest
correlation between two portfolios is 0.71.

a
Example 1.2.4 (The VIX). The VIX index is a ‘model-free’ estimate of the volatility
of the market over the next thirty calendar days, constructed from the bid and ask
prices of options on the S&P 500 index, expressed in units of annualized percent. [27]
The daily value of the VIX index is computed by the CBOE, and available from the
aqfb.data package5. [29, 128] This dataset includes the ‘back-computation’ of the VIX 5. Data are

using the post-2004 methodology on data back to 1999. So the following R code gives
access to 7304 day of data, from 1990-01-02 through 2018-12-31:

library(aqfb.data)

data(dvix)

We plot the VIX index in Figure 1.6. The mean value of the VIX index over this
period is approximately 19.3, and the standard deviation is 7.81. The coefficient of
variation of the VIX is thus around 0.41. The median level is around 17.4, indicating

6


		date		VIX

		1990-01-02		17.24

		1990-01-03		18.19

		1990-01-04		19.22

		1990-01-05		20.11

		1990-01-08		20.26

		1990-01-09		22.2

		1990-01-10		22.44

		1990-01-11		20.05

		1990-01-12		24.64

		1990-01-15		26.34

		1990-01-16		24.18

		1990-01-17		24.16

		1990-01-18		24.34

		1990-01-19		22.5

		1990-01-22		26.7

		1990-01-23		24.72

		1990-01-24		25.39

		1990-01-25		25.63

		1990-01-26		26.28

		1990-01-29		26.44

		1990-01-30		27.25

		1990-01-31		25.36

		1990-02-01		24.87

		1990-02-02		24.32

		1990-02-05		24.54

		1990-02-06		24.69

		1990-02-07		24.29

		1990-02-08		23.77

		1990-02-09		23.69

		1990-02-12		24.38

		1990-02-13		23.76

		1990-02-14		22.05

		1990-02-15		19.71

		1990-02-16		20.78

		1990-02-20		22.78

		1990-02-21		23.89

		1990-02-22		22.54

		1990-02-23		23.69

		1990-02-26		23.56

		1990-02-27		22.69

		1990-02-28		21.99

		1990-03-01		21.9

		1990-03-02		21.34

		1990-03-05		22.03

		1990-03-06		20.55

		1990-03-07		19.1

		1990-03-08		19.74

		1990-03-09		20.3

		1990-03-12		20.07

		1990-03-13		21.05

		1990-03-14		19.65

		1990-03-15		18.81

		1990-03-16		17.62

		1990-03-19		18.29

		1990-03-20		19.06

		1990-03-21		20.1

		1990-03-22		22.74

		1990-03-23		20.46

		1990-03-26		19.59

		1990-03-27		21.01

		1990-03-28		19.77

		1990-03-29		18.46

		1990-03-30		19.73

		1990-04-02		22.84

		1990-04-03		20.44

		1990-04-04		22.03

		1990-04-05		21.21

		1990-04-06		21.76

		1990-04-09		22.3

		1990-04-10		21.69

		1990-04-11		17.73

		1990-04-12		19.8

		1990-04-16		20.75

		1990-04-17		20.38

		1990-04-18		22.67

		1990-04-19		22.46

		1990-04-20		23.33

		1990-04-23		24.16

		1990-04-24		21.7

		1990-04-25		20.86

		1990-04-26		20.25

		1990-04-27		22.19

		1990-04-30		19.52

		1990-05-01		18.43

		1990-05-02		19.32

		1990-05-03		17.81

		1990-05-04		17.28

		1990-05-07		17.65

		1990-05-08		18.49

		1990-05-09		18.64

		1990-05-10		18.59

		1990-05-11		19.81

		1990-05-14		20.14

		1990-05-15		19.49

		1990-05-16		17.71

		1990-05-17		17.27

		1990-05-18		17.2

		1990-05-21		16.72

		1990-05-22		17.84

		1990-05-23		17.18

		1990-05-24		17.7

		1990-05-25		17.32

		1990-05-29		18.75

		1990-05-30		17.44

		1990-05-31		17.37

		1990-06-01		17.09

		1990-06-04		18.39

		1990-06-05		18.97

		1990-06-06		17.42

		1990-06-07		16.88

		1990-06-08		17.58

		1990-06-11		16.34

		1990-06-12		16.6

		1990-06-13		17.38

		1990-06-14		17.4

		1990-06-15		15.9

		1990-06-18		17.71

		1990-06-19		15.23

		1990-06-20		15.27

		1990-06-21		14.72

		1990-06-22		19.36

		1990-06-25		17.06

		1990-06-26		16.29

		1990-06-27		16

		1990-06-28		16.18

		1990-06-29		15.5

		1990-07-02		16.26

		1990-07-03		16.11

		1990-07-05		17.25

		1990-07-06		16.41

		1990-07-09		16.66

		1990-07-10		16.92

		1990-07-11		16.68

		1990-07-12		17.06

		1990-07-13		17.09

		1990-07-16		16.75

		1990-07-17		16.66

		1990-07-18		18.9

		1990-07-19		18.56

		1990-07-20		15.63

		1990-07-23		23.68

		1990-07-24		21.79

		1990-07-25		20.19

		1990-07-26		20.26

		1990-07-27		21.12

		1990-07-30		21.16

		1990-07-31		21.11

		1990-08-01		21.64

		1990-08-02		20.43

		1990-08-03		28.74

		1990-08-06		35.91

		1990-08-07		32.75

		1990-08-08		28.27

		1990-08-09		24.39

		1990-08-10		25.75

		1990-08-13		25.74

		1990-08-14		24.18

		1990-08-15		23.31

		1990-08-16		27.16

		1990-08-17		27.53

		1990-08-20		26.46

		1990-08-21		28.9

		1990-08-22		30.55

		1990-08-23		36.47

		1990-08-24		33.93

		1990-08-27		29.63

		1990-08-28		29.12

		1990-08-29		27.38

		1990-08-30		29.89

		1990-08-31		29.9

		1990-09-04		29.58

		1990-09-05		28.52

		1990-09-06		30.19

		1990-09-07		28.73

		1990-09-10		29.34

		1990-09-11		28.38

		1990-09-12		28.12

		1990-09-13		29.33

		1990-09-14		30.56

		1990-09-17		29.55

		1990-09-18		28.82

		1990-09-19		27.88

		1990-09-20		28.66

		1990-09-21		30.04

		1990-09-24		30.56

		1990-09-25		28.81

		1990-09-26		28.19

		1990-09-27		28.67

		1990-09-28		29.11

		1990-10-01		28.06

		1990-10-02		27.28

		1990-10-03		27.9

		1990-10-04		27.51

		1990-10-05		27.85

		1990-10-08		28.04

		1990-10-09		30.71

		1990-10-10		31.19

		1990-10-11		33.98

		1990-10-12		31.94

		1990-10-15		31.64

		1990-10-16		31.45

		1990-10-17		31.37

		1990-10-18		29.6

		1990-10-19		27.86

		1990-10-22		27.27

		1990-10-23		27.57

		1990-10-24		28.28

		1990-10-25		29.04

		1990-10-26		30.75

		1990-10-29		31.54

		1990-10-30		30.52

		1990-10-31		30.04

		1990-11-01		30.25

		1990-11-02		30.03

		1990-11-05		29.85

		1990-11-06		29.11

		1990-11-07		30.87

		1990-11-08		30.79

		1990-11-09		26.96

		1990-11-12		25.6

		1990-11-13		24.58

		1990-11-14		22.89

		1990-11-15		22.57

		1990-11-16		21.34

		1990-11-19		20.95

		1990-11-20		20.09

		1990-11-21		21.09

		1990-11-23		20.98

		1990-11-26		22.76

		1990-11-27		22.86

		1990-11-28		22.96

		1990-11-29		23.91

		1990-11-30		22.16

		1990-12-03		22.29

		1990-12-04		22.03

		1990-12-05		20.94

		1990-12-06		22.62

		1990-12-07		22.59

		1990-12-10		23.58

		1990-12-11		23.75

		1990-12-12		21.28

		1990-12-13		23.05

		1990-12-14		23.85

		1990-12-17		24.85

		1990-12-18		23.11

		1990-12-19		23.08

		1990-12-20		23.13

		1990-12-21		22.66

		1990-12-24		24.03

		1990-12-26		24.18

		1990-12-27		24.81

		1990-12-28		25.05

		1990-12-31		26.38

		1991-01-02		26.62

		1991-01-03		27.93

		1991-01-04		27.19

		1991-01-07		28.95

		1991-01-08		30.38

		1991-01-09		33.3

		1991-01-10		31.33

		1991-01-11		32.63

		1991-01-14		36.2

		1991-01-15		36.16

		1991-01-16		33.2

		1991-01-17		27.45

		1991-01-18		25.39

		1991-01-21		24.33

		1991-01-22		24.9

		1991-01-23		23.92

		1991-01-24		22.86

		1991-01-25		22.2

		1991-01-28		23.05

		1991-01-29		23.17

		1991-01-30		21.37

		1991-01-31		20.91

		1991-02-01		21.04

		1991-02-04		21.86

		1991-02-05		21.46

		1991-02-06		22.68

		1991-02-07		23.6

		1991-02-08		23.38

		1991-02-11		22.56

		1991-02-12		22.26

		1991-02-13		20.86

		1991-02-14		21.48

		1991-02-15		19.57

		1991-02-19		19.84

		1991-02-20		22.26

		1991-02-21		20.78

		1991-02-22		21.01

		1991-02-25		22.86

		1991-02-26		20.38

		1991-02-27		21.26

		1991-02-28		21.23

		1991-03-04		20.86

		1991-03-05		20.45

		1991-03-06		20.55

		1991-03-07		21.05

		1991-03-08		20.81

		1991-03-11		20.88

		1991-03-12		18.82

		1991-03-13		16.09

		1991-03-14		14.94

		1991-03-15		14.9

		1991-03-18		15.79

		1991-03-19		16.11

		1991-03-20		16.04

		1991-03-21		16.86

		1991-03-22		16.49

		1991-03-25		16.76

		1991-03-26		16.31

		1991-03-27		16.55

		1991-03-28		16.88

		1991-04-01		17.42

		1991-04-02		17.4

		1991-04-03		17.61

		1991-04-04		18.01

		1991-04-05		17.63

		1991-04-08		17.41

		1991-04-09		20.12

		1991-04-10		19.73

		1991-04-11		17.24

		1991-04-12		18.45

		1991-04-15		16.5

		1991-04-16		15.82

		1991-04-17		15.47

		1991-04-18		16.26

		1991-04-19		15.68

		1991-04-22		16.78

		1991-04-23		17.02

		1991-04-24		16.72

		1991-04-25		17.15

		1991-04-26		17.27

		1991-04-29		18.27

		1991-04-30		18.24

		1991-05-01		17.77

		1991-05-02		17.52

		1991-05-03		17.24

		1991-05-06		17.92

		1991-05-07		17.46

		1991-05-08		17.78

		1991-05-09		17.17

		1991-05-10		17.54

		1991-05-13		17.66

		1991-05-14		18

		1991-05-15		18.38

		1991-05-16		17.24

		1991-05-17		16.64

		1991-05-20		17.1

		1991-05-21		16.07

		1991-05-22		16.16

		1991-05-23		16.11

		1991-05-24		15.23

		1991-05-28		15.67

		1991-05-29		15.9

		1991-05-30		16.02

		1991-05-31		15.93

		1991-06-03		16.87

		1991-06-04		16.17

		1991-06-05		16.4

		1991-06-06		16.93

		1991-06-07		16.98

		1991-06-10		17.47

		1991-06-11		17.32

		1991-06-12		17.72

		1991-06-13		16.99

		1991-06-14		15.98

		1991-06-17		15.5

		1991-06-18		16.14

		1991-06-19		17.44

		1991-06-20		16.75

		1991-06-21		16.51

		1991-06-24		18.28

		1991-06-25		17.85

		1991-06-26		17.98

		1991-06-27		17.87

		1991-06-28		19.55

		1991-07-01		18.64

		1991-07-02		17.63

		1991-07-03		19.47

		1991-07-05		18.35

		1991-07-08		20.29

		1991-07-09		19.76

		1991-07-10		19.19

		1991-07-11		17.39

		1991-07-12		18.29

		1991-07-15		17.78

		1991-07-16		17.49

		1991-07-17		17.52

		1991-07-18		15.77

		1991-07-19		15.5

		1991-07-22		16.9

		1991-07-23		16.58

		1991-07-24		16.41

		1991-07-25		15.74

		1991-07-26		15.45

		1991-07-29		15.67

		1991-07-30		15.47

		1991-07-31		15.18

		1991-08-01		15.47

		1991-08-02		15.26

		1991-08-05		15.92

		1991-08-06		15.54

		1991-08-07		15.56

		1991-08-08		15.98

		1991-08-09		15.45

		1991-08-12		15.26

		1991-08-13		14.73

		1991-08-14		15.09

		1991-08-15		15.19

		1991-08-16		16.01

		1991-08-19		21.19

		1991-08-20		18.86

		1991-08-21		15.62

		1991-08-22		14.59

		1991-08-23		14.41

		1991-08-26		14.81

		1991-08-27		15.46

		1991-08-28		15.31

		1991-08-29		14.82

		1991-08-30		14.46

		1991-09-03		16.57

		1991-09-04		17.18

		1991-09-05		17.31

		1991-09-06		16.76

		1991-09-09		17.73

		1991-09-10		18.22

		1991-09-11		17.96

		1991-09-12		16.21

		1991-09-13		17.88

		1991-09-16		17.82

		1991-09-17		17.68

		1991-09-18		17.56

		1991-09-19		17.56

		1991-09-20		17.08

		1991-09-23		16.38

		1991-09-24		16.04

		1991-09-25		15.68

		1991-09-26		15.35

		1991-09-27		16.31

		1991-09-30		15.85

		1991-10-01		14.81

		1991-10-02		15.81

		1991-10-03		17.04

		1991-10-04		15.63

		1991-10-07		18.58

		1991-10-08		17.81

		1991-10-09		18.54

		1991-10-10		17.8

		1991-10-11		17.6

		1991-10-14		16.71

		1991-10-15		16.22

		1991-10-16		14.85

		1991-10-17		16.32

		1991-10-18		15.87

		1991-10-21		16.66

		1991-10-22		16.55

		1991-10-23		16.26

		1991-10-24		15.62

		1991-10-25		15.75

		1991-10-28		15.45

		1991-10-29		15.55

		1991-10-30		15.46

		1991-10-31		15.48

		1991-11-01		15.6

		1991-11-04		16.35

		1991-11-05		16.48

		1991-11-06		16.47

		1991-11-07		15.97

		1991-11-08		15.43

		1991-11-11		14.89

		1991-11-12		14.04

		1991-11-13		13.95

		1991-11-14		13.96

		1991-11-15		21.18

		1991-11-18		18.28

		1991-11-19		20.34

		1991-11-20		20.4

		1991-11-21		19.11

		1991-11-22		21.2

		1991-11-25		21.92

		1991-11-26		19.8

		1991-11-27		19.84

		1991-11-29		20.26

		1991-12-02		20.18

		1991-12-03		19.7

		1991-12-04		19.54

		1991-12-05		20.19

		1991-12-06		19.04

		1991-12-09		19.74

		1991-12-10		19.89

		1991-12-11		20.57

		1991-12-12		19.08

		1991-12-13		17.88

		1991-12-16		17.62

		1991-12-17		18.12

		1991-12-18		17.78

		1991-12-19		17.96

		1991-12-20		17.65

		1991-12-23		16.61

		1991-12-24		15.67

		1991-12-26		15.44

		1991-12-27		15.7

		1991-12-30		17.63

		1991-12-31		19.31

		1992-01-02		18.95

		1992-01-03		18.75

		1992-01-06		18.96

		1992-01-07		19.23

		1992-01-08		18.72

		1992-01-09		18.96

		1992-01-10		18.45

		1992-01-13		18.01

		1992-01-14		17.01

		1992-01-15		17.39

		1992-01-16		17.64

		1992-01-17		16.32

		1992-01-20		16.42

		1992-01-21		17.92

		1992-01-22		16.75

		1992-01-23		16.46

		1992-01-24		16.24

		1992-01-27		16.67

		1992-01-28		17.67

		1992-01-29		17.62

		1992-01-30		17.49

		1992-01-31		17.4

		1992-02-03		18.2

		1992-02-04		17.96

		1992-02-05		18.22

		1992-02-06		18.79

		1992-02-07		18.51

		1992-02-10		18.56

		1992-02-11		17.7

		1992-02-12		17.37

		1992-02-13		17.45

		1992-02-14		17.03

		1992-02-18		18.22

		1992-02-19		17.16

		1992-02-20		16.72

		1992-02-21		16.87

		1992-02-24		17.13

		1992-02-25		16.35

		1992-02-26		16.64

		1992-02-27		16.51

		1992-02-28		16.68

		1992-03-02		16.88

		1992-03-03		17.26

		1992-03-04		17.89

		1992-03-05		18.47

		1992-03-06		19.75

		1992-03-09		19.68

		1992-03-10		18.68

		1992-03-11		19.79

		1992-03-12		19.72

		1992-03-13		18.35

		1992-03-16		18.46

		1992-03-17		16.79

		1992-03-18		16.69

		1992-03-19		16.52

		1992-03-20		16.82

		1992-03-23		16.73

		1992-03-24		16.32

		1992-03-25		16.19

		1992-03-26		16.29

		1992-03-27		16.02

		1992-03-30		15.97

		1992-03-31		16.18

		1992-04-01		16.48

		1992-04-02		17.06

		1992-04-03		16.72

		1992-04-06		16.72

		1992-04-07		18.81

		1992-04-08		20.15

		1992-04-09		17.89

		1992-04-10		16.85

		1992-04-13		16.99

		1992-04-14		15.98

		1992-04-15		15.15

		1992-04-16		14.85

		1992-04-20		15.93

		1992-04-21		16.53

		1992-04-22		15.96

		1992-04-23		15.83

		1992-04-24		15.71

		1992-04-27		16.49

		1992-04-28		16.24

		1992-04-29		15.95

		1992-04-30		15.53

		1992-05-01		16.61

		1992-05-04		16.92

		1992-05-05		16.66

		1992-05-06		16.81

		1992-05-07		16.54

		1992-05-08		15.65

		1992-05-11		15.17

		1992-05-12		15.68

		1992-05-13		15.19

		1992-05-14		15.49

		1992-05-15		14.82

		1992-05-18		14.62

		1992-05-19		13.57

		1992-05-20		13.62

		1992-05-21		13.92

		1992-05-22		13.73

		1992-05-26		14.92

		1992-05-27		13.99

		1992-05-28		13.77

		1992-05-29		13.86

		1992-06-01		14.43

		1992-06-02		14.57

		1992-06-03		14.35

		1992-06-04		13.66

		1992-06-05		14.65

		1992-06-08		15.19

		1992-06-09		15.97

		1992-06-10		16.62

		1992-06-11		16.29

		1992-06-12		14.95

		1992-06-15		14.76

		1992-06-16		15.22

		1992-06-17		18.08

		1992-06-18		18.2

		1992-06-19		16.31

		1992-06-22		16.66

		1992-06-23		14.53

		1992-06-24		14.4

		1992-06-25		14.4

		1992-06-26		14.67

		1992-06-29		13.21

		1992-06-30		13.35

		1992-07-01		13.34

		1992-07-02		13.88

		1992-07-06		14.87

		1992-07-07		15.83

		1992-07-08		15.53

		1992-07-09		14.6

		1992-07-10		13.7

		1992-07-13		14.01

		1992-07-14		13.5

		1992-07-15		12.52

		1992-07-16		12.27

		1992-07-17		12.6

		1992-07-20		12.66

		1992-07-21		12.6

		1992-07-22		13.57

		1992-07-23		13.33

		1992-07-24		13.37

		1992-07-27		13.9

		1992-07-28		13.05

		1992-07-29		13.44

		1992-07-30		13.5

		1992-07-31		13.17

		1992-08-03		13.83

		1992-08-04		13.58

		1992-08-05		13.82

		1992-08-06		14.23

		1992-08-07		13.94

		1992-08-10		14.51

		1992-08-11		15.09

		1992-08-12		14.88

		1992-08-13		15.34

		1992-08-14		14.66

		1992-08-17		14.61

		1992-08-18		13.84

		1992-08-19		14.35

		1992-08-20		14.48

		1992-08-21		15.01

		1992-08-24		16.19

		1992-08-25		15.62

		1992-08-26		14.5

		1992-08-27		13.66

		1992-08-28		13.14

		1992-08-31		13.58

		1992-09-01		13.4

		1992-09-02		12.73

		1992-09-03		12.88

		1992-09-04		12.98

		1992-09-08		13.65

		1992-09-09		13.36

		1992-09-10		12.92

		1992-09-11		12.47

		1992-09-14		13

		1992-09-15		13.63

		1992-09-16		14.72

		1992-09-17		14.31

		1992-09-18		13.74

		1992-09-21		13.45

		1992-09-22		13.88

		1992-09-23		13.83

		1992-09-24		13.44

		1992-09-25		14.8

		1992-09-28		15.19

		1992-09-29		14.97

		1992-09-30		14.28

		1992-10-01		16.31

		1992-10-02		17.79

		1992-10-05		20.01

		1992-10-06		19.95

		1992-10-07		21.02

		1992-10-08		19.26

		1992-10-09		20.51

		1992-10-12		19.49

		1992-10-13		17.9

		1992-10-14		18.42

		1992-10-15		17.11

		1992-10-16		17.01

		1992-10-19		17.31

		1992-10-20		16.87

		1992-10-21		16.62

		1992-10-22		15.84

		1992-10-23		16.46

		1992-10-26		16.32

		1992-10-27		16.24

		1992-10-28		15.95

		1992-10-29		15.47

		1992-10-30		16.15

		1992-11-02		16.67

		1992-11-03		17.33

		1992-11-04		16.28

		1992-11-05		15.38

		1992-11-06		14.69

		1992-11-09		14.23

		1992-11-10		14.37

		1992-11-11		13.99

		1992-11-12		14.37

		1992-11-13		14.61

		1992-11-16		14.86

		1992-11-17		15.01

		1992-11-18		14.55

		1992-11-19		14.33

		1992-11-20		13.67

		1992-11-23		13.4

		1992-11-24		12.66

		1992-11-25		12.5

		1992-11-27		12.58

		1992-11-30		13.01

		1992-12-01		12.8

		1992-12-02		12.56

		1992-12-03		12.03

		1992-12-04		11.81

		1992-12-07		12

		1992-12-08		11.73

		1992-12-09		12.58

		1992-12-10		12.75

		1992-12-11		12.34

		1992-12-14		12.66

		1992-12-15		12.41

		1992-12-16		12.58

		1992-12-17		12.14

		1992-12-18		11.66

		1992-12-21		11.65

		1992-12-22		11.75

		1992-12-23		11.51

		1992-12-24		11.57

		1992-12-28		12.22

		1992-12-29		12.29

		1992-12-30		12.6

		1992-12-31		12.57

		1993-01-04		13.36

		1993-01-05		13.35

		1993-01-06		13.37

		1993-01-07		14.72

		1993-01-08		13.77

		1993-01-11		12.86

		1993-01-12		12.78

		1993-01-13		12.42

		1993-01-14		11.99

		1993-01-15		11.57

		1993-01-18		11.49

		1993-01-19		12.06

		1993-01-20		12.15

		1993-01-21		11.69

		1993-01-22		11.3

		1993-01-25		11.38

		1993-01-26		11.45

		1993-01-27		12.01

		1993-01-28		12.04

		1993-01-29		12.42

		1993-02-01		12.33

		1993-02-02		12.25

		1993-02-03		12.12

		1993-02-04		12.29

		1993-02-05		12.9

		1993-02-08		13.22

		1993-02-09		13.48

		1993-02-10		13.43

		1993-02-11		12.69

		1993-02-12		12.38

		1993-02-16		15.76

		1993-02-17		15.9

		1993-02-18		15.56

		1993-02-19		15.02

		1993-02-22		14.7

		1993-02-23		15.04

		1993-02-24		14.72

		1993-02-25		13.76

		1993-02-26		13.16

		1993-03-01		13.6

		1993-03-02		12.49

		1993-03-03		13.13

		1993-03-04		13.44

		1993-03-05		14.08

		1993-03-08		16.22

		1993-03-09		14.17

		1993-03-10		13.91

		1993-03-11		14.26

		1993-03-12		15.66

		1993-03-15		14.74

		1993-03-16		14.51

		1993-03-17		14.53

		1993-03-18		14.17

		1993-03-19		13.23

		1993-03-22		13.66

		1993-03-23		13.02

		1993-03-24		12.44

		1993-03-25		12.08

		1993-03-26		12.21

		1993-03-29		12.63

		1993-03-30		12.23

		1993-03-31		12.53

		1993-04-01		13.02

		1993-04-02		14.5

		1993-04-05		14.12

		1993-04-06		14.24

		1993-04-07		13.64

		1993-04-08		12.83

		1993-04-12		11.93

		1993-04-13		11.7

		1993-04-14		11.76

		1993-04-15		10.96

		1993-04-16		11.29

		1993-04-19		12.06

		1993-04-20		11.94

		1993-04-21		12.11

		1993-04-22		12.68

		1993-04-23		13.36

		1993-04-26		15.25

		1993-04-27		13.93

		1993-04-28		13.12

		1993-04-29		12.8

		1993-04-30		12.42

		1993-05-03		12.9

		1993-05-04		12.14

		1993-05-05		12.38

		1993-05-06		13.22

		1993-05-07		13.01

		1993-05-10		13.72

		1993-05-11		13.35

		1993-05-12		13.56

		1993-05-13		14.76

		1993-05-14		14.39

		1993-05-17		14.13

		1993-05-18		14.19

		1993-05-19		14.29

		1993-05-20		13.98

		1993-05-21		14.51

		1993-05-24		14.1

		1993-05-25		14.04

		1993-05-26		12.88

		1993-05-27		13.1

		1993-05-28		13.47

		1993-06-01		13.67

		1993-06-02		13.48

		1993-06-03		13.54

		1993-06-04		12.86

		1993-06-07		14.07

		1993-06-08		14.74

		1993-06-09		13.96

		1993-06-10		13.31

		1993-06-11		12.71

		1993-06-14		12.33

		1993-06-15		11.99

		1993-06-16		11.87

		1993-06-17		11.66

		1993-06-18		12.24

		1993-06-21		12.25

		1993-06-22		11.65

		1993-06-23		12.04

		1993-06-24		12.25

		1993-06-25		11.25

		1993-06-28		11.11

		1993-06-29		11.29

		1993-06-30		11.26

		1993-07-01		11.51

		1993-07-02		11.33

		1993-07-06		13.87

		1993-07-07		13.05

		1993-07-08		12.24

		1993-07-09		10.8

		1993-07-12		10.85

		1993-07-13		11.02

		1993-07-14		10.78

		1993-07-15		10.6

		1993-07-16		10.96

		1993-07-19		11.46

		1993-07-20		11.05

		1993-07-21		11.97

		1993-07-22		11.69

		1993-07-23		11.32

		1993-07-26		11.32

		1993-07-27		11.34

		1993-07-28		11.37

		1993-07-29		11.25

		1993-07-30		11.73

		1993-08-02		11.47

		1993-08-03		11.49

		1993-08-04		11.71

		1993-08-05		12.03

		1993-08-06		12.33

		1993-08-09		12.39

		1993-08-10		12.31

		1993-08-11		12.07

		1993-08-12		12.38

		1993-08-13		12.19

		1993-08-16		12.01

		1993-08-17		11.59

		1993-08-18		11.52

		1993-08-19		11.63

		1993-08-20		11.62

		1993-08-23		12.15

		1993-08-24		11.8

		1993-08-25		12.1

		1993-08-26		12.14

		1993-08-27		11.91

		1993-08-30		11.74

		1993-08-31		11.85

		1993-09-01		11.48

		1993-09-02		11.87

		1993-09-03		11.16

		1993-09-07		12.9

		1993-09-08		13.24

		1993-09-09		12.67

		1993-09-10		11.7

		1993-09-13		12.16

		1993-09-14		13.15

		1993-09-15		12.7

		1993-09-16		13.36

		1993-09-17		13.39

		1993-09-20		14.6

		1993-09-21		17.3

		1993-09-22		13.75

		1993-09-23		13.36

		1993-09-24		12.47

		1993-09-27		12.49

		1993-09-28		12.19

		1993-09-29		12.63

		1993-09-30		12.99

		1993-10-01		11.83

		1993-10-04		12.85

		1993-10-05		12.97

		1993-10-06		12.68

		1993-10-07		13.14

		1993-10-08		12.04

		1993-10-11		12.26

		1993-10-12		12.41

		1993-10-13		11.38

		1993-10-14		11

		1993-10-15		10.87

		1993-10-18		11.33

		1993-10-19		11.61

		1993-10-20		11.32

		1993-10-21		11.2

		1993-10-22		11.48

		1993-10-25		11.83

		1993-10-26		11.83

		1993-10-27		12.01

		1993-10-28		11.88

		1993-10-29		11.46

		1993-11-01		11.78

		1993-11-02		11.74

		1993-11-03		13.26

		1993-11-04		14.68

		1993-11-05		14.97

		1993-11-08		14.31

		1993-11-09		13.94

		1993-11-10		13.72

		1993-11-11		13.88

		1993-11-12		13.33

		1993-11-15		14.46

		1993-11-16		15.11

		1993-11-17		15.57

		1993-11-18		14.65

		1993-11-19		15.03

		1993-11-22		15.9

		1993-11-23		14.27

		1993-11-24		13.51

		1993-11-26		13.77

		1993-11-29		14.12

		1993-11-30		13.76

		1993-12-01		13.83

		1993-12-02		13.51

		1993-12-03		12.69

		1993-12-06		12.84

		1993-12-07		12.41

		1993-12-08		12.46

		1993-12-09		12.43

		1993-12-10		12.6

		1993-12-13		10.98

		1993-12-14		11.13

		1993-12-15		11.03

		1993-12-16		10.9

		1993-12-17		11.08

		1993-12-20		10.75

		1993-12-21		10.08

		1993-12-22		9.31

		1993-12-23		9.48

		1993-12-27		9.7

		1993-12-28		9.82

		1993-12-29		10.46

		1993-12-30		10.69

		1993-12-31		11.66

		1994-01-03		12.57

		1994-01-04		11.91

		1994-01-05		10.94

		1994-01-06		11.27

		1994-01-07		10.96

		1994-01-10		10.74

		1994-01-11		11.29

		1994-01-12		11.65

		1994-01-13		12.08

		1994-01-14		11.15

		1994-01-17		11.88

		1994-01-18		11.63

		1994-01-19		11.76

		1994-01-20		11.16

		1994-01-21		11.09

		1994-01-24		11.6

		1994-01-25		11.38

		1994-01-26		11.17

		1994-01-27		10.3

		1994-01-28		9.94

		1994-01-31		10.63

		1994-02-01		10.65

		1994-02-02		10.61

		1994-02-03		10.75

		1994-02-04		15.25

		1994-02-07		13.96

		1994-02-08		13.66

		1994-02-09		13.3

		1994-02-10		14.24

		1994-02-11		14.46

		1994-02-14		14.28

		1994-02-15		13.4

		1994-02-16		13.13

		1994-02-17		13.79

		1994-02-18		14.7

		1994-02-22		13.52

		1994-02-23		13.91

		1994-02-24		15.96

		1994-02-25		14.8

		1994-02-28		14.87

		1994-03-01		15.83

		1994-03-02		16.08

		1994-03-03		16.36

		1994-03-04		16

		1994-03-07		14.26

		1994-03-08		16.23

		1994-03-09		14.41

		1994-03-10		16.55

		1994-03-11		14.87

		1994-03-14		16.61

		1994-03-15		14.78

		1994-03-16		14.51

		1994-03-17		12.76

		1994-03-18		13.32

		1994-03-21		14.34

		1994-03-22		13.39

		1994-03-23		12.31

		1994-03-24		13.43

		1994-03-25		13.67

		1994-03-28		14.9

		1994-03-29		16.49

		1994-03-30		18.59

		1994-03-31		20.45

		1994-04-04		23.87

		1994-04-05		18.13

		1994-04-06		17.38

		1994-04-07		16.98

		1994-04-08		16.92

		1994-04-11		16.61

		1994-04-12		16.42

		1994-04-13		17.02

		1994-04-14		16.27

		1994-04-15		15.98

		1994-04-18		17.22

		1994-04-19		16.93

		1994-04-20		17.01

		1994-04-21		14.93

		1994-04-22		14.94

		1994-04-25		14.26

		1994-04-26		13.8

		1994-04-28		14.51

		1994-04-29		13.77

		1994-05-02		14.11

		1994-05-03		13.81

		1994-05-04		14.29

		1994-05-05		14.56

		1994-05-06		15.08

		1994-05-09		16.16

		1994-05-10		15.19

		1994-05-11		15.55

		1994-05-12		15.46

		1994-05-13		14.54

		1994-05-16		14.67

		1994-05-17		14.08

		1994-05-18		12.55

		1994-05-19		12.33

		1994-05-20		12.79

		1994-05-23		13.49

		1994-05-24		12.73

		1994-05-25		12.43

		1994-05-26		12.5

		1994-05-27		12.49

		1994-05-31		13.03

		1994-06-01		12.72

		1994-06-02		12.73

		1994-06-03		12.19

		1994-06-06		13.03

		1994-06-07		13.05

		1994-06-08		13.32

		1994-06-09		13.21

		1994-06-10		12.69

		1994-06-13		11.92

		1994-06-14		11.6

		1994-06-15		11.52

		1994-06-16		11.22

		1994-06-17		12.31

		1994-06-20		13.96

		1994-06-21		14.7

		1994-06-22		14.02

		1994-06-23		14.12

		1994-06-24		16.72

		1994-06-27		15.53

		1994-06-28		15.04

		1994-06-29		14.42

		1994-06-30		14.97

		1994-07-01		14.36

		1994-07-05		14.92

		1994-07-06		14.7

		1994-07-07		14.01

		1994-07-08		13.26

		1994-07-11		13.83

		1994-07-12		13.4

		1994-07-13		12.42

		1994-07-14		11.64

		1994-07-15		11.28

		1994-07-18		11.44

		1994-07-19		11.65

		1994-07-20		11.7

		1994-07-21		11.65

		1994-07-22		11.22

		1994-07-25		11.46

		1994-07-26		11.66

		1994-07-27		11.93

		1994-07-28		12.03

		1994-07-29		11.13

		1994-08-01		11.17

		1994-08-02		11.27

		1994-08-03		11.35

		1994-08-04		12.18

		1994-08-05		12.34

		1994-08-08		12.41

		1994-08-09		12.54

		1994-08-10		11.91

		1994-08-11		12.13

		1994-08-12		11.09

		1994-08-15		12.06

		1994-08-16		11.39

		1994-08-17		11.54

		1994-08-18		12.07

		1994-08-19		12.83

		1994-08-22		12.62

		1994-08-23		11.75

		1994-08-24		11.57

		1994-08-25		12.02

		1994-08-26		12.19

		1994-08-29		11.82

		1994-08-30		11.23

		1994-08-31		11.97

		1994-09-01		11.86

		1994-09-02		11.4

		1994-09-06		11.69

		1994-09-07		11.81

		1994-09-08		11.86

		1994-09-09		13.12

		1994-09-12		14.01

		1994-09-13		13.77

		1994-09-14		13.09

		1994-09-15		11.88

		1994-09-16		12.8

		1994-09-19		13.06

		1994-09-20		14.45

		1994-09-21		14.49

		1994-09-22		13.89

		1994-09-23		14.53

		1994-09-26		14.56

		1994-09-27		14.13

		1994-09-28		13.25

		1994-09-29		13.97

		1994-09-30		14.28

		1994-10-03		15.44

		1994-10-04		16.66

		1994-10-05		15.92

		1994-10-06		16.24

		1994-10-07		14.92

		1994-10-10		14.72

		1994-10-11		13.55

		1994-10-12		14.51

		1994-10-13		14.9

		1994-10-14		13.32

		1994-10-17		14.76

		1994-10-18		14.59

		1994-10-19		15.13

		1994-10-20		15.99

		1994-10-21		15.91

		1994-10-24		16.97

		1994-10-25		16.13

		1994-10-26		15.7

		1994-10-27		15.67

		1994-10-28		14.56

		1994-10-31		14.56

		1994-11-01		14.84

		1994-11-02		15.34

		1994-11-03		15.58

		1994-11-04		16.75

		1994-11-07		17.37

		1994-11-08		16.3

		1994-11-09		16.42

		1994-11-10		16

		1994-11-11		16.5

		1994-11-14		16.68

		1994-11-15		16.66

		1994-11-16		15.56

		1994-11-17		15.91

		1994-11-18		16

		1994-11-21		16.13

		1994-11-22		17.24

		1994-11-23		18.41

		1994-11-25		17.44

		1994-11-28		16.83

		1994-11-29		16.15

		1994-11-30		15.95

		1994-12-01		16.69

		1994-12-02		16.55

		1994-12-05		16.1

		1994-12-06		16.05

		1994-12-07		16.28

		1994-12-08		18.15

		1994-12-09		16.04

		1994-12-12		15.46

		1994-12-13		14.48

		1994-12-14		13.03

		1994-12-15		12.87

		1994-12-16		12.79

		1994-12-19		13.02

		1994-12-20		12.98

		1994-12-21		12.05

		1994-12-22		12.42

		1994-12-23		11.82

		1994-12-27		12.07

		1994-12-28		12.81

		1994-12-29		12.86

		1994-12-30		13.2

		1995-01-03		14.25

		1995-01-04		13.53

		1995-01-05		13.5

		1995-01-06		13.13

		1995-01-09		13.33

		1995-01-10		12.52

		1995-01-11		12.15

		1995-01-12		12.83

		1995-01-13		11.1

		1995-01-16		11.14

		1995-01-17		11.79

		1995-01-18		11.57

		1995-01-19		11.86

		1995-01-20		12.15

		1995-01-23		12.79

		1995-01-24		11.94

		1995-01-25		11.46

		1995-01-26		11.25

		1995-01-27		11.25

		1995-01-30		12.26

		1995-01-31		11.96

		1995-02-01		11.73

		1995-02-02		11.13

		1995-02-03		10.98

		1995-02-06		11.22

		1995-02-07		11.17

		1995-02-08		11.42

		1995-02-09		11.63

		1995-02-10		11.28

		1995-02-13		11.41

		1995-02-14		11.43

		1995-02-15		11.52

		1995-02-16		11.61

		1995-02-17		11.71

		1995-02-21		12.05

		1995-02-22		11.39

		1995-02-23		11.15

		1995-02-24		10.84

		1995-02-27		12.51

		1995-02-28		11.75

		1995-03-01		11.65

		1995-03-02		12.02

		1995-03-03		11.45

		1995-03-06		12.17

		1995-03-07		14.22

		1995-03-08		13.72

		1995-03-09		13.36

		1995-03-10		12.38

		1995-03-13		12.15

		1995-03-14		12.1

		1995-03-15		12.42

		1995-03-16		11.95

		1995-03-17		11.8

		1995-03-20		11.34

		1995-03-21		11.53

		1995-03-22		11.29

		1995-03-23		11.43

		1995-03-24		11.19

		1995-03-27		11.83

		1995-03-28		11.33

		1995-03-29		12.51

		1995-03-30		12.62

		1995-03-31		13.37

		1995-04-03		13.5

		1995-04-04		12.62

		1995-04-05		12.96

		1995-04-06		12.81

		1995-04-07		12.85

		1995-04-10		12.79

		1995-04-11		12.73

		1995-04-12		12.04

		1995-04-13		11.48

		1995-04-17		12.33

		1995-04-18		12.96

		1995-04-19		13.09

		1995-04-20		12.1

		1995-04-21		11.86

		1995-04-24		11.92

		1995-04-25		12.41

		1995-04-26		12.28

		1995-04-27		11.93

		1995-04-28		11.75

		1995-05-01		12.14

		1995-05-02		11.88

		1995-05-03		11.69

		1995-05-04		12.64

		1995-05-05		12.06

		1995-05-08		12.22

		1995-05-09		12.75

		1995-05-10		13.08

		1995-05-11		12.98

		1995-05-12		11.84

		1995-05-15		12.38

		1995-05-16		12.2

		1995-05-17		12.36

		1995-05-18		13.13

		1995-05-19		12.81

		1995-05-22		11.68

		1995-05-23		11.55

		1995-05-24		11.26

		1995-05-25		11.63

		1995-05-26		12.2

		1995-05-30		12.52

		1995-05-31		12.85

		1995-06-01		12.21

		1995-06-02		12.98

		1995-06-05		13.45

		1995-06-06		13

		1995-06-07		12.84

		1995-06-08		12.89

		1995-06-09		12.76

		1995-06-12		11.91

		1995-06-13		11.29

		1995-06-14		11.29

		1995-06-15		11.23

		1995-06-16		10.75

		1995-06-19		11.21

		1995-06-20		11.16

		1995-06-21		11.32

		1995-06-22		11.44

		1995-06-23		11.12

		1995-06-26		11.8

		1995-06-27		12.37

		1995-06-28		11.74

		1995-06-29		11.59

		1995-06-30		11.38

		1995-07-03		11.57

		1995-07-05		12.1

		1995-07-06		11.52

		1995-07-07		11.77

		1995-07-10		12.19

		1995-07-11		12.25

		1995-07-12		12.31

		1995-07-13		12.56

		1995-07-14		12.08

		1995-07-17		12.26

		1995-07-18		12.68

		1995-07-19		13.49

		1995-07-20		12.78

		1995-07-21		12.37

		1995-07-24		12.55

		1995-07-25		12.77

		1995-07-26		13.18

		1995-07-27		13.18

		1995-07-28		13.18

		1995-07-31		13.49

		1995-08-01		13.56

		1995-08-02		13.66

		1995-08-03		13.78

		1995-08-04		13.21

		1995-08-07		13.1

		1995-08-08		13.06

		1995-08-09		12.75

		1995-08-10		13

		1995-08-11		12.9

		1995-08-14		13.24

		1995-08-15		12.35

		1995-08-16		12.45

		1995-08-17		12.13

		1995-08-18		12.03

		1995-08-21		13.42

		1995-08-22		12.6

		1995-08-23		13.17

		1995-08-24		12.94

		1995-08-25		12.33

		1995-08-28		12.48

		1995-08-29		12.65

		1995-08-30		12.03

		1995-08-31		11.52

		1995-09-01		11.29

		1995-09-05		11.65

		1995-09-06		11.65

		1995-09-07		11.85

		1995-09-08		11.16

		1995-09-11		11.51

		1995-09-12		11.46

		1995-09-13		11.35

		1995-09-14		11.1

		1995-09-15		11.58

		1995-09-18		12.34

		1995-09-19		12.67

		1995-09-20		12.35

		1995-09-21		12.5

		1995-09-22		12.46

		1995-09-25		13.22

		1995-09-26		12.9

		1995-09-27		12.9

		1995-09-28		12.46

		1995-09-29		12.74

		1995-10-02		13.95

		1995-10-03		14.5

		1995-10-04		14.86

		1995-10-05		15.74

		1995-10-06		13.98

		1995-10-09		14.85

		1995-10-10		14.97

		1995-10-11		14.57

		1995-10-12		14.24

		1995-10-13		13.67

		1995-10-16		14.62

		1995-10-17		14.03

		1995-10-18		14.05

		1995-10-19		13.55

		1995-10-20		13.46

		1995-10-23		14.17

		1995-10-24		13.85

		1995-10-25		14.49

		1995-10-26		15.59

		1995-10-27		14.63

		1995-10-30		14.26

		1995-10-31		13.83

		1995-11-01		13.41

		1995-11-02		13.19

		1995-11-03		12.26

		1995-11-06		12.74

		1995-11-07		13.05

		1995-11-08		12.16

		1995-11-09		12.46

		1995-11-10		12.97

		1995-11-13		13.2

		1995-11-14		13.38

		1995-11-15		12.95

		1995-11-16		12.57

		1995-11-17		12.49

		1995-11-20		12.37

		1995-11-21		11.74

		1995-11-22		11.81

		1995-11-24		11.87

		1995-11-27		12.43

		1995-11-28		11.57

		1995-11-29		11.65

		1995-11-30		11.58

		1995-12-01		11.11

		1995-12-04		10.66

		1995-12-05		11.65

		1995-12-06		12.7

		1995-12-07		12.74

		1995-12-08		11.12

		1995-12-11		11.06

		1995-12-12		10.63

		1995-12-13		10.36

		1995-12-14		11.07

		1995-12-15		11.44

		1995-12-18		14.55

		1995-12-19		13.16

		1995-12-20		12.2

		1995-12-21		10.77

		1995-12-22		11.51

		1995-12-26		11.49

		1995-12-27		11.98

		1995-12-28		12.25

		1995-12-29		12.52

		1996-01-02		12.19

		1996-01-03		12.1

		1996-01-04		13.78

		1996-01-05		13.58

		1996-01-08		13.11

		1996-01-09		15.21

		1996-01-10		16.4

		1996-01-11		14.69

		1996-01-12		14.23

		1996-01-15		14.99

		1996-01-16		14.09

		1996-01-17		14.25

		1996-01-18		13.58

		1996-01-19		12.7

		1996-01-22		13.34

		1996-01-23		13.56

		1996-01-24		12.54

		1996-01-25		12.94

		1996-01-26		12

		1996-01-29		12.19

		1996-01-30		12.42

		1996-01-31		12.53

		1996-02-01		12.65

		1996-02-02		13.23

		1996-02-05		13.46

		1996-02-06		14.59

		1996-02-07		14.11

		1996-02-08		13.89

		1996-02-09		14.63

		1996-02-12		14.69

		1996-02-13		14.94

		1996-02-14		15.59

		1996-02-15		16.13

		1996-02-16		15.37

		1996-02-20		16.8

		1996-02-21		14.47

		1996-02-22		14.56

		1996-02-23		14.78

		1996-02-26		16.38

		1996-02-27		16.63

		1996-02-28		16.72

		1996-02-29		17.04

		1996-03-01		16.72

		1996-03-04		16.67

		1996-03-05		16.1

		1996-03-06		16.56

		1996-03-07		16.49

		1996-03-08		20.7

		1996-03-11		19.4

		1996-03-12		19.09

		1996-03-13		18.13

		1996-03-14		16.93

		1996-03-15		16.54

		1996-03-18		17.31

		1996-03-19		18.35

		1996-03-20		18.66

		1996-03-21		17.74

		1996-03-22		17.05

		1996-03-25		17.84

		1996-03-26		17.8

		1996-03-27		17.89

		1996-03-28		18.16

		1996-03-29		18.88

		1996-04-01		17.9

		1996-04-02		16.45

		1996-04-03		16.33

		1996-04-04		16.18

		1996-04-08		18.72

		1996-04-09		17.32

		1996-04-10		20.22

		1996-04-11		19.65

		1996-04-12		17.38

		1996-04-15		16.83

		1996-04-16		16.45

		1996-04-17		17.07

		1996-04-18		16.41

		1996-04-19		15.12

		1996-04-22		15.38

		1996-04-23		15.01

		1996-04-24		14.91

		1996-04-25		14.72

		1996-04-26		14.75

		1996-04-29		15.45

		1996-04-30		15.83

		1996-05-01		16.07

		1996-05-02		18.62

		1996-05-03		16.7

		1996-05-06		16.92

		1996-05-07		16.87

		1996-05-08		15.78

		1996-05-09		16.99

		1996-05-10		15.61

		1996-05-13		15.16

		1996-05-14		14.9

		1996-05-15		15.59

		1996-05-16		15.71

		1996-05-17		15.13

		1996-05-20		15.8

		1996-05-21		16

		1996-05-22		15.5

		1996-05-23		16.17

		1996-05-24		15.54

		1996-05-28		16.92

		1996-05-29		17.15

		1996-05-30		16.02

		1996-05-31		16.07

		1996-06-03		16.86

		1996-06-04		16.18

		1996-06-05		16.04

		1996-06-06		16.84

		1996-06-07		16.1

		1996-06-10		16.78

		1996-06-11		16.68

		1996-06-12		17

		1996-06-13		17.12

		1996-06-14		18.64

		1996-06-17		17.46

		1996-06-18		17.45

		1996-06-19		17.54

		1996-06-20		16.97

		1996-06-21		15.8

		1996-06-24		15.91

		1996-06-25		15.43

		1996-06-26		15.23

		1996-06-27		14.19

		1996-06-28		13.68

		1996-07-01		13.78

		1996-07-02		14.19

		1996-07-03		14.21

		1996-07-05		16.09

		1996-07-08		16.42

		1996-07-09		15.49

		1996-07-10		15.51

		1996-07-11		17.81

		1996-07-12		17.09

		1996-07-15		20.11

		1996-07-16		20.1

		1996-07-17		19.22

		1996-07-18		17.93

		1996-07-19		17.26

		1996-07-22		20.41

		1996-07-23		21.55

		1996-07-24		21.44

		1996-07-25		19.39

		1996-07-26		17.45

		1996-07-29		20.09

		1996-07-30		20.53

		1996-07-31		19.46

		1996-08-01		18.76

		1996-08-02		16.19

		1996-08-05		17.36

		1996-08-06		16.93

		1996-08-07		16.24

		1996-08-08		16.04

		1996-08-09		15.77

		1996-08-12		15.57

		1996-08-13		16.41

		1996-08-14		15.96

		1996-08-15		15.46

		1996-08-16		14.81

		1996-08-19		15.27

		1996-08-20		14.73

		1996-08-21		14.52

		1996-08-22		13.71

		1996-08-23		14.18

		1996-08-26		15.38

		1996-08-27		15.11

		1996-08-28		15.1

		1996-08-29		16.22

		1996-08-30		17.01

		1996-09-03		18.47

		1996-09-04		18.64

		1996-09-05		20.51

		1996-09-06		17.1

		1996-09-09		16.36

		1996-09-10		16.25

		1996-09-11		16.06

		1996-09-12		15.97

		1996-09-13		15.2

		1996-09-16		15.43

		1996-09-17		15.74

		1996-09-18		15.86

		1996-09-19		16.03

		1996-09-20		15.65

		1996-09-23		16.46

		1996-09-24		16.45

		1996-09-25		16.22

		1996-09-26		16.11

		1996-09-27		16.1

		1996-09-30		16.95

		1996-10-01		17.05

		1996-10-02		16.78

		1996-10-03		16.77

		1996-10-04		14.8

		1996-10-07		15.11

		1996-10-08		15.58

		1996-10-09		16.09

		1996-10-10		16.26

		1996-10-11		15.07

		1996-10-14		15.13

		1996-10-15		15.83

		1996-10-16		15.6

		1996-10-17		15.41

		1996-10-18		15.08

		1996-10-21		15.98

		1996-10-22		16.4

		1996-10-23		16.45

		1996-10-24		16.89

		1996-10-25		17.29

		1996-10-28		18.34

		1996-10-29		18.28

		1996-10-30		18.48

		1996-10-31		18.11

		1996-11-01		17.89

		1996-11-04		18.04

		1996-11-05		17.65

		1996-11-06		16.97

		1996-11-07		17.21

		1996-11-08		15.78

		1996-11-11		14.04

		1996-11-12		15.36

		1996-11-13		14.89

		1996-11-14		13.79

		1996-11-15		14.36

		1996-11-18		15.12

		1996-11-19		15.23

		1996-11-20		15.94

		1996-11-21		15.77

		1996-11-22		14.92

		1996-11-25		15.91

		1996-11-26		16.97

		1996-11-27		16.96

		1996-11-29		17.14

		1996-12-02		17.93

		1996-12-03		18.68

		1996-12-04		17.93

		1996-12-05		18.14

		1996-12-06		18.82

		1996-12-09		17.75

		1996-12-10		17.88

		1996-12-11		19.68

		1996-12-12		20.45

		1996-12-13		21.09

		1996-12-16		21.99

		1996-12-17		20.77

		1996-12-18		19.42

		1996-12-19		18.77

		1996-12-20		18.85

		1996-12-23		19.5

		1996-12-24		18.68

		1996-12-26		18.59

		1996-12-27		19.13

		1996-12-30		19.51

		1996-12-31		20.92

		1997-01-02		21.14

		1997-01-03		19.13

		1997-01-06		19.89

		1997-01-07		19.35

		1997-01-08		20.24

		1997-01-09		20.91

		1997-01-10		19.63

		1997-01-13		19.84

		1997-01-14		19.27

		1997-01-15		19.4

		1997-01-16		19.61

		1997-01-17		18.63

		1997-01-20		18.6

		1997-01-21		17.81

		1997-01-22		17.09

		1997-01-23		18.47

		1997-01-24		19.33

		1997-01-27		20.16

		1997-01-28		20.74

		1997-01-29		20.23

		1997-01-30		19.47

		1997-02-03		19.58

		1997-02-04		19.43

		1997-02-05		21.06

		1997-02-06		20.16

		1997-02-07		18.9

		1997-02-10		20.65

		1997-02-11		19.97

		1997-02-12		19.48

		1997-02-13		19.23

		1997-02-14		19.18

		1997-02-18		19.7

		1997-02-19		20.61

		1997-02-20		21.41

		1997-02-21		20.55

		1997-02-24		19.84

		1997-02-25		19.98

		1997-02-26		20.74

		1997-02-27		21.08

		1997-02-28		21.1

		1997-03-03		20.89

		1997-03-04		20.62

		1997-03-05		19.49

		1997-03-06		20.48

		1997-03-07		19.32

		1997-03-10		19

		1997-03-11		19.25

		1997-03-12		19.61

		1997-03-13		19.79

		1997-03-14		19.81

		1997-03-17		20.95

		1997-03-18		21.26

		1997-03-19		21.74

		1997-03-20		21.22

		1997-03-21		19.69

		1997-03-24		20.06

		1997-03-25		19.26

		1997-03-26		18.32

		1997-03-27		20.5

		1997-03-31		22.14

		1997-04-01		20.84

		1997-04-02		21.3

		1997-04-03		21.19

		1997-04-04		19.23

		1997-04-07		18.51

		1997-04-08		18.44

		1997-04-09		18.56

		1997-04-10		19.01

		1997-04-11		19.76

		1997-04-14		19.09

		1997-04-15		18.25

		1997-04-16		17.64

		1997-04-17		18.71

		1997-04-18		18.75

		1997-04-21		20.1

		1997-04-22		19.52

		1997-04-23		20.48

		1997-04-24		20.83

		1997-04-25		21.15

		1997-04-28		21.34

		1997-04-29		19.81

		1997-04-30		20.06

		1997-05-01		19.87

		1997-05-02		17.51

		1997-05-05		20.13

		1997-05-06		20.85

		1997-05-07		21.34

		1997-05-08		21.26

		1997-05-09		20.11

		1997-05-12		20.25

		1997-05-13		20.81

		1997-05-14		21.09

		1997-05-15		19.91

		1997-05-16		21.57

		1997-05-19		21.48

		1997-05-20		19.26

		1997-05-21		19.28

		1997-05-22		18.77

		1997-05-23		18.08

		1997-05-27		19.36

		1997-05-28		19.28

		1997-05-29		19.02

		1997-05-30		19.19

		1997-06-02		20.85

		1997-06-03		20.01

		1997-06-04		20.1

		1997-06-05		20.36

		1997-06-06		18.94

		1997-06-09		19.46

		1997-06-10		19.04

		1997-06-11		18.85

		1997-06-12		18.51

		1997-06-13		19.27

		1997-06-16		19.77

		1997-06-17		20.17

		1997-06-18		20.45

		1997-06-19		20.1

		1997-06-20		20.2

		1997-06-23		21.19

		1997-06-24		20.74

		1997-06-25		21.5

		1997-06-26		21.82

		1997-06-27		21.22

		1997-06-30		21.53

		1997-07-01		21

		1997-07-02		19.7

		1997-07-03		17.82

		1997-07-07		19.13

		1997-07-08		18.76

		1997-07-09		20.4

		1997-07-10		19.92

		1997-07-11		19.06

		1997-07-14		19.58

		1997-07-15		19

		1997-07-16		19.36

		1997-07-17		20.54

		1997-07-18		22.28

		1997-07-21		23.51

		1997-07-22		21.77

		1997-07-23		21.3

		1997-07-24		20.96

		1997-07-25		20.82

		1997-07-28		21.84

		1997-07-29		22.02

		1997-07-30		21.39

		1997-07-31		21.48

		1997-08-01		22.29

		1997-08-04		21.94

		1997-08-05		20.64

		1997-08-06		20.05

		1997-08-07		19.77

		1997-08-08		22.46

		1997-08-11		22.77

		1997-08-12		23.75

		1997-08-13		24.52

		1997-08-14		23.11

		1997-08-15		24.45

		1997-08-18		24.37

		1997-08-19		22.64

		1997-08-20		21.09

		1997-08-21		23.83

		1997-08-22		24.74

		1997-08-25		24.1

		1997-08-26		24.73

		1997-08-27		24.26

		1997-08-28		24.51

		1997-08-29		24.76

		1997-09-02		24.53

		1997-09-03		24.95

		1997-09-04		25.27

		1997-09-05		24.31

		1997-09-08		24.4

		1997-09-09		23.89

		1997-09-10		24.64

		1997-09-11		25.99

		1997-09-12		25.17

		1997-09-15		25.74

		1997-09-16		23.77

		1997-09-17		24.1

		1997-09-18		23.48

		1997-09-19		22.74

		1997-09-22		22.08

		1997-09-23		22

		1997-09-24		22.64

		1997-09-25		22.96

		1997-09-26		22.26

		1997-09-29		22.23

		1997-09-30		22.91

		1997-10-01		22.32

		1997-10-02		22.27

		1997-10-03		21.54

		1997-10-06		21.61

		1997-10-07		20.29

		1997-10-08		20.77

		1997-10-09		22.31

		1997-10-10		19.75

		1997-10-13		20.26

		1997-10-14		19.99

		1997-10-15		20.05

		1997-10-16		20.53

		1997-10-17		21.69

		1997-10-20		20.72

		1997-10-21		19.53

		1997-10-22		19.86

		1997-10-23		22.99

		1997-10-24		23.17

		1997-10-27		31.12

		1997-10-28		31.22

		1997-10-29		33.75

		1997-10-30		38.2

		1997-10-31		35.09

		1997-11-03		32.09

		1997-11-04		32.24

		1997-11-05		32.18

		1997-11-06		32.57

		1997-11-07		36.27

		1997-11-10		36.63

		1997-11-11		36.38

		1997-11-12		37.84

		1997-11-13		36.64

		1997-11-14		33.66

		1997-11-17		31.58

		1997-11-18		31.55

		1997-11-19		29.93

		1997-11-20		27.32

		1997-11-21		26.65

		1997-11-24		29.8

		1997-11-25		28.95

		1997-11-28		27.43

		1997-12-01		26.01

		1997-12-02		25.66

		1997-12-03		23.92

		1997-12-04		23.84

		1997-12-05		22.65

		1997-12-08		23.22

		1997-12-09		23.36

		1997-12-10		24.55

		1997-12-11		27.63

		1997-12-12		27.92

		1997-12-15		27.37

		1997-12-16		26.11

		1997-12-17		26.33

		1997-12-18		27.19

		1997-12-19		29.18

		1997-12-22		28.56

		1997-12-23		29.86

		1997-12-24		30.27

		1997-12-26		29.27

		1997-12-29		26.79

		1997-12-30		24.38

		1997-12-31		24.01

		1998-01-02		23.42

		1998-01-05		24.36

		1998-01-06		25.66

		1998-01-07		25.07

		1998-01-08		26.01

		1998-01-09		28.69

		1998-01-12		28.02

		1998-01-13		25.17

		1998-01-14		23.75

		1998-01-15		23.45

		1998-01-16		21.65

		1998-01-20		21.65

		1998-01-21		22.53

		1998-01-22		23.16

		1998-01-23		23.32

		1998-01-26		23.97

		1998-01-27		22.27

		1998-01-28		22.06

		1998-01-29		21.65

		1998-01-30		21.47

		1998-02-02		21.36

		1998-02-03		20.67

		1998-02-04		20.55

		1998-02-05		21.29

		1998-02-06		20.51

		1998-02-09		21.55

		1998-02-10		20.66

		1998-02-11		20.38

		1998-02-12		19.73

		1998-02-13		19.84

		1998-02-17		20.76

		1998-02-18		19.66

		1998-02-19		19.88

		1998-02-20		19

		1998-02-23		18.99

		1998-02-24		19.35

		1998-02-25		18.62

		1998-02-26		18.63

		1998-02-27		18.55

		1998-03-02		19.19

		1998-03-03		19.04

		1998-03-04		19.58

		1998-03-05		20.93

		1998-03-06		19.14

		1998-03-09		20.23

		1998-03-10		19.43

		1998-03-11		18.89

		1998-03-12		18.25

		1998-03-13		18.71

		1998-03-16		18.51

		1998-03-17		18.66

		1998-03-18		18.29

		1998-03-19		17.76

		1998-03-20		18.69

		1998-03-23		19.98

		1998-03-24		20.51

		1998-03-25		22.54

		1998-03-26		22.81

		1998-03-27		23.47

		1998-03-30		24.66

		1998-03-31		24.22

		1998-04-01		23.37

		1998-04-02		21.98

		1998-04-03		21.82

		1998-04-06		22.47

		1998-04-07		23.66

		1998-04-08		23.17

		1998-04-09		21.51

		1998-04-13		22.77

		1998-04-14		21.61

		1998-04-15		20.89

		1998-04-16		22.06

		1998-04-17		20.76

		1998-04-20		20.39

		1998-04-21		19.91

		1998-04-22		19.44

		1998-04-23		20.6

		1998-04-24		21.97

		1998-04-27		26.09

		1998-04-28		24.17

		1998-04-29		22.78

		1998-04-30		21.18

		1998-05-01		19.34

		1998-05-04		20.32

		1998-05-05		21.46

		1998-05-06		22.79

		1998-05-07		23.39

		1998-05-08		20.57

		1998-05-11		21.05

		1998-05-12		20.98

		1998-05-13		20.44

		1998-05-14		19.64

		1998-05-15		20.44

		1998-05-18		21.69

		1998-05-19		20.39

		1998-05-20		19.89

		1998-05-21		19.38

		1998-05-22		18.99

		1998-05-26		22.07

		1998-05-27		22.59

		1998-05-28		20.74

		1998-05-29		21.32

		1998-06-01		22.83

		1998-06-02		22

		1998-06-03		22.85

		1998-06-04		21.22

		1998-06-05		19.78

		1998-06-08		20.58

		1998-06-09		20.52

		1998-06-10		21.48

		1998-06-11		23.57

		1998-06-12		22.78

		1998-06-15		25.94

		1998-06-16		24.8

		1998-06-17		22.89

		1998-06-18		22.4

		1998-06-19		21.92

		1998-06-22		21.94

		1998-06-23		20.17

		1998-06-24		20.02

		1998-06-25		20.25

		1998-06-26		19.36

		1998-06-29		19.57

		1998-06-30		19.71

		1998-07-01		18

		1998-07-02		17.67

		1998-07-06		18.63

		1998-07-07		18.62

		1998-07-08		17.82

		1998-07-09		18.16

		1998-07-10		17.92

		1998-07-13		18.26

		1998-07-14		17.88

		1998-07-15		17.89

		1998-07-16		16.97

		1998-07-17		16.23

		1998-07-20		17.34

		1998-07-21		20.1

		1998-07-22		20.32

		1998-07-23		23.01

		1998-07-24		23.01

		1998-07-27		23.13

		1998-07-28		25.25

		1998-07-29		24.79

		1998-07-30		22.66

		1998-07-31		24.8

		1998-08-03		25.98

		1998-08-04		31.06

		1998-08-05		29.83

		1998-08-06		28.2

		1998-08-07		27.02

		1998-08-10		28.75

		1998-08-11		31.91

		1998-08-12		28.55

		1998-08-13		29.92

		1998-08-14		34.34

		1998-08-17		31.86

		1998-08-18		28.4

		1998-08-19		28.69

		1998-08-20		30

		1998-08-21		33.14

		1998-08-24		31.8

		1998-08-25		30.33

		1998-08-26		31.14

		1998-08-27		38.55

		1998-08-28		39.6

		1998-08-31		44.28

		1998-09-01		36.48

		1998-09-02		36.76

		1998-09-03		41.43

		1998-09-04		43.31

		1998-09-08		37.9

		1998-09-09		39.66

		1998-09-10		45.29

		1998-09-11		43.74

		1998-09-14		38.57

		1998-09-15		36.58

		1998-09-16		35.94

		1998-09-17		39.23

		1998-09-18		38.63

		1998-09-21		38.58

		1998-09-22		36.62

		1998-09-23		32.47

		1998-09-24		34.66

		1998-09-25		34.55

		1998-09-28		34.87

		1998-09-29		36.08

		1998-09-30		40.95

		1998-10-01		43.48

		1998-10-02		40.47

		1998-10-05		42.81

		1998-10-06		41.2

		1998-10-07		43.51

		1998-10-08		45.74

		1998-10-09		42.2

		1998-10-12		40.07

		1998-10-13		40.23

		1998-10-14		38.96

		1998-10-15		33.34

		1998-10-16		34.82

		1998-10-19		33.13

		1998-10-20		33.11

		1998-10-21		33.21

		1998-10-22		31.53

		1998-10-23		32.27

		1998-10-26		32.38

		1998-10-27		32.95

		1998-10-28		32.42

		1998-10-29		29.5

		1998-10-30		28.05

		1998-11-02		27.26

		1998-11-03		27.76

		1998-11-04		27.37

		1998-11-05		26.01

		1998-11-06		25.7

		1998-11-09		28.09

		1998-11-10		28.17

		1998-11-11		28.47

		1998-11-12		29.28

		1998-11-13		29.03

		1998-11-16		28.9

		1998-11-17		27.95

		1998-11-18		27.13

		1998-11-19		25.5

		1998-11-20		22.47

		1998-11-23		21.84

		1998-11-24		23.28

		1998-11-25		22.15

		1998-11-27		22.09

		1998-11-30		26.01

		1998-12-01		24.97

		1998-12-02		25.43

		1998-12-03		28.7

		1998-12-04		25.31

		1998-12-07		24.9

		1998-12-08		25.58

		1998-12-09		25.66

		1998-12-10		26.81

		1998-12-11		27.72

		1998-12-14		31.31

		1998-12-15		29.42

		1998-12-16		29.96

		1998-12-17		27.96

		1998-12-18		25.04

		1998-12-21		23.86

		1998-12-22		22.78

		1998-12-23		20.21

		1998-12-24		21.48

		1998-12-28		23.5

		1998-12-29		22.18

		1998-12-30		23.34

		1998-12-31		24.42

		1999-01-04		26.17

		1999-01-05		24.46

		1999-01-06		23.34

		1999-01-07		24.37

		1999-01-08		23.28

		1999-01-11		25.46

		1999-01-12		28.1

		1999-01-13		30.11

		1999-01-14		32.98

		1999-01-15		29.24

		1999-01-19		29.24

		1999-01-20		28.6

		1999-01-21		30.92

		1999-01-22		31.95

		1999-01-25		31.13

		1999-01-26		29.23

		1999-01-27		29.73

		1999-01-28		28.11

		1999-01-29		26.25

		1999-02-01		27.67

		1999-02-02		28.16

		1999-02-03		27.88

		1999-02-04		29.48

		1999-02-05		29.67

		1999-02-08		30.27

		1999-02-09		31.36

		1999-02-10		30.45

		1999-02-11		27.42

		1999-02-12		29.76

		1999-02-16		29.65

		1999-02-17		30.65

		1999-02-18		30.45

		1999-02-19		29.3

		1999-02-22		25.87

		1999-02-23		26.49

		1999-02-24		27.21

		1999-02-25		28.01

		1999-02-26		27.88

		1999-03-01		28.37

		1999-03-02		29.22

		1999-03-03		29.04

		1999-03-04		26.67

		1999-03-05		24.08

		1999-03-08		24.54

		1999-03-09		25.02

		1999-03-10		24.79

		1999-03-11		24.37

		1999-03-12		24.84

		1999-03-15		25.24

		1999-03-16		25.15

		1999-03-17		25.57

		1999-03-18		24.13

		1999-03-19		24.32

		1999-03-22		25

		1999-03-23		27.27

		1999-03-24		26.6

		1999-03-25		24.33

		1999-03-26		24.04

		1999-03-29		23.54

		1999-03-30		22.73

		1999-03-31		23.26

		1999-04-01		22.06

		1999-04-05		22.19

		1999-04-06		22.65

		1999-04-07		22.81

		1999-04-08		22.59

		1999-04-09		21.77

		1999-04-12		21.93

		1999-04-13		22.73

		1999-04-14		24.94

		1999-04-15		23.93

		1999-04-16		23.9

		1999-04-19		26.42

		1999-04-20		25.02

		1999-04-21		23.31

		1999-04-22		22.62

		1999-04-23		22.76

		1999-04-26		23.53

		1999-04-27		23.36

		1999-04-28		24.4

		1999-04-29		25.06

		1999-04-30		25.07

		1999-05-03		24.15

		1999-05-04		25.62

		1999-05-05		25.19

		1999-05-06		27.44

		1999-05-07		25.36

		1999-05-10		26.62

		1999-05-11		25.62

		1999-05-12		26.13

		1999-05-13		25.02

		1999-05-14		26.86

		1999-05-17		27.28

		1999-05-18		27.26

		1999-05-19		25.08

		1999-05-20		24.46

		1999-05-21		24.4

		1999-05-24		27.62

		1999-05-25		28.9

		1999-05-26		27.57

		1999-05-27		28.12

		1999-05-28		25.39

		1999-06-01		26.62

		1999-06-02		26.21

		1999-06-03		26.2

		1999-06-04		23.43

		1999-06-07		23.78

		1999-06-08		24.02

		1999-06-09		23.9

		1999-06-10		25.32

		1999-06-11		25.9

		1999-06-14		26.51

		1999-06-15		25.91

		1999-06-16		22.4

		1999-06-17		21.95

		1999-06-18		21.75

		1999-06-21		21.81

		1999-06-22		21.7

		1999-06-23		21.32

		1999-06-24		23.06

		1999-06-25		21.76

		1999-06-28		22.63

		1999-06-29		22.51

		1999-06-30		21.09

		1999-07-01		19.69

		1999-07-02		18.66

		1999-07-06		20.73

		1999-07-07		20.35

		1999-07-08		20.24

		1999-07-09		17.96

		1999-07-12		19.73

		1999-07-13		19.95

		1999-07-14		19.71

		1999-07-15		18.68

		1999-07-16		17.42

		1999-07-19		19.07

		1999-07-20		21.79

		1999-07-21		21.46

		1999-07-22		23.05

		1999-07-23		23.32

		1999-07-26		24.98

		1999-07-27		23.23

		1999-07-28		22.85

		1999-07-29		24.52

		1999-07-30		24.64

		1999-08-02		25.59

		1999-08-03		26.27

		1999-08-04		27.4

		1999-08-05		27.01

		1999-08-06		26.6

		1999-08-09		27.66

		1999-08-10		28.45

		1999-08-11		25.39

		1999-08-12		25.03

		1999-08-13		22.31

		1999-08-16		23.07

		1999-08-17		21.67

		1999-08-18		23.3

		1999-08-19		24.39

		1999-08-20		22.95

		1999-08-23		22.55

		1999-08-24		22.4

		1999-08-25		20.96

		1999-08-26		21.21

		1999-08-27		21.83

		1999-08-30		24.63

		1999-08-31		24.45

		1999-09-01		22.93

		1999-09-02		24.53

		1999-09-03		20.98

		1999-09-07		23.44

		1999-09-08		23.82

		1999-09-09		23.01

		1999-09-10		22.03

		1999-09-13		22.89

		1999-09-14		23.77

		1999-09-15		24.56

		1999-09-16		25.25

		1999-09-17		23.3

		1999-09-20		24.03

		1999-09-21		25.65

		1999-09-22		25.19

		1999-09-23		27.84

		1999-09-24		27.79

		1999-09-27		26.4

		1999-09-28		26.06

		1999-09-29		26.49

		1999-09-30		25.41

		1999-10-01		24.93

		1999-10-04		24.46

		1999-10-05		24.79

		1999-10-06		22.06

		1999-10-07		23.58

		1999-10-08		20.49

		1999-10-11		20.63

		1999-10-12		22.84

		1999-10-13		25.96

		1999-10-14		26.05

		1999-10-15		28.75

		1999-10-18		28.19

		1999-10-19		26.56

		1999-10-20		23.9

		1999-10-21		24.02

		1999-10-22		21.64

		1999-10-25		23.6

		1999-10-26		24.26

		1999-10-27		24.2

		1999-10-28		21.34

		1999-10-29		22.2

		1999-11-01		22.09

		1999-11-02		23.1

		1999-11-03		23.16

		1999-11-04		23

		1999-11-05		21.66

		1999-11-08		21.87

		1999-11-09		22.7

		1999-11-10		22.26

		1999-11-11		22.07

		1999-11-12		21.65

		1999-11-15		22.74

		1999-11-16		20.73

		1999-11-17		20.96

		1999-11-18		19.76

		1999-11-19		19.11

		1999-11-22		19.98

		1999-11-23		21

		1999-11-24		20.26

		1999-11-26		22.33

		1999-11-29		23.57

		1999-11-30		24.18

		1999-12-01		22.23

		1999-12-02		21.77

		1999-12-03		19.32

		1999-12-06		20.58

		1999-12-07		21.09

		1999-12-08		21.25

		1999-12-09		21.19

		1999-12-10		21.48

		1999-12-13		21.72

		1999-12-14		23.06

		1999-12-15		22.03

		1999-12-16		21.91

		1999-12-17		21.35

		1999-12-20		23.78

		1999-12-21		22.66

		1999-12-22		22.43

		1999-12-23		21.12

		1999-12-27		23.07

		1999-12-28		22.97

		1999-12-29		23.09

		1999-12-30		24.76

		1999-12-31		24.64

		2000-01-03		24.21

		2000-01-04		27.01

		2000-01-05		26.41

		2000-01-06		25.73

		2000-01-07		21.72

		2000-01-10		21.71

		2000-01-11		22.5

		2000-01-12		22.84

		2000-01-13		21.71

		2000-01-14		19.66

		2000-01-18		21.5

		2000-01-19		21.72

		2000-01-20		21.75

		2000-01-21		20.82

		2000-01-24		24.07

		2000-01-25		23.02

		2000-01-26		23.03

		2000-01-27		23.54

		2000-01-28		26.14

		2000-01-31		24.95

		2000-02-01		23.45

		2000-02-02		23.12

		2000-02-03		22.01

		2000-02-04		21.54

		2000-02-07		22.79

		2000-02-08		21.25

		2000-02-09		22.9

		2000-02-10		23.07

		2000-02-11		24.42

		2000-02-14		24.38

		2000-02-15		22.92

		2000-02-16		23.51

		2000-02-17		23.17

		2000-02-18		26

		2000-02-22		25.86

		2000-02-23		23.89

		2000-02-24		24.38

		2000-02-25		25.2

		2000-02-28		24.68

		2000-02-29		23.37

		2000-03-01		21.64

		2000-03-02		21.06

		2000-03-03		19.21

		2000-03-06		21.5

		2000-03-07		24.31

		2000-03-08		23.82

		2000-03-09		22.21

		2000-03-10		21.24

		2000-03-13		22.85

		2000-03-14		24.41

		2000-03-15		22.34

		2000-03-16		20.77

		2000-03-17		22.37

		2000-03-20		22.96

		2000-03-21		21.7

		2000-03-22		21.49

		2000-03-23		22.26

		2000-03-24		23.31

		2000-03-27		24.53

		2000-03-28		24.86

		2000-03-29		24.1

		2000-03-30		25.47

		2000-03-31		24.11

		2000-04-03		24.03

		2000-04-04		27.12

		2000-04-05		28.41

		2000-04-06		27.15

		2000-04-07		24.39

		2000-04-10		25.99

		2000-04-11		27.25

		2000-04-12		28.98

		2000-04-13		29.4

		2000-04-14		33.49

		2000-04-17		28.95

		2000-04-18		26.12

		2000-04-19		27.02

		2000-04-20		25.85

		2000-04-24		27.37

		2000-04-25		25.24

		2000-04-26		26.97

		2000-04-27		26.19

		2000-04-28		26.2

		2000-05-01		25.88

		2000-05-02		28.5

		2000-05-03		31.63

		2000-05-04		30.77

		2000-05-05		27.53

		2000-05-08		28.2

		2000-05-09		28.93

		2000-05-10		29.87

		2000-05-11		27.76

		2000-05-12		26.05

		2000-05-15		24.86

		2000-05-16		24.34

		2000-05-17		23.98

		2000-05-18		23.96

		2000-05-19		25.44

		2000-05-22		26

		2000-05-23		25.87

		2000-05-24		24.32

		2000-05-25		24.58

		2000-05-26		24.47

		2000-05-30		23.62

		2000-05-31		23.65

		2000-06-01		22.36

		2000-06-02		21.48

		2000-06-05		22.71

		2000-06-06		23.05

		2000-06-07		22.48

		2000-06-08		22.77

		2000-06-09		22.14

		2000-06-12		22.32

		2000-06-13		21.67

		2000-06-14		21.48

		2000-06-15		20.68

		2000-06-16		20.5

		2000-06-19		20.63

		2000-06-20		20.88

		2000-06-21		20.61

		2000-06-22		22

		2000-06-23		22.34

		2000-06-26		22.45

		2000-06-27		21.8

		2000-06-28		20.29

		2000-06-29		19.7

		2000-06-30		19.54

		2000-07-03		19.83

		2000-07-05		21.16

		2000-07-06		20.94

		2000-07-07		19.22

		2000-07-10		20.33

		2000-07-11		20.11

		2000-07-12		20.03

		2000-07-13		20.03

		2000-07-14		19.32

		2000-07-17		19.45

		2000-07-18		19.75

		2000-07-19		19.65

		2000-07-20		18.94

		2000-07-21		18.94

		2000-07-24		19.92

		2000-07-25		19.39

		2000-07-26		19.67

		2000-07-27		19.6

		2000-07-28		20.84

		2000-07-31		20.74

		2000-08-01		20.55

		2000-08-02		20

		2000-08-03		19.99

		2000-08-04		18.62

		2000-08-07		19.03

		2000-08-08		18.79

		2000-08-09		19.18

		2000-08-10		19.19

		2000-08-11		18.55

		2000-08-14		17.88

		2000-08-15		17.98

		2000-08-16		18.02

		2000-08-17		17.48

		2000-08-18		17.05

		2000-08-21		17.35

		2000-08-22		17.47

		2000-08-23		17.38

		2000-08-24		17.04

		2000-08-25		16.53

		2000-08-28		16.54

		2000-08-29		16.89

		2000-08-30		17.69

		2000-08-31		16.84

		2000-09-01		17.53

		2000-09-05		19.82

		2000-09-06		20.79

		2000-09-07		19.42

		2000-09-08		18.46

		2000-09-11		18.4

		2000-09-12		18.59

		2000-09-13		18.32

		2000-09-14		18.26

		2000-09-15		18.52

		2000-09-18		20.25

		2000-09-19		19.54

		2000-09-20		19.93

		2000-09-21		20.18

		2000-09-22		20.74

		2000-09-25		21.41

		2000-09-26		21.88

		2000-09-27		21.67

		2000-09-28		19.47

		2000-09-29		20.57

		2000-10-02		21.23

		2000-10-03		21.85

		2000-10-04		21.54

		2000-10-05		21.03

		2000-10-06		22.71

		2000-10-09		24.02

		2000-10-10		24.86

		2000-10-11		26.57

		2000-10-12		30.51

		2000-10-13		27.6

		2000-10-16		26.79

		2000-10-17		27.84

		2000-10-18		28.72

		2000-10-19		25.09

		2000-10-20		24.24

		2000-10-23		24.69

		2000-10-24		24.28

		2000-10-25		26.65

		2000-10-26		28.62

		2000-10-27		26.47

		2000-10-30		25.46

		2000-10-31		23.63

		2000-11-01		24.28

		2000-11-02		23.92

		2000-11-03		23.67

		2000-11-06		24.52

		2000-11-07		24.91

		2000-11-08		25.66

		2000-11-09		27.2

		2000-11-10		28.53

		2000-11-13		29.06

		2000-11-14		26.81

		2000-11-15		26.15

		2000-11-16		25.05

		2000-11-17		24.81

		2000-11-20		27.43

		2000-11-21		26.62

		2000-11-22		27.71

		2000-11-24		26

		2000-11-27		26.93

		2000-11-28		27.64

		2000-11-29		27.49

		2000-11-30		29.65

		2000-12-01		27.48

		2000-12-04		27.78

		2000-12-05		24.99

		2000-12-06		25.07

		2000-12-07		25.34

		2000-12-08		22.41

		2000-12-11		23.51

		2000-12-12		24.88

		2000-12-13		23.63

		2000-12-14		24.86

		2000-12-15		26.55

		2000-12-18		27.7

		2000-12-19		27.17

		2000-12-20		31.74

		2000-12-21		29.66

		2000-12-22		27.55

		2000-12-26		28.73

		2000-12-27		28.14

		2000-12-28		26.57

		2000-12-29		26.85

		2001-01-02		29.99

		2001-01-03		26.6

		2001-01-04		26.97

		2001-01-05		28.67

		2001-01-08		29.84

		2001-01-09		27.99

		2001-01-10		26.8

		2001-01-11		25.79

		2001-01-12		24.56

		2001-01-16		25.28

		2001-01-17		24.93

		2001-01-18		23.37

		2001-01-19		23.24

		2001-01-22		23.25

		2001-01-23		21.57

		2001-01-24		22.03

		2001-01-25		22.64

		2001-01-26		22.57

		2001-01-29		22.61

		2001-01-30		22.57

		2001-01-31		22.02

		2001-02-01		21.66

		2001-02-02		21.95

		2001-02-05		22.19

		2001-02-06		21.98

		2001-02-07		21.67

		2001-02-08		21.46

		2001-02-09		22.03

		2001-02-12		21.92

		2001-02-13		21.37

		2001-02-14		21.52

		2001-02-15		20.27

		2001-02-16		22.12

		2001-02-20		24.69

		2001-02-21		25.75

		2001-02-22		26.76

		2001-02-23		27.21

		2001-02-26		25.43

		2001-02-27		26.49

		2001-02-28		28.35

		2001-03-01		28.08

		2001-03-02		27.43

		2001-03-05		27.12

		2001-03-06		25.89

		2001-03-07		24.12

		2001-03-08		24.29

		2001-03-09		25.62

		2001-03-12		30.32

		2001-03-13		27.55

		2001-03-14		29.61

		2001-03-15		28.56

		2001-03-16		29.91

		2001-03-19		29.78

		2001-03-20		30.96

		2001-03-21		31.93

		2001-03-22		32.84

		2001-03-23		30.45

		2001-03-26		29.04

		2001-03-27		27.04

		2001-03-28		28.58

		2001-03-29		29.17

		2001-03-30		28.64

		2001-04-02		31.21

		2001-04-03		34.72

		2001-04-04		34.07

		2001-04-05		29.94

		2001-04-06		31.69

		2001-04-09		31.91

		2001-04-10		29.44

		2001-04-11		28.46

		2001-04-12		26.12

		2001-04-16		26.33

		2001-04-17		25.61

		2001-04-18		24.13

		2001-04-19		24.16

		2001-04-20		25.38

		2001-04-23		28.16

		2001-04-24		28.49

		2001-04-25		27.4

		2001-04-26		25.96

		2001-04-27		24.02

		2001-04-30		25.48

		2001-05-01		24.2

		2001-05-02		24.23

		2001-05-03		25.78

		2001-05-04		23.91

		2001-05-07		24.86

		2001-05-08		24.44

		2001-05-09		24.35

		2001-05-10		24

		2001-05-11		23.54

		2001-05-14		24.26

		2001-05-15		23.71

		2001-05-16		21.89

		2001-05-17		21.47

		2001-05-18		21.23

		2001-05-21		20.76

		2001-05-22		21.35

		2001-05-23		22.08

		2001-05-24		20.57

		2001-05-25		20.6

		2001-05-29		22.14

		2001-05-30		22.76

		2001-05-31		22.64

		2001-06-01		21.59

		2001-06-04		21.38

		2001-06-05		19.58

		2001-06-06		20.39

		2001-06-07		19.67

		2001-06-08		19.92

		2001-06-11		20.7

		2001-06-12		20.7

		2001-06-13		21.45

		2001-06-14		23.12

		2001-06-15		22.81

		2001-06-18		23.17

		2001-06-19		22.34

		2001-06-20		21.71

		2001-06-21		19.38

		2001-06-22		20.02

		2001-06-25		20.67

		2001-06-26		21.2

		2001-06-27		20.88

		2001-06-28		20.01

		2001-06-29		19.06

		2001-07-02		18.76

		2001-07-03		18.92

		2001-07-05		20.09

		2001-07-06		21.63

		2001-07-09		22.48

		2001-07-10		23.25

		2001-07-11		24.01

		2001-07-12		22.09

		2001-07-13		21.14

		2001-07-16		22.91

		2001-07-17		22.61

		2001-07-18		23.6

		2001-07-19		22.51

		2001-07-20		22.34

		2001-07-23		23.74

		2001-07-24		25.24

		2001-07-25		24

		2001-07-26		23.01

		2001-07-27		22

		2001-07-30		22.69

		2001-07-31		21.62

		2001-08-01		20.56

		2001-08-02		20.09

		2001-08-03		19.89

		2001-08-06		21.89

		2001-08-07		21.01

		2001-08-08		22.32

		2001-08-09		21.75

		2001-08-10		20.55

		2001-08-13		20.42

		2001-08-14		20.48

		2001-08-15		20.91

		2001-08-16		21.54

		2001-08-17		23.84

		2001-08-20		22.87

		2001-08-21		24.4

		2001-08-22		22.44

		2001-08-23		22.23

		2001-08-24		19.71

		2001-08-27		20.56

		2001-08-28		22

		2001-08-29		23.03

		2001-08-30		25.41

		2001-08-31		24.92

		2001-09-04		25.85

		2001-09-05		26.35

		2001-09-06		28.61

		2001-09-07		30.99

		2001-09-10		31.84

		2001-09-17		41.76

		2001-09-18		38.87

		2001-09-19		40.56

		2001-09-20		43.74

		2001-09-21		42.66

		2001-09-24		37.75

		2001-09-25		35.81

		2001-09-26		35.26

		2001-09-27		34

		2001-09-28		31.93

		2001-10-01		32.32

		2001-10-02		31.18

		2001-10-03		31.34

		2001-10-04		31.97

		2001-10-05		33.39

		2001-10-08		35.12

		2001-10-09		34.83

		2001-10-10		31.6

		2001-10-11		31.5

		2001-10-12		35.27

		2001-10-15		35.31

		2001-10-16		32.88

		2001-10-17		35.08

		2001-10-18		34.95

		2001-10-19		34.11

		2001-10-22		32.25

		2001-10-23		32

		2001-10-24		30.95

		2001-10-25		29.46

		2001-10-26		28.42

		2001-10-29		31.64

		2001-10-30		33.46

		2001-10-31		33.56

		2001-11-01		32.31

		2001-11-02		30.71

		2001-11-05		30.5

		2001-11-06		28.8

		2001-11-07		29.13

		2001-11-08		28.62

		2001-11-09		27.44

		2001-11-12		29.35

		2001-11-13		26.47

		2001-11-14		26.56

		2001-11-15		25.56

		2001-11-16		25.07

		2001-11-19		24.46

		2001-11-20		24.12

		2001-11-21		24.19

		2001-11-23		23.25

		2001-11-26		23.79

		2001-11-27		24

		2001-11-28		25.9

		2001-11-29		25.18

		2001-11-30		23.84

		2001-12-03		25.77

		2001-12-04		24.08

		2001-12-05		23.02

		2001-12-06		23.71

		2001-12-07		23.49

		2001-12-10		25.62

		2001-12-11		25.3

		2001-12-12		24.87

		2001-12-13		25.91

		2001-12-14		24.63

		2001-12-17		24.26

		2001-12-18		23.29

		2001-12-19		22.58

		2001-12-20		23.67

		2001-12-21		22.5

		2001-12-24		22.62

		2001-12-26		22.29

		2001-12-27		21.59

		2001-12-28		21.4

		2001-12-31		23.8

		2002-01-02		22.71

		2002-01-03		21.34

		2002-01-04		20.45

		2002-01-07		21.94

		2002-01-08		21.83

		2002-01-09		22.13

		2002-01-10		22.36

		2002-01-11		22.6

		2002-01-14		23.58

		2002-01-15		22.7

		2002-01-16		23.45

		2002-01-17		22.25

		2002-01-18		22.52

		2002-01-22		23.61

		2002-01-23		21.88

		2002-01-24		21.15

		2002-01-25		21.01

		2002-01-28		21.14

		2002-01-29		24.35

		2002-01-30		23.22

		2002-01-31		21.09

		2002-02-01		21.12

		2002-02-04		24.87

		2002-02-05		25.45

		2002-02-06		26.09

		2002-02-07		25.11

		2002-02-08		23.26

		2002-02-11		21.78

		2002-02-12		21.62

		2002-02-13		20.85

		2002-02-14		21.77

		2002-02-15		22.37

		2002-02-19		24.43

		2002-02-20		22.66

		2002-02-21		23.8

		2002-02-22		22.86

		2002-02-25		21.84

		2002-02-26		21.68

		2002-02-27		21.49

		2002-02-28		21.59

		2002-03-01		19.96

		2002-03-04		20.5

		2002-03-05		20.3

		2002-03-06		19.94

		2002-03-07		20.04

		2002-03-08		19.27

		2002-03-11		19.84

		2002-03-12		19.59

		2002-03-13		19.46

		2002-03-14		19.2

		2002-03-15		18.42

		2002-03-18		18.93

		2002-03-19		18.16

		2002-03-20		18.46

		2002-03-21		18.15

		2002-03-22		17.77

		2002-03-25		18.48

		2002-03-26		18.13

		2002-03-27		17.7

		2002-03-28		17.4

		2002-04-01		18.73

		2002-04-02		19.16

		2002-04-03		20.2

		2002-04-04		19.78

		2002-04-05		19.13

		2002-04-08		19.61

		2002-04-09		19.47

		2002-04-10		18.19

		2002-04-11		20.3

		2002-04-12		19.42

		2002-04-15		19.82

		2002-04-16		18.11

		2002-04-17		18.43

		2002-04-18		19.29

		2002-04-19		18.3

		2002-04-22		19.77

		2002-04-23		20.28

		2002-04-24		20.77

		2002-04-25		20.95

		2002-04-26		22.14

		2002-04-29		24.05

		2002-04-30		21.91

		2002-05-01		20.06

		2002-05-02		20.07

		2002-05-03		20.19

		2002-05-06		22.56

		2002-05-07		21.94

		2002-05-08		20.39

		2002-05-09		21.56

		2002-05-10		22.41

		2002-05-13		20.72

		2002-05-14		19.35

		2002-05-15		19.19

		2002-05-16		18.5

		2002-05-17		17.7

		2002-05-20		19.24

		2002-05-21		20.05

		2002-05-22		19.58

		2002-05-23		18.23

		2002-05-24		18.9

		2002-05-28		20.31

		2002-05-29		20.39

		2002-05-30		20.61

		2002-05-31		19.98

		2002-06-03		23.37

		2002-06-04		23.89

		2002-06-05		22.61

		2002-06-06		24.16

		2002-06-07		23.51

		2002-06-10		23.72

		2002-06-11		24.45

		2002-06-12		24.15

		2002-06-13		25.02

		2002-06-14		25.96

		2002-06-17		24.64

		2002-06-18		24.24

		2002-06-19		26.06

		2002-06-20		27.48

		2002-06-21		27.23

		2002-06-24		26.98

		2002-06-25		27.84

		2002-06-26		28.42

		2002-06-27		26.29

		2002-06-28		25.4

		2002-07-01		27.11

		2002-07-02		28.96

		2002-07-03		29.42

		2002-07-05		27.11

		2002-07-08		28.25

		2002-07-09		30.22

		2002-07-10		34.1

		2002-07-11		33.85

		2002-07-12		32.94

		2002-07-15		35.03

		2002-07-16		36.65

		2002-07-17		35.45

		2002-07-18		35.12

		2002-07-19		38.17

		2002-07-22		41.87

		2002-07-23		44.92

		2002-07-24		39.86

		2002-07-25		39.27

		2002-07-26		35.51

		2002-07-29		31.33

		2002-07-30		31.92

		2002-07-31		32.03

		2002-08-01		36.95

		2002-08-02		41.29

		2002-08-05		45.08

		2002-08-06		42.03

		2002-08-07		38.73

		2002-08-08		36.33

		2002-08-09		35.33

		2002-08-12		37.05

		2002-08-13		35.82

		2002-08-14		32.36

		2002-08-15		29.43

		2002-08-16		28.81

		2002-08-19		28.61

		2002-08-20		29.59

		2002-08-21		28.23

		2002-08-22		27.75

		2002-08-23		29.32

		2002-08-26		29.89

		2002-08-27		30.11

		2002-08-28		33.32

		2002-08-29		33.67

		2002-08-30		32.64

		2002-09-03		39.97

		2002-09-04		37.44

		2002-09-05		38.86

		2002-09-06		36.33

		2002-09-09		36.45

		2002-09-10		35.08

		2002-09-11		34.81

		2002-09-12		37.5

		2002-09-13		35.82

		2002-09-16		36.74

		2002-09-17		38.01

		2002-09-18		37.52

		2002-09-19		40.65

		2002-09-20		38.98

		2002-09-23		39.68

		2002-09-24		40.52

		2002-09-25		37.33

		2002-09-26		34.6

		2002-09-27		36.97

		2002-09-30		39.69

		2002-10-01		34.12

		2002-10-02		36.83

		2002-10-03		37.31

		2002-10-04		39.46

		2002-10-07		42.64

		2002-10-08		41.02

		2002-10-09		42.13

		2002-10-10		37.55

		2002-10-11		35.7

		2002-10-14		36.04

		2002-10-15		34.02

		2002-10-16		36

		2002-10-17		34.1

		2002-10-18		33.53

		2002-10-21		33.11

		2002-10-22		34.09

		2002-10-23		33.2

		2002-10-24		34.03

		2002-10-25		30

		2002-10-28		31.07

		2002-10-29		32.27

		2002-10-30		31.23

		2002-10-31		31.14

		2002-11-01		29.3

		2002-11-04		30.82

		2002-11-05		31.23

		2002-11-06		30.73

		2002-11-07		31.42

		2002-11-08		29.41

		2002-11-11		31.3

		2002-11-12		30.58

		2002-11-13		31.24

		2002-11-14		28.67

		2002-11-15		26.65

		2002-11-18		27.66

		2002-11-19		27.41

		2002-11-20		25.32

		2002-11-21		23.81

		2002-11-22		23.16

		2002-11-25		24.07

		2002-11-26		25.97

		2002-11-27		27.25

		2002-11-29		27.5

		2002-12-02		27.46

		2002-12-03		28.33

		2002-12-04		28.92

		2002-12-05		30.1

		2002-12-06		28.88

		2002-12-09		30.78

		2002-12-10		28.76

		2002-12-11		27.76

		2002-12-12		27.29

		2002-12-13		28.18

		2002-12-16		26.24

		2002-12-17		26.66

		2002-12-18		28.29

		2002-12-19		30.21

		2002-12-20		26.71

		2002-12-23		26.2

		2002-12-24		26.49

		2002-12-26		27.37

		2002-12-27		29.55

		2002-12-30		29.62

		2002-12-31		28.62

		2003-01-02		25.39

		2003-01-03		24.68

		2003-01-06		24.91

		2003-01-07		25.13

		2003-01-08		25.53

		2003-01-09		24.25

		2003-01-10		24.32

		2003-01-13		24.9

		2003-01-14		24.57

		2003-01-15		25.51

		2003-01-16		25.01

		2003-01-17		25.7

		2003-01-21		27.59

		2003-01-22		29.01

		2003-01-23		27.53

		2003-01-24		31.51

		2003-01-27		34.69

		2003-01-28		31.93

		2003-01-29		31.26

		2003-01-30		31.32

		2003-01-31		31.17

		2003-02-03		31.02

		2003-02-04		32.76

		2003-02-05		33.04

		2003-02-06		33.35

		2003-02-07		34.01

		2003-02-10		33.99

		2003-02-11		33.68

		2003-02-12		34.33

		2003-02-13		33.7

		2003-02-14		32.62

		2003-02-18		31.11

		2003-02-19		31.31

		2003-02-20		31.16

		2003-02-21		30.25

		2003-02-24		31.98

		2003-02-25		31.74

		2003-02-26		31.94

		2003-02-27		30.53

		2003-02-28		29.63

		2003-03-03		30.43

		2003-03-04		31.83

		2003-03-05		30.38

		2003-03-06		31.37

		2003-03-07		31.08

		2003-03-10		33.31

		2003-03-11		33.61

		2003-03-12		33.51

		2003-03-13		31.76

		2003-03-14		30.98

		2003-03-17		31.75

		2003-03-18		30.43

		2003-03-19		31.54

		2003-03-20		30.44

		2003-03-21		28.67

		2003-03-24		30.39

		2003-03-25		28.75

		2003-03-26		28.23

		2003-03-27		27.96

		2003-03-28		27.75

		2003-03-31		29.15

		2003-04-01		28.36

		2003-04-02		28.02

		2003-04-03		28.21

		2003-04-04		29.13

		2003-04-07		28.45

		2003-04-08		27.13

		2003-04-09		27.11

		2003-04-10		25.6

		2003-04-11		24.44

		2003-04-14		23.41

		2003-04-15		22.56

		2003-04-16		22.52

		2003-04-17		21.5

		2003-04-21		21.95

		2003-04-22		20.7

		2003-04-23		20.8

		2003-04-24		20.33

		2003-04-25		20.8

		2003-04-28		20.84

		2003-04-29		20.76

		2003-04-30		21.21

		2003-05-01		21.59

		2003-05-02		20.63

		2003-05-05		21.13

		2003-05-06		20.8

		2003-05-07		21

		2003-05-08		21.24

		2003-05-09		19.69

		2003-05-12		19.52

		2003-05-13		19.91

		2003-05-14		20

		2003-05-15		19.24

		2003-05-16		18.4

		2003-05-19		20.51

		2003-05-20		21.29

		2003-05-21		21.21

		2003-05-22		19.78

		2003-05-23		19.17

		2003-05-27		19.99

		2003-05-28		20.03

		2003-05-29		20.43

		2003-05-30		19.47

		2003-06-02		20.85

		2003-06-03		20.84

		2003-06-04		20.62

		2003-06-05		20.83

		2003-06-06		21.25

		2003-06-09		22.15

		2003-06-10		20.64

		2003-06-11		20.21

		2003-06-12		20.41

		2003-06-13		20.66

		2003-06-16		20.22

		2003-06-17		20.01

		2003-06-18		19.76

		2003-06-19		19.8

		2003-06-20		19.14

		2003-06-23		20.58

		2003-06-24		20.75

		2003-06-25		20.81

		2003-06-26		19.4

		2003-06-27		19.16

		2003-06-30		19.52

		2003-07-01		19.46

		2003-07-02		19.03

		2003-07-03		19.39

		2003-07-07		20.06

		2003-07-08		19.48

		2003-07-09		18.93

		2003-07-10		19.19

		2003-07-11		18.47

		2003-07-14		19.59

		2003-07-15		19.55

		2003-07-16		19.76

		2003-07-17		20.22

		2003-07-18		19.11

		2003-07-21		19.78

		2003-07-22		19.17

		2003-07-23		18.64

		2003-07-24		18.6

		2003-07-25		17.75

		2003-07-28		18.36

		2003-07-29		18.67

		2003-07-30		18.85

		2003-07-31		19.49

		2003-08-01		20.75

		2003-08-04		21.27

		2003-08-05		22.68

		2003-08-06		21.5

		2003-08-07		20.26

		2003-08-08		19.59

		2003-08-11		19.75

		2003-08-12		17.94

		2003-08-13		18.77

		2003-08-14		18.47

		2003-08-15		18.27

		2003-08-18		18.18

		2003-08-19		17.86

		2003-08-20		17.82

		2003-08-21		17.84

		2003-08-22		18.55

		2003-08-25		19.53

		2003-08-26		19.49

		2003-08-27		19.13

		2003-08-28		18.48

		2003-08-29		18.63

		2003-09-02		19.02

		2003-09-03		19.44

		2003-09-04		18.71

		2003-09-05		18.17

		2003-09-08		18.26

		2003-09-09		18.85

		2003-09-10		20.01

		2003-09-11		19.25

		2003-09-12		18.68

		2003-09-15		19.28

		2003-09-16		18.03

		2003-09-17		18.15

		2003-09-18		17.57

		2003-09-19		17.54

		2003-09-22		19.65

		2003-09-23		19.47

		2003-09-24		21.22

		2003-09-25		22.26

		2003-09-26		22.23

		2003-09-29		21.67

		2003-09-30		22.72

		2003-10-01		21.07

		2003-10-02		20.8

		2003-10-03		19.5

		2003-10-06		19.51

		2003-10-07		19.41

		2003-10-08		19.18

		2003-10-09		18.82

		2003-10-10		18.45

		2003-10-13		17.55

		2003-10-14		17.37

		2003-10-15		17.69

		2003-10-16		17.19

		2003-10-17		17.62

		2003-10-20		17.04

		2003-10-21		16.55

		2003-10-22		17.67

		2003-10-23		17.68

		2003-10-24		17.71

		2003-10-27		18.05

		2003-10-28		16.82

		2003-10-29		16.43

		2003-10-30		16.33

		2003-10-31		16.1

		2003-11-03		16.55

		2003-11-04		16.55

		2003-11-05		16.86

		2003-11-06		16.74

		2003-11-07		16.93

		2003-11-10		17.62

		2003-11-11		17.54

		2003-11-12		16.75

		2003-11-13		16.47

		2003-11-14		16.94

		2003-11-17		18.6

		2003-11-18		19.11

		2003-11-19		18.8

		2003-11-20		19.48

		2003-11-21		18.98

		2003-11-24		17.44

		2003-11-25		16.71

		2003-11-26		16.23

		2003-11-28		16.32

		2003-12-01		16.77

		2003-12-02		16.27

		2003-12-03		16.63

		2003-12-04		16.3

		2003-12-05		17.09

		2003-12-08		16.54

		2003-12-09		17.63

		2003-12-10		17.87

		2003-12-11		16.73

		2003-12-12		16.41

		2003-12-15		17.23

		2003-12-16		15.93

		2003-12-17		15.58

		2003-12-18		16.16

		2003-12-19		16.42

		2003-12-22		16.94

		2003-12-23		16.49

		2003-12-24		16.66

		2003-12-26		17.45

		2003-12-29		17.09

		2003-12-30		17.68

		2003-12-31		18.31

		2004-01-02		18.22

		2004-01-05		17.49

		2004-01-06		16.73

		2004-01-07		15.5

		2004-01-08		15.61

		2004-01-09		16.75

		2004-01-12		16.82

		2004-01-13		18.04

		2004-01-14		16.75

		2004-01-15		15.56

		2004-01-16		15

		2004-01-20		15.21

		2004-01-21		14.34

		2004-01-22		14.71

		2004-01-23		14.84

		2004-01-26		14.55

		2004-01-27		15.35

		2004-01-28		16.78

		2004-01-29		17.14

		2004-01-30		16.63

		2004-02-02		17.11

		2004-02-03		17.34

		2004-02-04		17.87

		2004-02-05		17.71

		2004-02-06		16

		2004-02-09		16.39

		2004-02-10		15.94

		2004-02-11		15.39

		2004-02-12		15.31

		2004-02-13		15.58

		2004-02-17		15.4

		2004-02-18		15.59

		2004-02-19		15.8

		2004-02-20		16.04

		2004-02-23		16.29

		2004-02-24		15.9

		2004-02-25		14.93

		2004-02-26		14.83

		2004-02-27		14.55

		2004-03-01		14.44

		2004-03-02		14.86

		2004-03-03		14.55

		2004-03-04		14.4

		2004-03-05		14.48

		2004-03-08		15.79

		2004-03-09		16.6

		2004-03-10		18.67

		2004-03-11		20.67

		2004-03-12		18.3

		2004-03-15		21.13

		2004-03-16		20.34

		2004-03-17		18.11

		2004-03-18		18.53

		2004-03-19		19.15

		2004-03-22		21.58

		2004-03-23		20.67

		2004-03-24		19.81

		2004-03-25		17.88

		2004-03-26		17.33

		2004-03-29		16.5

		2004-03-30		16.28

		2004-03-31		16.74

		2004-04-01		16.65

		2004-04-02		15.64

		2004-04-05		14.97

		2004-04-06		15.32

		2004-04-07		15.76

		2004-04-08		16.26

		2004-04-12		15.28

		2004-04-13		17.26

		2004-04-14		15.62

		2004-04-15		15.74

		2004-04-16		14.94

		2004-04-19		15.42

		2004-04-20		16.67

		2004-04-21		15.6

		2004-04-22		14.61

		2004-04-23		14.01

		2004-04-26		14.77

		2004-04-27		15.07

		2004-04-28		16.29

		2004-04-29		16.6

		2004-04-30		17.19

		2004-05-03		16.62

		2004-05-04		16.55

		2004-05-05		15.77

		2004-05-06		17.05

		2004-05-07		18.13

		2004-05-10		19.77

		2004-05-11		18.57

		2004-05-12		18.14

		2004-05-13		18.86

		2004-05-14		18.47

		2004-05-17		19.96

		2004-05-18		19.33

		2004-05-19		18.93

		2004-05-20		18.67

		2004-05-21		18.49

		2004-05-24		18.08

		2004-05-25		15.96

		2004-05-26		15.97

		2004-05-27		15.28

		2004-05-28		15.5

		2004-06-01		16.3

		2004-06-02		16.08

		2004-06-03		17.03

		2004-06-04		16.78

		2004-06-07		15.39

		2004-06-08		15.01

		2004-06-09		15.39

		2004-06-10		15.04

		2004-06-14		16.07

		2004-06-15		15.05

		2004-06-16		14.79

		2004-06-17		15.15

		2004-06-18		14.99

		2004-06-21		15.26

		2004-06-22		14.31

		2004-06-23		13.98

		2004-06-24		14.81

		2004-06-25		15.19

		2004-06-28		16.07

		2004-06-29		15.47

		2004-06-30		14.34

		2004-07-01		15.2

		2004-07-02		15.08

		2004-07-06		16.25

		2004-07-07		15.81

		2004-07-08		16.2

		2004-07-09		15.78

		2004-07-12		14.96

		2004-07-13		14.46

		2004-07-14		13.76

		2004-07-15		14.71

		2004-07-16		14.34

		2004-07-19		15.17

		2004-07-20		14.17

		2004-07-21		16.41

		2004-07-22		15.75

		2004-07-23		16.5

		2004-07-26		17.3

		2004-07-27		16.55

		2004-07-28		16.15

		2004-07-29		15.68

		2004-07-30		15.32

		2004-08-02		15.37

		2004-08-03		16.03

		2004-08-04		16.21

		2004-08-05		18.32

		2004-08-06		19.34

		2004-08-09		18.89

		2004-08-10		17.47

		2004-08-11		18.04

		2004-08-12		19.08

		2004-08-13		17.98

		2004-08-16		17.57

		2004-08-17		17.02

		2004-08-18		16.23

		2004-08-19		16.96

		2004-08-20		16

		2004-08-23		15.88

		2004-08-24		15.33

		2004-08-25		14.98

		2004-08-26		14.91

		2004-08-27		14.71

		2004-08-30		15.44

		2004-08-31		15.29

		2004-09-01		14.91

		2004-09-02		14.28

		2004-09-03		13.91

		2004-09-07		14.07

		2004-09-08		14.06

		2004-09-09		14.01

		2004-09-10		13.76

		2004-09-13		13.17

		2004-09-14		13.56

		2004-09-15		14.64

		2004-09-16		14.39

		2004-09-17		14.03

		2004-09-20		14.43

		2004-09-21		13.66

		2004-09-22		14.74

		2004-09-23		14.8

		2004-09-24		14.28

		2004-09-27		14.62

		2004-09-28		13.83

		2004-09-29		13.21

		2004-09-30		13.34

		2004-10-01		12.75

		2004-10-04		13.41

		2004-10-05		13.95

		2004-10-06		13.28

		2004-10-07		14.5

		2004-10-08		15.05

		2004-10-11		14.71

		2004-10-12		15.05

		2004-10-13		15.42

		2004-10-14		16.43

		2004-10-15		15.04

		2004-10-18		14.71

		2004-10-19		15.13

		2004-10-20		14.85

		2004-10-21		14.54

		2004-10-22		15.28

		2004-10-25		16.58

		2004-10-26		16.39

		2004-10-27		15.72

		2004-10-28		15.39

		2004-10-29		16.27

		2004-11-01		16.27

		2004-11-02		16.18

		2004-11-03		14.04

		2004-11-04		13.97

		2004-11-05		13.84

		2004-11-08		13.8

		2004-11-09		13.61

		2004-11-10		13.08

		2004-11-11		13.04

		2004-11-12		13.33

		2004-11-15		13.38

		2004-11-16		13.21

		2004-11-17		13.21

		2004-11-18		12.98

		2004-11-19		13.5

		2004-11-22		12.97

		2004-11-23		12.67

		2004-11-24		12.72

		2004-11-26		12.78

		2004-11-29		13.3

		2004-11-30		13.24

		2004-12-01		12.97

		2004-12-02		12.98

		2004-12-03		12.96

		2004-12-06		13.19

		2004-12-07		13.67

		2004-12-08		13.19

		2004-12-09		12.88

		2004-12-10		12.76

		2004-12-13		12.54

		2004-12-14		12.73

		2004-12-15		12.35

		2004-12-16		12.27

		2004-12-17		11.95

		2004-12-20		11.83

		2004-12-21		11.55

		2004-12-22		11.45

		2004-12-23		11.23

		2004-12-27		12.14

		2004-12-28		12

		2004-12-29		11.62

		2004-12-30		12.56

		2004-12-31		13.29

		2005-01-03		14.08

		2005-01-04		13.98

		2005-01-05		14.09

		2005-01-06		13.58

		2005-01-07		13.49

		2005-01-10		13.23

		2005-01-11		13.19

		2005-01-12		12.56

		2005-01-13		12.84

		2005-01-14		12.43

		2005-01-18		12.47

		2005-01-19		13.18

		2005-01-20		13.83

		2005-01-21		14.36

		2005-01-24		14.65

		2005-01-25		14.06

		2005-01-26		13.44

		2005-01-27		13.24

		2005-01-28		13.24

		2005-01-31		12.82

		2005-02-01		12.03

		2005-02-02		11.66

		2005-02-03		11.79

		2005-02-04		11.21

		2005-02-07		11.73

		2005-02-08		11.6

		2005-02-09		12

		2005-02-10		11.51

		2005-02-11		11.43

		2005-02-14		11.52

		2005-02-15		11.27

		2005-02-16		11.1

		2005-02-17		11.77

		2005-02-18		11.18

		2005-02-22		13.14

		2005-02-23		12.39

		2005-02-24		11.57

		2005-02-25		11.49

		2005-02-28		12.08

		2005-03-01		12.04

		2005-03-02		12.5

		2005-03-03		12.93

		2005-03-04		11.94

		2005-03-07		12.26

		2005-03-08		12.4

		2005-03-09		12.7

		2005-03-10		12.49

		2005-03-11		12.8

		2005-03-14		12.39

		2005-03-15		13.15

		2005-03-16		13.49

		2005-03-17		13.29

		2005-03-18		13.14

		2005-03-21		13.61

		2005-03-22		14.27

		2005-03-23		14.06

		2005-03-24		13.42

		2005-03-28		13.75

		2005-03-29		14.49

		2005-03-30		13.64

		2005-03-31		14.02

		2005-04-01		14.09

		2005-04-04		14.11

		2005-04-05		13.68

		2005-04-06		13.15

		2005-04-07		12.33

		2005-04-08		12.62

		2005-04-11		11.98

		2005-04-12		11.3

		2005-04-13		13.31

		2005-04-14		14.53

		2005-04-15		17.74

		2005-04-18		16.56

		2005-04-19		14.96

		2005-04-20		16.92

		2005-04-21		14.41

		2005-04-22		15.38

		2005-04-25		14.62

		2005-04-26		14.91

		2005-04-27		14.87

		2005-04-28		16.86

		2005-04-29		15.31

		2005-05-02		15.12

		2005-05-03		14.53

		2005-05-04		13.85

		2005-05-05		13.98

		2005-05-06		14.05

		2005-05-09		13.75

		2005-05-10		14.91

		2005-05-11		14.45

		2005-05-12		16.12

		2005-05-13		16.32

		2005-05-16		15.68

		2005-05-17		14.57

		2005-05-18		13.63

		2005-05-19		13.32

		2005-05-20		13.14

		2005-05-23		12.95

		2005-05-24		12.69

		2005-05-25		12.58

		2005-05-26		12.24

		2005-05-27		12.15

		2005-05-31		13.29

		2005-06-01		12.36

		2005-06-02		11.84

		2005-06-03		12.15

		2005-06-06		12.28

		2005-06-07		12.39

		2005-06-08		12.7

		2005-06-09		12.08

		2005-06-10		11.96

		2005-06-13		11.65

		2005-06-14		11.79

		2005-06-15		11.46

		2005-06-16		11.15

		2005-06-17		11.48

		2005-06-20		11.47

		2005-06-21		11.08

		2005-06-22		11.05

		2005-06-23		12.13

		2005-06-24		12.18

		2005-06-27		12.52

		2005-06-28		11.58

		2005-06-29		11.77

		2005-06-30		12.04

		2005-07-01		11.4

		2005-07-05		11.68

		2005-07-06		12.27

		2005-07-07		12.49

		2005-07-08		11.45

		2005-07-11		11.28

		2005-07-12		10.95

		2005-07-13		10.84

		2005-07-14		10.81

		2005-07-15		10.33

		2005-07-18		10.77

		2005-07-19		10.45

		2005-07-20		10.23

		2005-07-21		10.97

		2005-07-22		10.52

		2005-07-25		11.1

		2005-07-26		10.99

		2005-07-27		10.36

		2005-07-28		10.52

		2005-07-29		11.57

		2005-08-01		12.08

		2005-08-02		11.75

		2005-08-03		11.83

		2005-08-04		12.52

		2005-08-05		12.48

		2005-08-08		13.21

		2005-08-09		12.4

		2005-08-10		12.38

		2005-08-11		12.42

		2005-08-12		12.74

		2005-08-15		12.26

		2005-08-16		13.52

		2005-08-17		13.3

		2005-08-18		13.42

		2005-08-19		13.42

		2005-08-22		13.42

		2005-08-23		13.34

		2005-08-24		14.17

		2005-08-25		13.73

		2005-08-26		13.72

		2005-08-29		13.52

		2005-08-30		13.65

		2005-08-31		12.6

		2005-09-01		13.15

		2005-09-02		13.57

		2005-09-06		12.93

		2005-09-07		12.52

		2005-09-08		12.93

		2005-09-09		11.98

		2005-09-12		11.65

		2005-09-13		12.39

		2005-09-14		12.91

		2005-09-15		12.49

		2005-09-16		11.22

		2005-09-19		12.14

		2005-09-20		12.64

		2005-09-21		13.79

		2005-09-22		13.33

		2005-09-23		12.96

		2005-09-26		13.04

		2005-09-27		12.76

		2005-09-28		12.63

		2005-09-29		12.24

		2005-09-30		11.92

		2005-10-03		12.46

		2005-10-04		13.2

		2005-10-05		14.55

		2005-10-06		14.96

		2005-10-07		14.59

		2005-10-10		15.55

		2005-10-11		15.63

		2005-10-12		16.22

		2005-10-13		16.47

		2005-10-14		14.87

		2005-10-17		14.67

		2005-10-18		15.33

		2005-10-19		13.5

		2005-10-20		16.11

		2005-10-21		16.13

		2005-10-24		14.74

		2005-10-25		14.53

		2005-10-26		14.59

		2005-10-27		16.02

		2005-10-28		14.25

		2005-10-31		15.32

		2005-11-01		14.85

		2005-11-02		13.48

		2005-11-03		13

		2005-11-04		13.17

		2005-11-07		13.1

		2005-11-08		13.08

		2005-11-09		12.8

		2005-11-10		11.9

		2005-11-11		11.63

		2005-11-14		12.18

		2005-11-15		12.23

		2005-11-16		12.26

		2005-11-17		11.25

		2005-11-18		11.12

		2005-11-21		10.82

		2005-11-22		10.6

		2005-11-23		10.96

		2005-11-25		10.88

		2005-11-28		11.84

		2005-11-29		11.89

		2005-11-30		12.06

		2005-12-01		11.24

		2005-12-02		11.01

		2005-12-05		11.6

		2005-12-06		11.52

		2005-12-07		12.18

		2005-12-08		12.21

		2005-12-09		11.69

		2005-12-12		11.47

		2005-12-13		11.11

		2005-12-14		10.48

		2005-12-15		10.73

		2005-12-16		10.68

		2005-12-19		11.38

		2005-12-20		11.19

		2005-12-21		10.81

		2005-12-22		10.29

		2005-12-23		10.27

		2005-12-27		11.57

		2005-12-28		11.35

		2005-12-29		11.61

		2005-12-30		12.07

		2006-01-03		11.14

		2006-01-04		11.37

		2006-01-05		11.31

		2006-01-06		11

		2006-01-09		11.13

		2006-01-10		10.86

		2006-01-11		10.94

		2006-01-12		11.2

		2006-01-13		11.23

		2006-01-17		11.91

		2006-01-18		12.25

		2006-01-19		11.98

		2006-01-20		14.56

		2006-01-23		13.93

		2006-01-24		13.31

		2006-01-25		12.87

		2006-01-26		12.42

		2006-01-27		11.97

		2006-01-30		12.39

		2006-01-31		12.95

		2006-02-01		12.36

		2006-02-02		13.23

		2006-02-03		12.96

		2006-02-06		13.04

		2006-02-07		13.59

		2006-02-08		12.83

		2006-02-09		13.12

		2006-02-10		12.87

		2006-02-13		13.35

		2006-02-14		12.25

		2006-02-15		12.31

		2006-02-16		11.48

		2006-02-17		12.01

		2006-02-21		12.41

		2006-02-22		11.88

		2006-02-23		11.87

		2006-02-24		11.46

		2006-02-27		11.59

		2006-02-28		12.34

		2006-03-01		11.54

		2006-03-02		11.72

		2006-03-03		11.96

		2006-03-06		12.74

		2006-03-07		12.66

		2006-03-08		12.32

		2006-03-09		12.68

		2006-03-10		11.85

		2006-03-13		11.37

		2006-03-14		10.74

		2006-03-15		11.35

		2006-03-16		11.98

		2006-03-17		12.12

		2006-03-20		11.79

		2006-03-21		11.62

		2006-03-22		11.21

		2006-03-23		11.17

		2006-03-24		11.19

		2006-03-27		11.46

		2006-03-28		11.58

		2006-03-29		10.95

		2006-03-30		11.57

		2006-03-31		11.39

		2006-04-03		11.57

		2006-04-04		11.14

		2006-04-05		11.13

		2006-04-06		11.45

		2006-04-07		12.26

		2006-04-10		12.19

		2006-04-11		13

		2006-04-12		12.76

		2006-04-13		12.38

		2006-04-17		12.58

		2006-04-18		11.4

		2006-04-19		11.32

		2006-04-20		11.64

		2006-04-21		11.59

		2006-04-24		11.75

		2006-04-25		11.75

		2006-04-26		11.76

		2006-04-27		11.84

		2006-04-28		11.59

		2006-05-01		12.54

		2006-05-02		11.99

		2006-05-03		11.99

		2006-05-04		11.86

		2006-05-05		11.62

		2006-05-08		12

		2006-05-09		11.99

		2006-05-10		11.78

		2006-05-11		12.49

		2006-05-12		14.19

		2006-05-15		13.57

		2006-05-16		13.35

		2006-05-17		16.26

		2006-05-18		16.99

		2006-05-19		17.18

		2006-05-22		17.72

		2006-05-23		18.26

		2006-05-24		17.36

		2006-05-25		15.5

		2006-05-26		14.26

		2006-05-30		18.66

		2006-05-31		16.44

		2006-06-01		14.52

		2006-06-02		14.32

		2006-06-05		16.65

		2006-06-06		17.34

		2006-06-07		17.8

		2006-06-08		18.35

		2006-06-09		18.12

		2006-06-12		20.96

		2006-06-13		23.81

		2006-06-14		21.46

		2006-06-15		15.9

		2006-06-16		17.25

		2006-06-19		17.83

		2006-06-20		16.69

		2006-06-21		15.52

		2006-06-22		15.88

		2006-06-23		15.89

		2006-06-26		15.62

		2006-06-27		16.4

		2006-06-28		15.79

		2006-06-29		13.03

		2006-06-30		13.08

		2006-07-03		13.05

		2006-07-05		14.15

		2006-07-06		13.65

		2006-07-07		13.97

		2006-07-10		14.02

		2006-07-11		13.14

		2006-07-12		14.49

		2006-07-13		17.79

		2006-07-14		18.05

		2006-07-17		18.64

		2006-07-18		17.74

		2006-07-19		15.55

		2006-07-20		16.21

		2006-07-21		17.4

		2006-07-24		14.98

		2006-07-25		14.85

		2006-07-26		14.62

		2006-07-27		14.94

		2006-07-28		14.33

		2006-07-31		14.95

		2006-08-01		15.05

		2006-08-02		14.34

		2006-08-03		14.46

		2006-08-04		14.34

		2006-08-07		15.23

		2006-08-08		15.23

		2006-08-09		15.2

		2006-08-10		14.46

		2006-08-11		14.3

		2006-08-14		14.26

		2006-08-15		13.42

		2006-08-16		12.41

		2006-08-17		12.24

		2006-08-18		11.64

		2006-08-21		12.22

		2006-08-22		12.19

		2006-08-23		12.4

		2006-08-24		12.4

		2006-08-25		12.31

		2006-08-28		12.18

		2006-08-29		12.28

		2006-08-30		12.22

		2006-08-31		12.31

		2006-09-01		11.96

		2006-09-05		12.63

		2006-09-06		13.74

		2006-09-07		13.88

		2006-09-08		13.16

		2006-09-11		12.99

		2006-09-12		11.92

		2006-09-13		11.18

		2006-09-14		11.55

		2006-09-15		11.76

		2006-09-18		11.78

		2006-09-19		11.98

		2006-09-20		11.39

		2006-09-21		12.25

		2006-09-22		12.59

		2006-09-25		12.12

		2006-09-26		11.53

		2006-09-27		11.58

		2006-09-28		11.72

		2006-09-29		11.98

		2006-10-02		12.57

		2006-10-03		12.24

		2006-10-04		11.86

		2006-10-05		11.98

		2006-10-06		11.56

		2006-10-09		11.68

		2006-10-10		11.52

		2006-10-11		11.62

		2006-10-12		11.09

		2006-10-13		10.75

		2006-10-16		11.09

		2006-10-17		11.73

		2006-10-18		11.34

		2006-10-19		10.9

		2006-10-20		10.63

		2006-10-23		11.08

		2006-10-24		10.78

		2006-10-25		10.66

		2006-10-26		10.56

		2006-10-27		10.8

		2006-10-30		11.2

		2006-10-31		11.1

		2006-11-01		11.51

		2006-11-02		11.42

		2006-11-03		11.16

		2006-11-06		11.16

		2006-11-07		11.09

		2006-11-08		10.75

		2006-11-09		11.01

		2006-11-10		10.79

		2006-11-13		10.86

		2006-11-14		10.5

		2006-11-15		10.31

		2006-11-16		10.16

		2006-11-17		10.05

		2006-11-20		9.97

		2006-11-21		9.9

		2006-11-22		10.14

		2006-11-24		10.73

		2006-11-27		12.3

		2006-11-28		11.62

		2006-11-29		10.83

		2006-11-30		10.91

		2006-12-01		11.66

		2006-12-04		11.23

		2006-12-05		11.27

		2006-12-06		11.33

		2006-12-07		12.67

		2006-12-08		12.07

		2006-12-11		10.71

		2006-12-12		10.65

		2006-12-13		10.18

		2006-12-14		9.97

		2006-12-15		10.05

		2006-12-18		10.6

		2006-12-19		10.3

		2006-12-20		10.26

		2006-12-21		10.53

		2006-12-22		11.36

		2006-12-26		11.26

		2006-12-27		10.64

		2006-12-28		10.99

		2006-12-29		11.56

		2007-01-03		12.04

		2007-01-04		11.51

		2007-01-05		12.14

		2007-01-08		12

		2007-01-09		11.91

		2007-01-10		11.47

		2007-01-11		10.87

		2007-01-12		10.15

		2007-01-16		10.74

		2007-01-17		10.59

		2007-01-18		10.85

		2007-01-19		10.4

		2007-01-22		10.77

		2007-01-23		10.34

		2007-01-24		9.89

		2007-01-25		11.22

		2007-01-26		11.13

		2007-01-29		11.45

		2007-01-30		10.96

		2007-01-31		10.42

		2007-02-01		10.31

		2007-02-02		10.08

		2007-02-05		10.55

		2007-02-06		10.65

		2007-02-07		10.32

		2007-02-08		10.44

		2007-02-09		11.1

		2007-02-12		11.61

		2007-02-13		10.34

		2007-02-14		10.23

		2007-02-15		10.22

		2007-02-16		10.02

		2007-02-20		10.24

		2007-02-21		10.2

		2007-02-22		10.18

		2007-02-23		10.58

		2007-02-26		11.15

		2007-02-27		18.31

		2007-02-28		15.42

		2007-03-01		15.82

		2007-03-02		18.61

		2007-03-05		19.63

		2007-03-06		15.96

		2007-03-07		15.24

		2007-03-08		14.29

		2007-03-09		14.09

		2007-03-12		13.99

		2007-03-13		18.13

		2007-03-14		17.27

		2007-03-15		16.43

		2007-03-16		16.79

		2007-03-19		14.59

		2007-03-20		13.27

		2007-03-21		12.19

		2007-03-22		12.93

		2007-03-23		12.95

		2007-03-26		13.16

		2007-03-27		13.48

		2007-03-28		14.98

		2007-03-29		15.14

		2007-03-30		14.64

		2007-04-02		14.53

		2007-04-03		13.46

		2007-04-04		13.24

		2007-04-05		13.23

		2007-04-09		13.14

		2007-04-10		12.68

		2007-04-11		13.49

		2007-04-12		12.71

		2007-04-13		12.2

		2007-04-16		11.98

		2007-04-17		12.14

		2007-04-18		12.42

		2007-04-19		12.54

		2007-04-20		12.07

		2007-04-23		13.04

		2007-04-24		13.12

		2007-04-25		13.21

		2007-04-26		12.79

		2007-04-27		12.45

		2007-04-30		14.22

		2007-05-01		13.51

		2007-05-02		13.08

		2007-05-03		13.09

		2007-05-04		12.91

		2007-05-07		13.15

		2007-05-08		13.21

		2007-05-09		12.88

		2007-05-10		13.6

		2007-05-11		12.95

		2007-05-14		13.96

		2007-05-15		14.01

		2007-05-16		13.5

		2007-05-17		13.51

		2007-05-18		12.76

		2007-05-21		13.3

		2007-05-22		13.06

		2007-05-23		13.24

		2007-05-24		14.08

		2007-05-25		13.34

		2007-05-29		13.53

		2007-05-30		12.83

		2007-05-31		13.05

		2007-06-01		12.78

		2007-06-04		13.29

		2007-06-05		13.63

		2007-06-06		14.87

		2007-06-07		17.06

		2007-06-08		14.84

		2007-06-11		14.71

		2007-06-12		16.67

		2007-06-13		14.73

		2007-06-14		13.64

		2007-06-15		13.94

		2007-06-18		13.42

		2007-06-19		12.85

		2007-06-20		14.67

		2007-06-21		14.21

		2007-06-22		15.75

		2007-06-25		16.65

		2007-06-26		18.89

		2007-06-27		15.53

		2007-06-28		15.54

		2007-06-29		16.23
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		2007-07-03		14.92

		2007-07-05		15.48

		2007-07-06		14.72

		2007-07-09		15.16

		2007-07-10		17.57

		2007-07-11		16.64

		2007-07-12		15.54

		2007-07-13		15.15

		2007-07-16		15.59

		2007-07-17		15.63

		2007-07-18		16

		2007-07-19		15.23

		2007-07-20		16.95

		2007-07-23		16.81

		2007-07-24		18.55

		2007-07-25		18.1

		2007-07-26		20.74

		2007-07-27		24.17

		2007-07-30		20.87

		2007-07-31		23.52

		2007-08-01		23.67

		2007-08-02		21.22

		2007-08-03		25.16

		2007-08-06		22.94

		2007-08-07		21.56

		2007-08-08		21.45

		2007-08-09		26.48

		2007-08-10		28.3

		2007-08-13		26.57

		2007-08-14		27.68

		2007-08-15		30.67

		2007-08-16		30.83

		2007-08-17		29.99

		2007-08-20		26.33

		2007-08-21		25.25

		2007-08-22		22.89

		2007-08-23		22.62

		2007-08-24		20.72

		2007-08-27		22.72

		2007-08-28		26.3

		2007-08-29		23.81

		2007-08-30		25.06

		2007-08-31		23.38

		2007-09-04		22.78

		2007-09-05		24.58

		2007-09-06		23.99

		2007-09-07		26.23

		2007-09-10		27.38

		2007-09-11		25.27

		2007-09-12		24.96

		2007-09-13		24.76

		2007-09-14		24.92

		2007-09-17		26.48

		2007-09-18		20.35

		2007-09-19		20.03

		2007-09-20		20.45

		2007-09-21		19

		2007-09-24		19.37
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		2007-09-27		17

		2007-09-28		18
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		2007-10-09		16.12
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		2007-11-08		26.16

		2007-11-09		28.5

		2007-11-12		31.09

		2007-11-13		24.1

		2007-11-14		25.94

		2007-11-15		28.06

		2007-11-16		25.49

		2007-11-19		26.01

		2007-11-20		24.88

		2007-11-21		26.84

		2007-11-23		25.61

		2007-11-26		28.91

		2007-11-27		26.28

		2007-11-28		24.11

		2007-11-29		23.97

		2007-11-30		22.87

		2007-12-03		23.61

		2007-12-04		23.79

		2007-12-05		22.53

		2007-12-06		20.96

		2007-12-07		20.85

		2007-12-10		20.74

		2007-12-11		23.59

		2007-12-12		22.47

		2007-12-13		22.56

		2007-12-14		23.27

		2007-12-17		24.52

		2007-12-18		22.64

		2007-12-19		21.68

		2007-12-20		20.58

		2007-12-21		18.47

		2007-12-24		18.6

		2007-12-26		18.66

		2007-12-27		20.26

		2007-12-28		20.74

		2007-12-31		22.5

		2008-01-02		23.17

		2008-01-03		22.49

		2008-01-04		23.94

		2008-01-07		23.79

		2008-01-08		25.43

		2008-01-09		24.12

		2008-01-10		23.45

		2008-01-11		23.68

		2008-01-14		22.9

		2008-01-15		23.34

		2008-01-16		24.38

		2008-01-17		28.46

		2008-01-18		27.18

		2008-01-22		31.01

		2008-01-23		29.02

		2008-01-24		27.78

		2008-01-25		29.08

		2008-01-28		27.78

		2008-01-29		27.32

		2008-01-30		27.62

		2008-01-31		26.2

		2008-02-01		24.02

		2008-02-04		25.99

		2008-02-05		28.24

		2008-02-06		28.97

		2008-02-07		27.66

		2008-02-08		28.01

		2008-02-11		27.6

		2008-02-12		26.33

		2008-02-13		24.88

		2008-02-14		25.54

		2008-02-15		25.02

		2008-02-19		25.59

		2008-02-20		24.4

		2008-02-21		25.12

		2008-02-22		24.06

		2008-02-25		23.03

		2008-02-26		21.9

		2008-02-27		22.69

		2008-02-28		23.53

		2008-02-29		26.54

		2008-03-03		26.28

		2008-03-04		25.52

		2008-03-05		24.6

		2008-03-06		27.55

		2008-03-07		27.49

		2008-03-10		29.38

		2008-03-11		26.36

		2008-03-12		27.22

		2008-03-13		27.29

		2008-03-14		31.16

		2008-03-17		32.24

		2008-03-18		25.79

		2008-03-19		29.84

		2008-03-20		26.62

		2008-03-24		25.73

		2008-03-25		25.72

		2008-03-26		26.08

		2008-03-27		25.88

		2008-03-28		25.71

		2008-03-31		25.61

		2008-04-01		22.68

		2008-04-02		23.43

		2008-04-03		23.21

		2008-04-04		22.45

		2008-04-07		22.42

		2008-04-08		22.36

		2008-04-09		22.81

		2008-04-10		21.98

		2008-04-11		23.46

		2008-04-14		23.82

		2008-04-15		22.78

		2008-04-16		20.53

		2008-04-17		20.37

		2008-04-18		20.13

		2008-04-21		20.5

		2008-04-22		20.87

		2008-04-23		20.26

		2008-04-24		20.06

		2008-04-25		19.59

		2008-04-28		19.64

		2008-04-29		20.24

		2008-04-30		20.79

		2008-05-01		18.88

		2008-05-02		18.18

		2008-05-05		18.9

		2008-05-06		18.21

		2008-05-07		19.73

		2008-05-08		19.4

		2008-05-09		19.41

		2008-05-12		17.79

		2008-05-13		17.98

		2008-05-14		17.66

		2008-05-15		16.3

		2008-05-16		16.47

		2008-05-19		17.01

		2008-05-20		17.58

		2008-05-21		18.59

		2008-05-22		18.05

		2008-05-23		19.55

		2008-05-27		19.64

		2008-05-28		19.07

		2008-05-29		18.14

		2008-05-30		17.83

		2008-06-02		19.83

		2008-06-03		20.24

		2008-06-04		20.8

		2008-06-05		18.63

		2008-06-06		23.56

		2008-06-09		23.12

		2008-06-10		23.18

		2008-06-11		24.12

		2008-06-12		23.33

		2008-06-13		21.22

		2008-06-16		20.95

		2008-06-17		21.13

		2008-06-18		22.24

		2008-06-19		21.58

		2008-06-20		22.87

		2008-06-23		22.64

		2008-06-24		22.42

		2008-06-25		21.14

		2008-06-26		23.93

		2008-06-27		23.44

		2008-06-30		23.95

		2008-07-01		23.65

		2008-07-02		25.92

		2008-07-03		24.78

		2008-07-07		25.78

		2008-07-08		23.15

		2008-07-09		25.23

		2008-07-10		25.59

		2008-07-11		27.49

		2008-07-14		28.48

		2008-07-15		28.54

		2008-07-16		25.1

		2008-07-17		25.01

		2008-07-18		24.05

		2008-07-21		23.05

		2008-07-22		21.18

		2008-07-23		21.31

		2008-07-24		23.44

		2008-07-25		22.91

		2008-07-28		24.23

		2008-07-29		22.03

		2008-07-30		21.21

		2008-07-31		22.94

		2008-08-01		22.57

		2008-08-04		23.49

		2008-08-05		21.14

		2008-08-06		20.23

		2008-08-07		21.15

		2008-08-08		20.66

		2008-08-11		20.12

		2008-08-12		21.17

		2008-08-13		21.55

		2008-08-14		20.34

		2008-08-15		19.58

		2008-08-18		20.98

		2008-08-19		21.28

		2008-08-20		20.42

		2008-08-21		19.82

		2008-08-22		18.81

		2008-08-25		20.97

		2008-08-26		20.49

		2008-08-27		19.76

		2008-08-28		19.43

		2008-08-29		20.65

		2008-09-02		21.99

		2008-09-03		21.43

		2008-09-04		24.03

		2008-09-05		23.06

		2008-09-08		22.64

		2008-09-09		25.47

		2008-09-10		24.52

		2008-09-11		24.39

		2008-09-12		25.66

		2008-09-15		31.7

		2008-09-16		30.3

		2008-09-17		36.22

		2008-09-18		33.1

		2008-09-19		32.07

		2008-09-22		33.85

		2008-09-23		35.72

		2008-09-24		35.19

		2008-09-25		32.82

		2008-09-26		34.74

		2008-09-29		46.72

		2008-09-30		39.39

		2008-10-01		39.81

		2008-10-02		45.26

		2008-10-03		45.14

		2008-10-06		52.05

		2008-10-07		53.68

		2008-10-08		57.53

		2008-10-09		63.92

		2008-10-10		69.95

		2008-10-13		54.99

		2008-10-14		55.13

		2008-10-15		69.25

		2008-10-16		67.61

		2008-10-17		70.33

		2008-10-20		52.97

		2008-10-21		53.11

		2008-10-22		69.65

		2008-10-23		67.8

		2008-10-24		79.13

		2008-10-27		80.06

		2008-10-28		66.96

		2008-10-29		69.96

		2008-10-30		62.9

		2008-10-31		59.89

		2008-11-03		53.68

		2008-11-04		47.73

		2008-11-05		54.56

		2008-11-06		63.68

		2008-11-07		56.1

		2008-11-10		59.98

		2008-11-11		61.44

		2008-11-12		66.46

		2008-11-13		59.83

		2008-11-14		66.31

		2008-11-17		69.15

		2008-11-18		67.64

		2008-11-19		74.26

		2008-11-20		80.86

		2008-11-21		72.67

		2008-11-24		64.7

		2008-11-25		60.9

		2008-11-26		54.92

		2008-11-28		55.28

		2008-12-01		68.51

		2008-12-02		62.98

		2008-12-03		60.72

		2008-12-04		63.64

		2008-12-05		59.93

		2008-12-08		58.49

		2008-12-09		58.91

		2008-12-10		55.73

		2008-12-11		55.78

		2008-12-12		54.28

		2008-12-15		56.76

		2008-12-16		52.37

		2008-12-17		49.84

		2008-12-18		47.34

		2008-12-19		44.93

		2008-12-22		44.56

		2008-12-23		45.02

		2008-12-24		44.21

		2008-12-26		43.38

		2008-12-29		43.9

		2008-12-30		41.63

		2008-12-31		40

		2009-01-02		39.19

		2009-01-05		39.08

		2009-01-06		38.56

		2009-01-07		43.39

		2009-01-08		42.56

		2009-01-09		42.82

		2009-01-12		45.84

		2009-01-13		43.27

		2009-01-14		49.14

		2009-01-15		51

		2009-01-16		46.11

		2009-01-20		56.65

		2009-01-21		46.42

		2009-01-22		47.29

		2009-01-23		47.27

		2009-01-26		45.69

		2009-01-27		42.25

		2009-01-28		39.66

		2009-01-29		42.63

		2009-01-30		44.84

		2009-02-02		45.52

		2009-02-03		43.06

		2009-02-04		43.85

		2009-02-05		43.73

		2009-02-06		43.37

		2009-02-09		43.64

		2009-02-10		46.67

		2009-02-11		44.53

		2009-02-12		41.25

		2009-02-13		42.93

		2009-02-17		48.66

		2009-02-18		48.46

		2009-02-19		47.08

		2009-02-20		49.3

		2009-02-23		52.62

		2009-02-24		45.49

		2009-02-25		44.67

		2009-02-26		44.66

		2009-02-27		46.35

		2009-03-02		52.65

		2009-03-03		50.93

		2009-03-04		47.56

		2009-03-05		50.17

		2009-03-06		49.33

		2009-03-09		49.68

		2009-03-10		44.37

		2009-03-11		43.61

		2009-03-12		41.18

		2009-03-13		42.36

		2009-03-16		43.74

		2009-03-17		40.8

		2009-03-18		40.06

		2009-03-19		43.68

		2009-03-20		45.89

		2009-03-23		43.23

		2009-03-24		42.93

		2009-03-25		42.25

		2009-03-26		40.36

		2009-03-27		41.04

		2009-03-30		45.54

		2009-03-31		44.14

		2009-04-01		42.28

		2009-04-02		42.04

		2009-04-03		39.7

		2009-04-06		40.93

		2009-04-07		40.39

		2009-04-08		38.85

		2009-04-09		36.53

		2009-04-13		37.81

		2009-04-14		37.67

		2009-04-15		36.17

		2009-04-16		35.79

		2009-04-17		33.94

		2009-04-20		39.18

		2009-04-21		37.14

		2009-04-22		38.1

		2009-04-23		37.15

		2009-04-24		36.82

		2009-04-27		38.32

		2009-04-28		37.95

		2009-04-29		36.08

		2009-04-30		36.5

		2009-05-01		35.3

		2009-05-04		34.53

		2009-05-05		33.36

		2009-05-06		32.45

		2009-05-07		33.44

		2009-05-08		32.05

		2009-05-11		32.87

		2009-05-12		31.8

		2009-05-13		33.65

		2009-05-14		31.37

		2009-05-15		33.12

		2009-05-18		30.24

		2009-05-19		28.8

		2009-05-20		29.03

		2009-05-21		31.35

		2009-05-22		32.63

		2009-05-26		30.62

		2009-05-27		32.36

		2009-05-28		31.67

		2009-05-29		28.92

		2009-06-01		30.04

		2009-06-02		29.63

		2009-06-03		31.02

		2009-06-04		30.18

		2009-06-05		29.62

		2009-06-08		29.77

		2009-06-09		28.27

		2009-06-10		28.46

		2009-06-11		28.11

		2009-06-12		28.15

		2009-06-15		30.81

		2009-06-16		32.68

		2009-06-17		31.54

		2009-06-18		30.03

		2009-06-19		27.99

		2009-06-22		31.17

		2009-06-23		30.58

		2009-06-24		29.05

		2009-06-25		26.36

		2009-06-26		25.93

		2009-06-29		25.35

		2009-06-30		26.35

		2009-07-01		26.22

		2009-07-02		27.95

		2009-07-06		29

		2009-07-07		30.85

		2009-07-08		31.3

		2009-07-09		29.78

		2009-07-10		29.02

		2009-07-13		26.31

		2009-07-14		25.02

		2009-07-15		25.89

		2009-07-16		25.42

		2009-07-17		24.34

		2009-07-20		24.4

		2009-07-21		23.87

		2009-07-22		23.47

		2009-07-23		23.43

		2009-07-24		23.09

		2009-07-27		24.28

		2009-07-28		25.01

		2009-07-29		25.61

		2009-07-30		25.4

		2009-07-31		25.92

		2009-08-03		25.56

		2009-08-04		24.89

		2009-08-05		24.9

		2009-08-06		25.67

		2009-08-07		24.76

		2009-08-10		24.99

		2009-08-11		25.99

		2009-08-12		25.45

		2009-08-13		24.71

		2009-08-14		24.27

		2009-08-17		27.89

		2009-08-18		26.18

		2009-08-19		26.26

		2009-08-20		25.09

		2009-08-21		25.01

		2009-08-24		25.14

		2009-08-25		24.92

		2009-08-26		24.95

		2009-08-27		24.68

		2009-08-28		24.76

		2009-08-31		26.01

		2009-09-01		29.15

		2009-09-02		28.9

		2009-09-03		27.1

		2009-09-04		25.26

		2009-09-08		25.62

		2009-09-09		24.32

		2009-09-10		23.55

		2009-09-11		24.15

		2009-09-14		23.86

		2009-09-15		23.42

		2009-09-16		23.69

		2009-09-17		23.65

		2009-09-18		23.92

		2009-09-21		24.06

		2009-09-22		23.08

		2009-09-23		23.49

		2009-09-24		24.95

		2009-09-25		25.61

		2009-09-28		24.88

		2009-09-29		25.19

		2009-09-30		25.61

		2009-10-01		28.27

		2009-10-02		28.68

		2009-10-05		26.84

		2009-10-06		25.7

		2009-10-07		24.68

		2009-10-08		24.18

		2009-10-09		23.12

		2009-10-12		23.01

		2009-10-13		22.99

		2009-10-14		22.86

		2009-10-15		21.72

		2009-10-16		21.43

		2009-10-19		21.49

		2009-10-20		20.9

		2009-10-21		22.22

		2009-10-22		20.69

		2009-10-23		22.27

		2009-10-26		24.31

		2009-10-27		24.83

		2009-10-28		27.91

		2009-10-29		24.76

		2009-10-30		30.69

		2009-11-02		29.78

		2009-11-03		28.81

		2009-11-04		27.72

		2009-11-05		25.43

		2009-11-06		24.19

		2009-11-09		23.15

		2009-11-10		22.84

		2009-11-11		23.04

		2009-11-12		24.24

		2009-11-13		23.36

		2009-11-16		22.89

		2009-11-17		22.41

		2009-11-18		21.63

		2009-11-19		22.63

		2009-11-20		22.19

		2009-11-23		21.16

		2009-11-24		20.47

		2009-11-25		20.48

		2009-11-27		24.74

		2009-11-30		24.51

		2009-12-01		21.92

		2009-12-02		21.12

		2009-12-03		22.46

		2009-12-04		21.25

		2009-12-07		22.1

		2009-12-08		23.69

		2009-12-09		22.66

		2009-12-10		22.32

		2009-12-11		21.59

		2009-12-14		21.15

		2009-12-15		21.49

		2009-12-16		20.54

		2009-12-17		22.51

		2009-12-18		21.68

		2009-12-21		20.49

		2009-12-22		19.54

		2009-12-23		19.71

		2009-12-24		19.47

		2009-12-28		19.93

		2009-12-29		20.01

		2009-12-30		19.96

		2009-12-31		21.68

		2010-01-04		20.04

		2010-01-05		19.35

		2010-01-06		19.16

		2010-01-07		19.06

		2010-01-08		18.13

		2010-01-11		17.55

		2010-01-12		18.25

		2010-01-13		17.85

		2010-01-14		17.63

		2010-01-15		17.91

		2010-01-19		17.58

		2010-01-20		18.68

		2010-01-21		22.27

		2010-01-22		27.31

		2010-01-25		25.41

		2010-01-26		24.55

		2010-01-27		23.14

		2010-01-28		23.73

		2010-01-29		24.62

		2010-02-01		22.59

		2010-02-02		21.48

		2010-02-03		21.6

		2010-02-04		26.08

		2010-02-05		26.11

		2010-02-08		26.51

		2010-02-09		26

		2010-02-10		25.4

		2010-02-11		23.96

		2010-02-12		22.73

		2010-02-16		22.25

		2010-02-17		21.72

		2010-02-18		20.63

		2010-02-19		20.02

		2010-02-22		19.94

		2010-02-23		21.37

		2010-02-24		20.27

		2010-02-25		20.1

		2010-02-26		19.5

		2010-03-01		19.26

		2010-03-02		19.06

		2010-03-03		18.83

		2010-03-04		18.72

		2010-03-05		17.42

		2010-03-08		17.79

		2010-03-09		17.92

		2010-03-10		18.57

		2010-03-11		18.06

		2010-03-12		17.58

		2010-03-15		18

		2010-03-16		17.69

		2010-03-17		16.91

		2010-03-18		16.62

		2010-03-19		16.97

		2010-03-22		16.87

		2010-03-23		16.35

		2010-03-24		17.55

		2010-03-25		18.4

		2010-03-26		17.77

		2010-03-29		17.59

		2010-03-30		17.13

		2010-03-31		17.59

		2010-04-01		17.47

		2010-04-05		17.02

		2010-04-06		16.23

		2010-04-07		16.62

		2010-04-08		16.48

		2010-04-09		16.14

		2010-04-12		15.58

		2010-04-13		16.2

		2010-04-14		15.59

		2010-04-15		15.89

		2010-04-16		18.36

		2010-04-19		17.34

		2010-04-20		15.73

		2010-04-21		16.32

		2010-04-22		16.47

		2010-04-23		16.62

		2010-04-26		17.47

		2010-04-27		22.81

		2010-04-28		21.08

		2010-04-29		18.44

		2010-04-30		22.05

		2010-05-03		20.19

		2010-05-04		23.84

		2010-05-05		24.91

		2010-05-06		32.8

		2010-05-07		40.95

		2010-05-10		28.84

		2010-05-11		28.32

		2010-05-12		25.52

		2010-05-13		26.68

		2010-05-14		31.24

		2010-05-17		30.84

		2010-05-18		33.55

		2010-05-19		35.32

		2010-05-20		45.79

		2010-05-21		40.1

		2010-05-24		38.32

		2010-05-25		34.61

		2010-05-26		35.02

		2010-05-27		29.68

		2010-05-28		32.07

		2010-06-01		35.54

		2010-06-02		30.17

		2010-06-03		29.46

		2010-06-04		35.48

		2010-06-07		36.57

		2010-06-08		33.7

		2010-06-09		33.73

		2010-06-10		30.57

		2010-06-11		28.79

		2010-06-14		28.58

		2010-06-15		25.87

		2010-06-16		25.92

		2010-06-17		25.05

		2010-06-18		23.95

		2010-06-21		24.88

		2010-06-22		27.05

		2010-06-23		26.91

		2010-06-24		29.74

		2010-06-25		28.53

		2010-06-28		29

		2010-06-29		34.13

		2010-06-30		34.54

		2010-07-01		32.86

		2010-07-02		30.12

		2010-07-06		29.65

		2010-07-07		26.84

		2010-07-08		25.71

		2010-07-09		24.98

		2010-07-12		24.43

		2010-07-13		24.56

		2010-07-14		24.89

		2010-07-15		25.14

		2010-07-16		26.25

		2010-07-19		25.97

		2010-07-20		23.93

		2010-07-21		25.64

		2010-07-22		24.63

		2010-07-23		23.47

		2010-07-26		22.73

		2010-07-27		23.19

		2010-07-28		24.25

		2010-07-29		24.13

		2010-07-30		23.5

		2010-08-02		22.01

		2010-08-03		22.63

		2010-08-04		22.21

		2010-08-05		22.1

		2010-08-06		21.74

		2010-08-09		22.14

		2010-08-10		22.37

		2010-08-11		25.39

		2010-08-12		25.73

		2010-08-13		26.24

		2010-08-16		26.1

		2010-08-17		24.33

		2010-08-18		24.59

		2010-08-19		26.44

		2010-08-20		25.49

		2010-08-23		25.66

		2010-08-24		27.46

		2010-08-25		26.7

		2010-08-26		27.37

		2010-08-27		24.45

		2010-08-30		27.21

		2010-08-31		26.05

		2010-09-01		23.89

		2010-09-02		23.19

		2010-09-03		21.31

		2010-09-07		23.8

		2010-09-08		23.25

		2010-09-09		22.81

		2010-09-10		21.99

		2010-09-13		21.21

		2010-09-14		21.56

		2010-09-15		22.1

		2010-09-16		21.72

		2010-09-17		22.01

		2010-09-20		21.5

		2010-09-21		22.35

		2010-09-22		22.51

		2010-09-23		23.87

		2010-09-24		21.71

		2010-09-27		22.54

		2010-09-28		22.6

		2010-09-29		23.25

		2010-09-30		23.7

		2010-10-01		22.5

		2010-10-04		23.53

		2010-10-05		21.76

		2010-10-06		21.49

		2010-10-07		21.56

		2010-10-08		20.71

		2010-10-11		18.96

		2010-10-12		18.93

		2010-10-13		19.07

		2010-10-14		19.88

		2010-10-15		19.03

		2010-10-18		19.09

		2010-10-19		20.63

		2010-10-20		19.79

		2010-10-21		19.27

		2010-10-22		18.78

		2010-10-25		19.85

		2010-10-26		20.22

		2010-10-27		20.71

		2010-10-28		20.88

		2010-10-29		21.2

		2010-11-01		21.83

		2010-11-02		21.57

		2010-11-03		19.56

		2010-11-04		18.52

		2010-11-05		18.26

		2010-11-08		18.29

		2010-11-09		19.08

		2010-11-10		18.47

		2010-11-11		18.64

		2010-11-12		20.61

		2010-11-15		20.2

		2010-11-16		22.58

		2010-11-17		21.76

		2010-11-18		18.75

		2010-11-19		18.04

		2010-11-22		18.37

		2010-11-23		20.63

		2010-11-24		19.56

		2010-11-26		22.22

		2010-11-29		21.53

		2010-11-30		23.54

		2010-12-01		21.36

		2010-12-02		19.39

		2010-12-03		18.01

		2010-12-06		18.02

		2010-12-07		17.99

		2010-12-08		17.74

		2010-12-09		17.25

		2010-12-10		17.61

		2010-12-13		17.55

		2010-12-14		17.61

		2010-12-15		17.94

		2010-12-16		17.39

		2010-12-17		16.11

		2010-12-20		16.41

		2010-12-21		16.49

		2010-12-22		15.45

		2010-12-23		16.47

		2010-12-27		17.67

		2010-12-28		17.52

		2010-12-29		17.28

		2010-12-30		17.52

		2010-12-31		17.75

		2011-01-03		17.61

		2011-01-04		17.38

		2011-01-05		17.02

		2011-01-06		17.4

		2011-01-07		17.14

		2011-01-10		17.54

		2011-01-11		16.89

		2011-01-12		16.24

		2011-01-13		16.39

		2011-01-14		15.46

		2011-01-18		15.87

		2011-01-19		17.31

		2011-01-20		17.99

		2011-01-21		18.47

		2011-01-24		17.65

		2011-01-25		17.59

		2011-01-26		16.64

		2011-01-27		16.15

		2011-01-28		20.04

		2011-01-31		19.53

		2011-02-01		17.63

		2011-02-02		17.3

		2011-02-03		16.69

		2011-02-04		15.93

		2011-02-07		16.28

		2011-02-08		15.81

		2011-02-09		15.87

		2011-02-10		16.09

		2011-02-11		15.69

		2011-02-14		15.95

		2011-02-15		16.37

		2011-02-16		16.72

		2011-02-17		16.59

		2011-02-18		16.43

		2011-02-22		20.8

		2011-02-23		22.13

		2011-02-24		21.32

		2011-02-25		19.22

		2011-02-28		18.35

		2011-03-01		21.01

		2011-03-02		20.7

		2011-03-03		18.6

		2011-03-04		19.06

		2011-03-07		20.66

		2011-03-08		19.82

		2011-03-09		20.22

		2011-03-10		21.88

		2011-03-11		20.08

		2011-03-14		21.13

		2011-03-15		24.32

		2011-03-16		29.4

		2011-03-17		26.37

		2011-03-18		24.44

		2011-03-21		20.61

		2011-03-22		20.21

		2011-03-23		19.17

		2011-03-24		18

		2011-03-25		17.91

		2011-03-28		19.44

		2011-03-29		18.16

		2011-03-30		17.71

		2011-03-31		17.74

		2011-04-01		17.4

		2011-04-04		17.5

		2011-04-05		17.25

		2011-04-06		16.9

		2011-04-07		17.11

		2011-04-08		17.87

		2011-04-11		16.59

		2011-04-12		17.09

		2011-04-13		16.92

		2011-04-14		16.27

		2011-04-15		15.32

		2011-04-18		16.96

		2011-04-19		15.83

		2011-04-20		15.07

		2011-04-21		14.69

		2011-04-25		15.77

		2011-04-26		15.62

		2011-04-27		15.35

		2011-04-28		14.62

		2011-04-29		14.75

		2011-05-02		15.99

		2011-05-03		16.7

		2011-05-04		17.08

		2011-05-05		18.2

		2011-05-06		18.4

		2011-05-09		17.16

		2011-05-10		15.91

		2011-05-11		16.95

		2011-05-12		16.03

		2011-05-13		17.07

		2011-05-16		18.24

		2011-05-17		17.55

		2011-05-18		16.23

		2011-05-19		15.52

		2011-05-20		17.43

		2011-05-23		18.27

		2011-05-24		17.82

		2011-05-25		17.07

		2011-05-26		16.09

		2011-05-27		15.98

		2011-05-31		15.45

		2011-06-01		18.3

		2011-06-02		18.09

		2011-06-03		17.95

		2011-06-06		18.49

		2011-06-07		18.07

		2011-06-08		18.79

		2011-06-09		17.77

		2011-06-10		18.86

		2011-06-13		19.61

		2011-06-14		18.26

		2011-06-15		21.32

		2011-06-16		22.73

		2011-06-17		21.85

		2011-06-20		19.99

		2011-06-21		18.86

		2011-06-22		18.52

		2011-06-23		19.29

		2011-06-24		21.1

		2011-06-27		20.56

		2011-06-28		19.17

		2011-06-29		17.27

		2011-06-30		16.52

		2011-07-01		15.87

		2011-07-05		16.06

		2011-07-06		16.34

		2011-07-07		15.95

		2011-07-08		15.95

		2011-07-11		18.39

		2011-07-12		19.87

		2011-07-13		19.91

		2011-07-14		20.8

		2011-07-15		19.53

		2011-07-18		20.95

		2011-07-19		19.21

		2011-07-20		19.09

		2011-07-21		17.56

		2011-07-22		17.52

		2011-07-25		19.35

		2011-07-26		20.23

		2011-07-27		22.98

		2011-07-28		23.74

		2011-07-29		25.25

		2011-08-01		23.66

		2011-08-02		24.79

		2011-08-03		23.38

		2011-08-04		31.66

		2011-08-05		32

		2011-08-08		48

		2011-08-09		35.06

		2011-08-10		42.99

		2011-08-11		39

		2011-08-12		36.36

		2011-08-15		31.87

		2011-08-16		32.85

		2011-08-17		31.58

		2011-08-18		42.67

		2011-08-19		43.05

		2011-08-22		42.44

		2011-08-23		36.27

		2011-08-24		35.9

		2011-08-25		39.76

		2011-08-26		35.59

		2011-08-29		32.28

		2011-08-30		32.89

		2011-08-31		31.62

		2011-09-01		31.82

		2011-09-02		33.92

		2011-09-06		37

		2011-09-07		33.38

		2011-09-08		34.32

		2011-09-09		38.52

		2011-09-12		38.59

		2011-09-13		36.91

		2011-09-14		34.6

		2011-09-15		31.97

		2011-09-16		30.98

		2011-09-19		32.73

		2011-09-20		32.86

		2011-09-21		37.32

		2011-09-22		41.35

		2011-09-23		41.25

		2011-09-26		39.02

		2011-09-27		37.71

		2011-09-28		41.08

		2011-09-29		38.84

		2011-09-30		42.96

		2011-10-03		45.45

		2011-10-04		40.82

		2011-10-05		37.81

		2011-10-06		36.27

		2011-10-07		36.2

		2011-10-10		33.02

		2011-10-11		32.86

		2011-10-12		31.26

		2011-10-13		30.7

		2011-10-14		28.24

		2011-10-17		33.39

		2011-10-18		31.56

		2011-10-19		34.44

		2011-10-20		34.78

		2011-10-21		31.32

		2011-10-24		29.26

		2011-10-25		32.22

		2011-10-26		29.86

		2011-10-27		25.46

		2011-10-28		24.53

		2011-10-31		29.96

		2011-11-01		34.77

		2011-11-02		32.74

		2011-11-03		30.5

		2011-11-04		30.16

		2011-11-07		29.85

		2011-11-08		27.48

		2011-11-09		36.16

		2011-11-10		32.81

		2011-11-11		30.04

		2011-11-14		31.13

		2011-11-15		31.22

		2011-11-16		33.51

		2011-11-17		34.51

		2011-11-18		32

		2011-11-21		32.91

		2011-11-22		31.97

		2011-11-23		33.98

		2011-11-25		34.47

		2011-11-28		32.13

		2011-11-29		30.64

		2011-11-30		27.8

		2011-12-01		27.41

		2011-12-02		27.52

		2011-12-05		27.84

		2011-12-06		28.13

		2011-12-07		28.67

		2011-12-08		30.59

		2011-12-09		26.38

		2011-12-12		25.67

		2011-12-13		25.41

		2011-12-14		26.04

		2011-12-15		25.11

		2011-12-16		24.29

		2011-12-19		24.92

		2011-12-20		23.22

		2011-12-21		21.43

		2011-12-22		21.16

		2011-12-23		20.73

		2011-12-27		21.91

		2011-12-28		23.52

		2011-12-29		22.65

		2011-12-30		23.4

		2012-01-03		22.97

		2012-01-04		22.22

		2012-01-05		21.48

		2012-01-06		20.63

		2012-01-09		21.07

		2012-01-10		20.69

		2012-01-11		21.05

		2012-01-12		20.47

		2012-01-13		20.91

		2012-01-17		22.2

		2012-01-18		20.89

		2012-01-19		19.87

		2012-01-20		18.28

		2012-01-23		18.67

		2012-01-24		18.91

		2012-01-25		18.31

		2012-01-26		18.57

		2012-01-27		18.53

		2012-01-30		19.4

		2012-01-31		19.44

		2012-02-01		18.55

		2012-02-02		17.98

		2012-02-03		17.1

		2012-02-06		17.76

		2012-02-07		17.65

		2012-02-08		18.16

		2012-02-09		18.63

		2012-02-10		20.79

		2012-02-13		19.04

		2012-02-14		19.54

		2012-02-15		21.14

		2012-02-16		19.22

		2012-02-17		17.78

		2012-02-21		18.19

		2012-02-22		18.19

		2012-02-23		16.8

		2012-02-24		17.31

		2012-02-27		18.19

		2012-02-28		17.96

		2012-02-29		18.43

		2012-03-01		17.26

		2012-03-02		17.29

		2012-03-05		18.05

		2012-03-06		20.87

		2012-03-07		19.07

		2012-03-08		17.95

		2012-03-09		17.11

		2012-03-12		15.64

		2012-03-13		14.8

		2012-03-14		15.31

		2012-03-15		15.42

		2012-03-16		14.47

		2012-03-19		15.04

		2012-03-20		15.58

		2012-03-21		15.13

		2012-03-22		15.57

		2012-03-23		14.82

		2012-03-26		14.26

		2012-03-27		15.59

		2012-03-28		15.47

		2012-03-29		15.48

		2012-03-30		15.5

		2012-04-02		15.64

		2012-04-03		15.66

		2012-04-04		16.44

		2012-04-05		16.7

		2012-04-09		18.81

		2012-04-10		20.39

		2012-04-11		20.02

		2012-04-12		17.2

		2012-04-13		19.55

		2012-04-16		19.55

		2012-04-17		18.46

		2012-04-18		18.64

		2012-04-19		18.36

		2012-04-20		17.44

		2012-04-23		18.97

		2012-04-24		18.1

		2012-04-25		16.82

		2012-04-26		16.24

		2012-04-27		16.32

		2012-04-30		17.15

		2012-05-01		16.6

		2012-05-02		16.88

		2012-05-03		17.56

		2012-05-04		19.16

		2012-05-07		18.94

		2012-05-08		19.05

		2012-05-09		20.08

		2012-05-10		18.83

		2012-05-11		19.89

		2012-05-14		21.87

		2012-05-15		21.97

		2012-05-16		22.27

		2012-05-17		24.49

		2012-05-18		25.1

		2012-05-21		22.01

		2012-05-22		22.48

		2012-05-23		22.33

		2012-05-24		21.54

		2012-05-25		21.76

		2012-05-29		21.03

		2012-05-30		24.14

		2012-05-31		24.06

		2012-06-01		26.66

		2012-06-04		26.12

		2012-06-05		24.68

		2012-06-06		22.16

		2012-06-07		21.72

		2012-06-08		21.23

		2012-06-11		23.56

		2012-06-12		22.09

		2012-06-13		24.27

		2012-06-14		21.68

		2012-06-15		21.11

		2012-06-18		18.32

		2012-06-19		18.38

		2012-06-20		17.24

		2012-06-21		20.08

		2012-06-22		18.11

		2012-06-25		20.38

		2012-06-26		19.72

		2012-06-27		19.45

		2012-06-28		19.71

		2012-06-29		17.08

		2012-07-02		16.8

		2012-07-03		16.66

		2012-07-05		17.5

		2012-07-06		17.1

		2012-07-09		17.98

		2012-07-10		18.72

		2012-07-11		17.95

		2012-07-12		18.33

		2012-07-13		16.74

		2012-07-16		17.11

		2012-07-17		16.48

		2012-07-18		16.16

		2012-07-19		15.45

		2012-07-20		16.27

		2012-07-23		18.62

		2012-07-24		20.47

		2012-07-25		19.34

		2012-07-26		17.53

		2012-07-27		16.7

		2012-07-30		18.03

		2012-07-31		18.93

		2012-08-01		18.96

		2012-08-02		17.57

		2012-08-03		15.64

		2012-08-06		15.95

		2012-08-07		15.99

		2012-08-08		15.32

		2012-08-09		15.28

		2012-08-10		14.74

		2012-08-13		13.7

		2012-08-14		14.85

		2012-08-15		14.63

		2012-08-16		14.29

		2012-08-17		13.45

		2012-08-20		14.02

		2012-08-21		15.02

		2012-08-22		15.11

		2012-08-23		15.96

		2012-08-24		15.18

		2012-08-27		16.35

		2012-08-28		16.49

		2012-08-29		17.06

		2012-08-30		17.83

		2012-08-31		17.47

		2012-09-04		17.98

		2012-09-05		17.74

		2012-09-06		15.6

		2012-09-07		14.38

		2012-09-10		16.28

		2012-09-11		16.41

		2012-09-12		15.8

		2012-09-13		14.05

		2012-09-14		14.51

		2012-09-17		14.59

		2012-09-18		14.18

		2012-09-19		13.88

		2012-09-20		14.07

		2012-09-21		13.98

		2012-09-24		14.15

		2012-09-25		15.43

		2012-09-26		16.81

		2012-09-27		14.84

		2012-09-28		15.73

		2012-10-01		16.32

		2012-10-02		15.71

		2012-10-03		15.43

		2012-10-04		14.55

		2012-10-05		14.33

		2012-10-08		15.11

		2012-10-09		16.37

		2012-10-10		16.29

		2012-10-11		15.59

		2012-10-12		16.14

		2012-10-15		15.27

		2012-10-16		15.22

		2012-10-17		15.07

		2012-10-18		15.03

		2012-10-19		17.06

		2012-10-22		16.62

		2012-10-23		18.83

		2012-10-24		18.33

		2012-10-25		18.12

		2012-10-26		17.81

		2012-10-31		18.6

		2012-11-01		16.69

		2012-11-02		17.59

		2012-11-05		18.42

		2012-11-06		17.58

		2012-11-07		19.08

		2012-11-08		18.49

		2012-11-09		18.61

		2012-11-12		16.68

		2012-11-13		16.65

		2012-11-14		17.92

		2012-11-15		17.99

		2012-11-16		16.41

		2012-11-19		15.24

		2012-11-20		15.08

		2012-11-21		15.31

		2012-11-23		15.14

		2012-11-26		15.5

		2012-11-27		15.92

		2012-11-28		15.51

		2012-11-29		15.06

		2012-11-30		15.87

		2012-12-03		16.64

		2012-12-04		17.12

		2012-12-05		16.46

		2012-12-06		16.58

		2012-12-07		15.9

		2012-12-10		16.05

		2012-12-11		15.57

		2012-12-12		15.95

		2012-12-13		16.56

		2012-12-14		17

		2012-12-17		16.34

		2012-12-18		15.57

		2012-12-19		17.36

		2012-12-20		17.67

		2012-12-21		17.84

		2012-12-24		17.84

		2012-12-26		19.48

		2012-12-27		19.47

		2012-12-28		22.72

		2012-12-31		18.02

		2013-01-02		14.68

		2013-01-03		14.56

		2013-01-04		13.83

		2013-01-07		13.79

		2013-01-08		13.62

		2013-01-09		13.81

		2013-01-10		13.49

		2013-01-11		13.36

		2013-01-14		13.52

		2013-01-15		13.55

		2013-01-16		13.42

		2013-01-17		13.57

		2013-01-18		12.46

		2013-01-22		12.43

		2013-01-23		12.46

		2013-01-24		12.69

		2013-01-25		12.89

		2013-01-28		13.57

		2013-01-29		13.31

		2013-01-30		14.32

		2013-01-31		14.28

		2013-02-01		12.9

		2013-02-04		14.67

		2013-02-05		13.72

		2013-02-06		13.41

		2013-02-07		13.5

		2013-02-08		13.02

		2013-02-11		12.94

		2013-02-12		12.64

		2013-02-13		12.98

		2013-02-14		12.66

		2013-02-15		12.46

		2013-02-19		12.31

		2013-02-20		14.68

		2013-02-21		15.22

		2013-02-22		14.17

		2013-02-25		18.99

		2013-02-26		16.87

		2013-02-27		14.73

		2013-02-28		15.51

		2013-03-01		15.36

		2013-03-04		14.01

		2013-03-05		13.48
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		2014-07-28		12.56

		2014-07-29		13.28
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		2014-11-03		14.73

		2014-11-04		14.89

		2014-11-05		14.17

		2014-11-06		13.67

		2014-11-07		13.12

		2014-11-10		12.67

		2014-11-11		12.92

		2014-11-12		13.02

		2014-11-13		13.79

		2014-11-14		13.31

		2014-11-17		13.99

		2014-11-18		13.86

		2014-11-19		13.96

		2014-11-20		13.58

		2014-11-21		12.9

		2014-11-24		12.62

		2014-11-25		12.25

		2014-11-26		12.07

		2014-11-28		13.33

		2014-12-01		14.29

		2014-12-02		12.85

		2014-12-03		12.47

		2014-12-04		12.38

		2014-12-05		11.82

		2014-12-08		14.21

		2014-12-09		14.89

		2014-12-10		18.53

		2014-12-11		20.08

		2014-12-12		21.08

		2014-12-15		20.42

		2014-12-16		23.57

		2014-12-17		19.44

		2014-12-18		16.81

		2014-12-19		16.49

		2014-12-22		15.25

		2014-12-23		14.8

		2014-12-24		14.37

		2014-12-26		14.5

		2014-12-29		15.06

		2014-12-30		15.92

		2014-12-31		19.2

		2015-01-02		17.79

		2015-01-05		19.92

		2015-01-06		21.12

		2015-01-07		19.31

		2015-01-08		17.01

		2015-01-09		17.55

		2015-01-12		19.6

		2015-01-13		20.56

		2015-01-14		21.48

		2015-01-15		22.39

		2015-01-16		20.95

		2015-01-20		19.89

		2015-01-21		18.85

		2015-01-22		16.4

		2015-01-23		16.66

		2015-01-26		15.52

		2015-01-27		17.22

		2015-01-28		20.44

		2015-01-29		18.76

		2015-01-30		20.97

		2015-02-02		19.43

		2015-02-03		17.33

		2015-02-04		18.33

		2015-02-05		16.85

		2015-02-06		17.29

		2015-02-09		18.55

		2015-02-10		17.23

		2015-02-11		16.96

		2015-02-12		15.34

		2015-02-13		14.69

		2015-02-17		15.8

		2015-02-18		15.45

		2015-02-19		15.29

		2015-02-20		14.3

		2015-02-23		14.56

		2015-02-24		13.69

		2015-02-25		13.84

		2015-02-26		13.91

		2015-02-27		13.34

		2015-03-02		13.04

		2015-03-03		13.86

		2015-03-04		14.23

		2015-03-05		14.04

		2015-03-06		15.2

		2015-03-09		15.06

		2015-03-10		16.69

		2015-03-11		16.87

		2015-03-12		15.42

		2015-03-13		16

		2015-03-16		15.61

		2015-03-17		15.66

		2015-03-18		13.97

		2015-03-19		14.07

		2015-03-20		13.02

		2015-03-23		13.41

		2015-03-24		13.62

		2015-03-25		15.44

		2015-03-26		15.8

		2015-03-27		15.07

		2015-03-30		14.51

		2015-03-31		15.29

		2015-04-01		15.11

		2015-04-02		14.67

		2015-04-06		14.74

		2015-04-07		14.78

		2015-04-08		13.98

		2015-04-09		13.09

		2015-04-10		12.58

		2015-04-13		13.94

		2015-04-14		13.67

		2015-04-15		12.84

		2015-04-16		12.6

		2015-04-17		13.89

		2015-04-20		13.3

		2015-04-21		13.25

		2015-04-22		12.71

		2015-04-23		12.48

		2015-04-24		12.29

		2015-04-27		13.12

		2015-04-28		12.41

		2015-04-29		13.39

		2015-04-30		14.55

		2015-05-01		12.7

		2015-05-04		12.85

		2015-05-05		14.31

		2015-05-06		15.15

		2015-05-07		15.13

		2015-05-08		12.86

		2015-05-11		13.85

		2015-05-12		13.86

		2015-05-13		13.76

		2015-05-14		12.74

		2015-05-15		12.38

		2015-05-18		12.73

		2015-05-19		12.85

		2015-05-20		12.88

		2015-05-21		12.11

		2015-05-22		12.13

		2015-05-26		14.06

		2015-05-27		13.27

		2015-05-28		13.31

		2015-05-29		13.84

		2015-06-01		13.97

		2015-06-02		14.24

		2015-06-03		13.66

		2015-06-04		14.71

		2015-06-05		14.21

		2015-06-08		15.29

		2015-06-09		14.47

		2015-06-10		13.22

		2015-06-11		12.85

		2015-06-12		13.78

		2015-06-15		15.39

		2015-06-16		14.81

		2015-06-17		14.5

		2015-06-18		13.19

		2015-06-19		13.96

		2015-06-22		12.74

		2015-06-23		12.11

		2015-06-24		13.26

		2015-06-25		14.01

		2015-06-26		14.02

		2015-06-29		18.85

		2015-06-30		18.23

		2015-07-01		16.09

		2015-07-02		16.79

		2015-07-06		17.01

		2015-07-07		16.09

		2015-07-08		19.66

		2015-07-09		19.97

		2015-07-10		16.83

		2015-07-13		13.9

		2015-07-14		13.37

		2015-07-15		13.23

		2015-07-16		12.11

		2015-07-17		11.95

		2015-07-20		12.25

		2015-07-21		12.22

		2015-07-22		12.12

		2015-07-23		12.64

		2015-07-24		13.74

		2015-07-27		15.6

		2015-07-28		13.44

		2015-07-29		12.5

		2015-07-30		12.13

		2015-07-31		12.12

		2015-08-03		12.56

		2015-08-04		13

		2015-08-05		12.51

		2015-08-06		13.77

		2015-08-07		13.39

		2015-08-10		12.23

		2015-08-11		13.71

		2015-08-12		13.61

		2015-08-13		13.49

		2015-08-14		12.83

		2015-08-17		13.02

		2015-08-18		13.79

		2015-08-19		15.25

		2015-08-20		19.14

		2015-08-21		28.03

		2015-08-24		40.74

		2015-08-25		36.02

		2015-08-26		30.32

		2015-08-27		26.1

		2015-08-28		26.05

		2015-08-31		28.43

		2015-09-01		31.4

		2015-09-02		26.09

		2015-09-03		25.61

		2015-09-04		27.8

		2015-09-08		24.9

		2015-09-09		26.23

		2015-09-10		24.37

		2015-09-11		23.2

		2015-09-14		24.25

		2015-09-15		22.54

		2015-09-16		21.35

		2015-09-17		21.14

		2015-09-18		22.28

		2015-09-21		20.14

		2015-09-22		22.44

		2015-09-23		22.13

		2015-09-24		23.47

		2015-09-25		23.62

		2015-09-28		27.63

		2015-09-29		26.83

		2015-09-30		24.5

		2015-10-01		22.55

		2015-10-02		20.94

		2015-10-05		19.54

		2015-10-06		19.4

		2015-10-07		18.4

		2015-10-08		17.42

		2015-10-09		17.08

		2015-10-12		16.17

		2015-10-13		17.67

		2015-10-14		18.03

		2015-10-15		16.05

		2015-10-16		15.05

		2015-10-19		14.98

		2015-10-20		15.75

		2015-10-21		16.7

		2015-10-22		14.45

		2015-10-23		14.46

		2015-10-26		15.29

		2015-10-27		15.43

		2015-10-28		14.33

		2015-10-29		14.61

		2015-10-30		15.07

		2015-11-02		14.15

		2015-11-03		14.54

		2015-11-04		15.51

		2015-11-05		15.05

		2015-11-06		14.33

		2015-11-09		16.52

		2015-11-10		15.29

		2015-11-11		16.06

		2015-11-12		18.37

		2015-11-13		20.08

		2015-11-16		18.16

		2015-11-17		18.84

		2015-11-18		16.85

		2015-11-19		16.99

		2015-11-20		15.47

		2015-11-23		15.62

		2015-11-24		15.93

		2015-11-25		15.19

		2015-11-27		15.12

		2015-11-30		16.13

		2015-12-01		14.67

		2015-12-02		15.91

		2015-12-03		18.11

		2015-12-04		14.81

		2015-12-07		15.84

		2015-12-08		17.6

		2015-12-09		19.61

		2015-12-10		19.34

		2015-12-11		24.39

		2015-12-14		22.73

		2015-12-15		20.95

		2015-12-16		17.86

		2015-12-17		18.94

		2015-12-18		20.7

		2015-12-21		18.7

		2015-12-22		16.6

		2015-12-23		15.57

		2015-12-24		15.74

		2015-12-28		16.91

		2015-12-29		16.08

		2015-12-30		17.29

		2015-12-31		18.21

		2016-01-04		20.7

		2016-01-05		19.34

		2016-01-06		20.59

		2016-01-07		24.99

		2016-01-08		27.01

		2016-01-11		24.3

		2016-01-12		22.47

		2016-01-13		25.22

		2016-01-14		23.95

		2016-01-15		27.02

		2016-01-19		26.05

		2016-01-20		27.59

		2016-01-21		26.69

		2016-01-22		22.34

		2016-01-25		24.15

		2016-01-26		22.5

		2016-01-27		23.11

		2016-01-28		22.42

		2016-01-29		20.2

		2016-02-01		19.98

		2016-02-02		21.98

		2016-02-03		21.65

		2016-02-04		21.84

		2016-02-05		23.38

		2016-02-08		26

		2016-02-09		26.54

		2016-02-10		26.29

		2016-02-11		28.14

		2016-02-12		25.4

		2016-02-16		24.11

		2016-02-17		22.31

		2016-02-18		21.64

		2016-02-19		20.53

		2016-02-22		19.38

		2016-02-23		20.98

		2016-02-24		20.72

		2016-02-25		19.11

		2016-02-26		19.81

		2016-02-29		20.55

		2016-03-01		17.7

		2016-03-02		17.09

		2016-03-03		16.7

		2016-03-04		16.86

		2016-03-07		17.35

		2016-03-08		18.67

		2016-03-09		18.34

		2016-03-10		18.05

		2016-03-11		16.5

		2016-03-14		16.92

		2016-03-15		16.84

		2016-03-16		14.99

		2016-03-17		14.44

		2016-03-18		14.02

		2016-03-21		13.79

		2016-03-22		14.17

		2016-03-23		14.94

		2016-03-24		14.74

		2016-03-28		15.24

		2016-03-29		13.82

		2016-03-30		13.56

		2016-03-31		13.95

		2016-04-01		13.1

		2016-04-04		14.12

		2016-04-05		15.42

		2016-04-06		14.09

		2016-04-07		16.16

		2016-04-08		15.36

		2016-04-11		16.26

		2016-04-12		14.85

		2016-04-13		13.84

		2016-04-14		13.72

		2016-04-15		13.62

		2016-04-18		13.35

		2016-04-19		13.24

		2016-04-20		13.28

		2016-04-21		13.95

		2016-04-22		13.22

		2016-04-25		14.08

		2016-04-26		13.96

		2016-04-27		13.77

		2016-04-28		15.22

		2016-04-29		15.7

		2016-05-02		14.68

		2016-05-03		15.6

		2016-05-04		16.05

		2016-05-05		15.91

		2016-05-06		14.72

		2016-05-09		14.57

		2016-05-10		13.63

		2016-05-11		14.69

		2016-05-12		14.41

		2016-05-13		15.04

		2016-05-16		14.68

		2016-05-17		15.57

		2016-05-18		15.95

		2016-05-19		16.33

		2016-05-20		15.2

		2016-05-23		15.82

		2016-05-24		14.42

		2016-05-25		13.9

		2016-05-26		13.43

		2016-05-27		13.12

		2016-05-31		14.19

		2016-06-01		14.2

		2016-06-02		13.63

		2016-06-03		13.47

		2016-06-06		13.65

		2016-06-07		14.05

		2016-06-08		14.08

		2016-06-09		14.64

		2016-06-10		17.03

		2016-06-13		20.97

		2016-06-14		20.5

		2016-06-15		20.14

		2016-06-16		19.37

		2016-06-17		19.41

		2016-06-20		18.37

		2016-06-21		18.48

		2016-06-22		21.17

		2016-06-23		17.25

		2016-06-24		25.76

		2016-06-27		23.85

		2016-06-28		18.75

		2016-06-29		16.64

		2016-06-30		15.63

		2016-07-01		14.77

		2016-07-05		15.58

		2016-07-06		14.96

		2016-07-07		14.76

		2016-07-08		13.2

		2016-07-11		13.54

		2016-07-12		13.55

		2016-07-13		13.04

		2016-07-14		12.82

		2016-07-15		12.67

		2016-07-18		12.44

		2016-07-19		11.97

		2016-07-20		11.77

		2016-07-21		12.74

		2016-07-22		12.02

		2016-07-25		12.87

		2016-07-26		13.05

		2016-07-27		12.83

		2016-07-28		12.72

		2016-07-29		11.87

		2016-08-01		12.44

		2016-08-02		13.37

		2016-08-03		12.86

		2016-08-04		12.42

		2016-08-05		11.39

		2016-08-08		11.5

		2016-08-09		11.66

		2016-08-10		12.05

		2016-08-11		11.68

		2016-08-12		11.55

		2016-08-15		11.81

		2016-08-16		12.64

		2016-08-17		12.19

		2016-08-18		11.43

		2016-08-19		11.34

		2016-08-22		12.27

		2016-08-23		12.38

		2016-08-24		13.45

		2016-08-25		13.63

		2016-08-26		13.65

		2016-08-29		12.94

		2016-08-30		13.12

		2016-08-31		13.42

		2016-09-01		13.48

		2016-09-02		11.98

		2016-09-06		12.02

		2016-09-07		11.94

		2016-09-08		12.51

		2016-09-09		17.5

		2016-09-12		15.16

		2016-09-13		17.85

		2016-09-14		18.14

		2016-09-15		16.3

		2016-09-16		15.37

		2016-09-19		15.53

		2016-09-20		15.92

		2016-09-21		13.3

		2016-09-22		12.02

		2016-09-23		12.29

		2016-09-26		14.5

		2016-09-27		13.1

		2016-09-28		12.39

		2016-09-29		14.02

		2016-09-30		13.29

		2016-10-03		13.57

		2016-10-04		13.63

		2016-10-05		12.99

		2016-10-06		12.84

		2016-10-07		13.48

		2016-10-10		13.38

		2016-10-11		15.36

		2016-10-12		15.91

		2016-10-13		16.69

		2016-10-14		16.12

		2016-10-17		16.21

		2016-10-18		15.28

		2016-10-19		14.41

		2016-10-20		13.75

		2016-10-21		13.34

		2016-10-24		13.02

		2016-10-25		13.46

		2016-10-26		14.24

		2016-10-27		15.36

		2016-10-28		16.19

		2016-10-31		17.06

		2016-11-01		18.56

		2016-11-02		19.32

		2016-11-03		22.08

		2016-11-04		22.51

		2016-11-07		18.71

		2016-11-08		18.74

		2016-11-09		14.38

		2016-11-10		14.74

		2016-11-11		14.17

		2016-11-14		14.48

		2016-11-15		13.37

		2016-11-16		13.72

		2016-11-17		13.35

		2016-11-18		12.85

		2016-11-21		12.42

		2016-11-22		12.41

		2016-11-23		12.43

		2016-11-25		12.34

		2016-11-28		13.15

		2016-11-29		12.9

		2016-11-30		13.33

		2016-12-01		14.07

		2016-12-02		14.12

		2016-12-05		12.14

		2016-12-06		11.79

		2016-12-07		12.22

		2016-12-08		12.64

		2016-12-09		11.75

		2016-12-12		12.64

		2016-12-13		12.72

		2016-12-14		13.19

		2016-12-15		12.79

		2016-12-16		12.2

		2016-12-19		11.71

		2016-12-20		11.45

		2016-12-21		11.27

		2016-12-22		11.43

		2016-12-23		11.44

		2016-12-27		11.99

		2016-12-28		12.95

		2016-12-29		13.37

		2016-12-30		14.04

		2017-01-03		12.85

		2017-01-04		11.85

		2017-01-05		11.67

		2017-01-06		11.32

		2017-01-09		11.56

		2017-01-10		11.49

		2017-01-11		11.26

		2017-01-12		11.54

		2017-01-13		11.23

		2017-01-17		11.87

		2017-01-18		12.48

		2017-01-19		12.78

		2017-01-20		11.54

		2017-01-23		11.77

		2017-01-24		11.07

		2017-01-25		10.81

		2017-01-26		10.63

		2017-01-27		10.58

		2017-01-30		11.88

		2017-01-31		11.99

		2017-02-01		11.81

		2017-02-02		11.93

		2017-02-03		10.97

		2017-02-06		11.37

		2017-02-07		11.29

		2017-02-08		11.45

		2017-02-09		10.88

		2017-02-10		10.85

		2017-02-13		11.07

		2017-02-14		10.74

		2017-02-15		11.97

		2017-02-16		11.76

		2017-02-17		11.49

		2017-02-21		11.57

		2017-02-22		11.74

		2017-02-23		11.71

		2017-02-24		11.47

		2017-02-27		12.09

		2017-02-28		12.92

		2017-03-01		12.54

		2017-03-02		11.81

		2017-03-03		10.96

		2017-03-06		11.24

		2017-03-07		11.45

		2017-03-08		11.86

		2017-03-09		12.3

		2017-03-10		11.66

		2017-03-13		11.35

		2017-03-14		12.3

		2017-03-15		11.63

		2017-03-16		11.21

		2017-03-17		11.28

		2017-03-20		11.34

		2017-03-21		12.47

		2017-03-22		12.81

		2017-03-23		13.12

		2017-03-24		12.96

		2017-03-27		12.5

		2017-03-28		11.53

		2017-03-29		11.42

		2017-03-30		11.54

		2017-03-31		12.37

		2017-04-03		12.38

		2017-04-04		11.79

		2017-04-05		12.89

		2017-04-06		12.39

		2017-04-07		12.87

		2017-04-10		14.05

		2017-04-11		15.07

		2017-04-12		15.77

		2017-04-13		15.96

		2017-04-17		14.66

		2017-04-18		14.42

		2017-04-19		14.93

		2017-04-20		14.15

		2017-04-21		14.63

		2017-04-24		10.84

		2017-04-25		10.76

		2017-04-26		10.85

		2017-04-27		10.36

		2017-04-28		10.82

		2017-05-01		10.11

		2017-05-02		10.59

		2017-05-03		10.68

		2017-05-04		10.46

		2017-05-05		10.57

		2017-05-08		9.77

		2017-05-09		9.96

		2017-05-10		10.21

		2017-05-11		10.6

		2017-05-12		10.4

		2017-05-15		10.42

		2017-05-16		10.65

		2017-05-17		15.59

		2017-05-18		14.66

		2017-05-19		12.04

		2017-05-22		10.93

		2017-05-23		10.72

		2017-05-24		10.02

		2017-05-25		9.99

		2017-05-26		9.81

		2017-05-30		10.38

		2017-05-31		10.41

		2017-06-01		9.89

		2017-06-02		9.75

		2017-06-05		10.07

		2017-06-06		10.45

		2017-06-07		10.39

		2017-06-08		10.16

		2017-06-09		10.7

		2017-06-12		11.46

		2017-06-13		10.42

		2017-06-14		10.64

		2017-06-15		10.9

		2017-06-16		10.38

		2017-06-19		10.37

		2017-06-20		10.86

		2017-06-21		10.75

		2017-06-22		10.48

		2017-06-23		10.02

		2017-06-26		9.9

		2017-06-27		11.06

		2017-06-28		10.03

		2017-06-29		11.44

		2017-06-30		11.18

		2017-07-03		11.22

		2017-07-05		11.07

		2017-07-06		12.54

		2017-07-07		11.19

		2017-07-10		11.11

		2017-07-11		10.89

		2017-07-12		10.3

		2017-07-13		9.9

		2017-07-14		9.51

		2017-07-17		9.82

		2017-07-18		9.89

		2017-07-19		9.79

		2017-07-20		9.58

		2017-07-21		9.36

		2017-07-24		9.43

		2017-07-25		9.43

		2017-07-26		9.6

		2017-07-27		10.11

		2017-07-28		10.29

		2017-07-31		10.26

		2017-08-01		10.09

		2017-08-02		10.28

		2017-08-03		10.44

		2017-08-04		10.03

		2017-08-07		9.93

		2017-08-08		10.96

		2017-08-09		11.11

		2017-08-10		16.04

		2017-08-11		15.51

		2017-08-14		12.33

		2017-08-15		12.04

		2017-08-16		11.74

		2017-08-17		15.55

		2017-08-18		14.26

		2017-08-21		13.19

		2017-08-22		11.35

		2017-08-23		12.25

		2017-08-24		12.23

		2017-08-25		11.28

		2017-08-28		11.32

		2017-08-29		11.7

		2017-08-30		11.22

		2017-08-31		10.59

		2017-09-01		10.13

		2017-09-05		12.23

		2017-09-06		11.63

		2017-09-07		11.55

		2017-09-08		12.12

		2017-09-11		10.73

		2017-09-12		10.58

		2017-09-13		10.5

		2017-09-14		10.44

		2017-09-15		10.17

		2017-09-18		10.15

		2017-09-19		10.18

		2017-09-20		9.78

		2017-09-21		9.67

		2017-09-22		9.59

		2017-09-25		10.21

		2017-09-26		10.17

		2017-09-27		9.87

		2017-09-28		9.55

		2017-09-29		9.51

		2017-10-02		9.45

		2017-10-03		9.51

		2017-10-04		9.63

		2017-10-05		9.19

		2017-10-06		9.65

		2017-10-09		10.33

		2017-10-10		10.08

		2017-10-11		9.85

		2017-10-12		9.91

		2017-10-13		9.61

		2017-10-16		9.91

		2017-10-17		10.31

		2017-10-18		10.07

		2017-10-19		10.05

		2017-10-20		9.97

		2017-10-23		11.07

		2017-10-24		11.16

		2017-10-25		11.23

		2017-10-26		11.3

		2017-10-27		9.8

		2017-10-30		10.5

		2017-10-31		10.18

		2017-11-01		10.2

		2017-11-02		9.93

		2017-11-03		9.14

		2017-11-06		9.4

		2017-11-07		9.89

		2017-11-08		9.78

		2017-11-09		10.5

		2017-11-10		11.29

		2017-11-13		11.5

		2017-11-14		11.59

		2017-11-15		13.13

		2017-11-16		11.76

		2017-11-17		11.43

		2017-11-20		10.65

		2017-11-21		9.73

		2017-11-22		9.88

		2017-11-24		9.67

		2017-11-27		9.87

		2017-11-28		10.03

		2017-11-29		10.7

		2017-11-30		11.28

		2017-12-01		11.43

		2017-12-04		11.68

		2017-12-05		11.33

		2017-12-06		11.02

		2017-12-07		10.16

		2017-12-08		9.58

		2017-12-11		9.34

		2017-12-12		9.92

		2017-12-13		10.18

		2017-12-14		10.49

		2017-12-15		9.42

		2017-12-18		9.53

		2017-12-19		10.03

		2017-12-20		9.72

		2017-12-21		9.62

		2017-12-22		9.9

		2017-12-26		10.25

		2017-12-27		10.47

		2017-12-28		10.18

		2017-12-29		11.04

		2018-01-02		9.77

		2018-01-03		9.15

		2018-01-04		9.22

		2018-01-05		9.22

		2018-01-08		9.52

		2018-01-09		10.08

		2018-01-10		9.82

		2018-01-11		9.88

		2018-01-12		10.16

		2018-01-16		11.66

		2018-01-17		11.91

		2018-01-18		12.22

		2018-01-19		11.27

		2018-01-22		11.03

		2018-01-23		11.1

		2018-01-24		11.47

		2018-01-25		11.58

		2018-01-26		11.08

		2018-01-29		13.84

		2018-01-30		14.79

		2018-01-31		13.54

		2018-02-01		13.47

		2018-02-02		17.31

		2018-02-05		37.32

		2018-02-06		29.98

		2018-02-07		27.73

		2018-02-08		33.46

		2018-02-09		29.06

		2018-02-12		25.61

		2018-02-13		24.97

		2018-02-14		19.26

		2018-02-15		19.13

		2018-02-16		19.46

		2018-02-20		20.6

		2018-02-21		20.02

		2018-02-22		18.72

		2018-02-23		16.49

		2018-02-26		15.8

		2018-02-27		18.59

		2018-02-28		19.85

		2018-03-01		22.47

		2018-03-02		19.59

		2018-03-05		18.73

		2018-03-06		18.36

		2018-03-07		17.76

		2018-03-08		16.54

		2018-03-09		14.64

		2018-03-12		15.78

		2018-03-13		16.35

		2018-03-14		17.23

		2018-03-15		16.59

		2018-03-16		15.8

		2018-03-19		19.02

		2018-03-20		18.2

		2018-03-21		17.86

		2018-03-22		23.34

		2018-03-23		24.87

		2018-03-26		21.03

		2018-03-27		22.5

		2018-03-28		22.87

		2018-03-29		19.97

		2018-04-02		23.62

		2018-04-03		21.1

		2018-04-04		20.06

		2018-04-05		18.94

		2018-04-06		21.49

		2018-04-09		21.77

		2018-04-10		20.47

		2018-04-11		20.24

		2018-04-12		18.49

		2018-04-13		17.41

		2018-04-16		16.56

		2018-04-17		15.25

		2018-04-18		15.6

		2018-04-19		15.96

		2018-04-20		16.88

		2018-04-23		16.34

		2018-04-24		18.02

		2018-04-25		17.84

		2018-04-26		16.24

		2018-04-27		15.41

		2018-04-30		15.93

		2018-05-01		15.49

		2018-05-02		15.97

		2018-05-03		15.9

		2018-05-04		14.77

		2018-05-07		14.75

		2018-05-08		14.71

		2018-05-09		13.42

		2018-05-10		13.23

		2018-05-11		12.65

		2018-05-14		12.93

		2018-05-15		14.63

		2018-05-16		13.42

		2018-05-17		13.43

		2018-05-18		13.42

		2018-05-21		13.08

		2018-05-22		13.22

		2018-05-23		12.58

		2018-05-24		12.53

		2018-05-25		13.22

		2018-05-29		17.02

		2018-05-30		14.94

		2018-05-31		15.43

		2018-06-01		13.46

		2018-06-04		12.74

		2018-06-05		12.4

		2018-06-06		11.64

		2018-06-07		12.13

		2018-06-08		12.18

		2018-06-11		12.35

		2018-06-12		12.34

		2018-06-13		12.94

		2018-06-14		12.12

		2018-06-15		11.98

		2018-06-18		12.31

		2018-06-19		13.35

		2018-06-20		12.79

		2018-06-21		14.64

		2018-06-22		13.77

		2018-06-25		17.33

		2018-06-26		15.92

		2018-06-27		17.91

		2018-06-28		16.85

		2018-06-29		16.09

		2018-07-02		15.6

		2018-07-03		16.14

		2018-07-05		14.97

		2018-07-06		13.37

		2018-07-09		12.69

		2018-07-10		12.64

		2018-07-11		13.63

		2018-07-12		12.58

		2018-07-13		12.18

		2018-07-16		12.83

		2018-07-17		12.06

		2018-07-18		12.1

		2018-07-19		12.87

		2018-07-20		12.86

		2018-07-23		12.62

		2018-07-24		12.41

		2018-07-25		12.29

		2018-07-26		12.14

		2018-07-27		13.03

		2018-07-30		14.26

		2018-07-31		12.83

		2018-08-01		13.15

		2018-08-02		12.19

		2018-08-03		11.64

		2018-08-06		11.27

		2018-08-07		10.93

		2018-08-08		10.85

		2018-08-09		11.27

		2018-08-10		13.16

		2018-08-13		14.78

		2018-08-14		13.31

		2018-08-15		14.64

		2018-08-16		13.45

		2018-08-17		12.64

		2018-08-20		12.49

		2018-08-21		12.86

		2018-08-22		12.25

		2018-08-23		12.41

		2018-08-24		11.99

		2018-08-27		12.16

		2018-08-28		12.5

		2018-08-29		12.25

		2018-08-30		13.53

		2018-08-31		12.86

		2018-09-04		13.16

		2018-09-05		13.91

		2018-09-06		14.65

		2018-09-07		14.88

		2018-09-10		14.16

		2018-09-11		13.22

		2018-09-12		13.14

		2018-09-13		12.37

		2018-09-14		12.07

		2018-09-17		13.68

		2018-09-18		12.79

		2018-09-19		11.75

		2018-09-20		11.8

		2018-09-21		11.68

		2018-09-24		12.2

		2018-09-25		12.42

		2018-09-26		12.89

		2018-09-27		12.41

		2018-09-28		12.12

		2018-10-01		12

		2018-10-02		12.05

		2018-10-03		11.61

		2018-10-04		14.22

		2018-10-05		14.82

		2018-10-08		15.69

		2018-10-09		15.95

		2018-10-10		22.96

		2018-10-11		24.98

		2018-10-12		21.31

		2018-10-15		21.3

		2018-10-16		17.62

		2018-10-17		17.4

		2018-10-18		20.06

		2018-10-19		19.89

		2018-10-22		19.64

		2018-10-23		20.71

		2018-10-24		25.23

		2018-10-25		24.22

		2018-10-26		24.16

		2018-10-29		24.7

		2018-10-30		23.35

		2018-10-31		21.23

		2018-11-01		19.34

		2018-11-02		19.51

		2018-11-05		19.96

		2018-11-06		19.91

		2018-11-07		16.36

		2018-11-08		16.72

		2018-11-09		17.36

		2018-11-12		20.45

		2018-11-13		20.02

		2018-11-14		21.25

		2018-11-15		19.98

		2018-11-16		18.14

		2018-11-19		20.1

		2018-11-20		22.48

		2018-11-21		20.8

		2018-11-23		21.52

		2018-11-26		18.9

		2018-11-27		19.02

		2018-11-28		18.49

		2018-11-29		18.79

		2018-11-30		18.07

		2018-12-03		16.44

		2018-12-04		20.74

		2018-12-06		21.19

		2018-12-07		23.23

		2018-12-10		22.64

		2018-12-11		21.76

		2018-12-12		21.46

		2018-12-13		20.65

		2018-12-14		21.63

		2018-12-17		24.52

		2018-12-18		25.58

		2018-12-19		25.58

		2018-12-20		28.38

		2018-12-21		30.11

		2018-12-24		36.07

		2018-12-26		30.41

		2018-12-27		29.96

		2018-12-28		28.34

		2018-12-31		25.42
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Figure 1.4.: The cumulative value of the five industry portfolios are shown, from Jan
1927 through Dec 2018. Cumulative value is normalized to the initial
investment, ignores all trading costs, and is not adjusted for inflation.

some amount of positive skew. The empirical skewness is computed as 2.09. We
will later need to consider a normalized version of the VIX, with mean value one; we
estimate the third centered moment of this normalized VIX to be around 0.139. That
is

1

n

∑
1≤i≤n

(
vi

1
n

∑
1≤j≤n vj

− 1

)3

≈ 0.139.

The VIX level is clearly autocorrelated. The first differences in the VIX level are
mean reverting, as shown in Figure 1.7. The VIX level is often modeled as an Ornstein-
Uhlenbeck process. [101, 181]

a

1.3. Probability Distributions

A comprehensive treatment of probability distributions is beyond the scope of this
book, or any one single book. The reader is directed to the texts of: Walck a good free

7
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Figure 1.5.: The monthly returns of the five industry portfolios, from Jan 1927 through
Dec 2018 are scattered against each other. In the lower triangle, returns
are scattered against each other. Pearson correlations are given in the
upper triangle. On the diagonal, the empirical distribution of returns are
plotted. Industry portfolio returns are clearly highly correlated.

overview of univariate distributions [165]; Krishnamoorthy, for a more theoretical, but
similar overview [83]; Press, for multivariate distributions. [138]

Vaguely speaking, the various distributions can be described as follows:

Normal distribution The granddaddy of continuous distributions tends to arise when-
ever you sum independent random variables, a consequence of the Central limit
theorem.

Chi square This is the sum of the squares of zero mean normal random variables.
These can also arise as the sums of squares of independent random variables,
due to a kind of central limit theorem for squared variables. [63] The more
general form is the Gamma distribution.

non-central Chi square This is a Chi square where the summed normal variates do
not have zero mean.

Chi This is the positive square root of a Chi square.

8
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Figure 1.6.: The level of the VIX index is shown, from 1990-01-02 through 2018-12-31

t distribution This arises as the ratio of a normal to a (independent) Chi variate.
Typically this occurs when dividing a sample average by some estimate of the
standard deviation of the process. For large samples it is basically normal.

non-central t distribution The ratio of a normal with non-zero mean to an indepen-
dent Chi.

F This is the (rescaled) ratio of Chi square variates. The square of a t is an F, up
to scaling. It typically arises as the ratio of the square of some averages to the
estimated variance of the process. For large sample sizes, the variation in the
denominator is often ignored, and a Chi squared approximation is made.

beta This is the ratio of a Chi square to itself plus another independent Chi square.
A trigonometric transform (Equation 2.24) relates the beta to the (rescaled) F
distribution.

9
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Figure 1.7.: Autocorrelation plots of the VIX level, and the first difference of the VIX
level are shown, along with the standard 95% confidence intervals.

1.3.1. The Multivariate Normal Distribution

We say that k-vector x follows a multivariate normal (or Gaussian) distribution with
mean µ and covariance Σ, if the density of x is

φ (x) =
1√

(2π)
k |Σ|

exp

(
−1

2
(x− µ)

>Σ−1 (x− µ)

)
. (1.2)

We write this as x ∼ N (µ,Σ).
The family of multivariate normal random variables is ‘closed’ under affine shifts:

let B be a p×k matrix whose row space has rank p, for p ≤ k, and let a be a p-vector.
Then Bx ∼ N

(
Bµ+ a,BΣB>

)
.

The density of the normal distribution can be expressed on a matrix parameter that
combines the first two moments. [121] Suppose x ∼ N (µ,Σ). Define the matrix Θ as

Θ =df

[
1 µ>

µ Σ + µµ>

]
. (1.3)

Then the density of x is

φ (x) =
e

1
2√

(2π)
k |Σ|

exp

(
−1

2
tr
(

Θ−1x̃x̃>
))

. (1.4)

1.3.2. Elliptical Distributions

We can generalize the multivariate normal distribution to a fatter tailed distribution
by considering elliptical distributions. The idea is that the norm of the vector-valued
random variable is determined separately from its direction, and the direction follows

10
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a simple covariance-like structure. One simple way to define an elliptical distribution
is to let z be a n-dimensional normal distribution with mean 0 and covariance I. Then
let

x = µ+ aΛ1/2 z

‖z‖2
,

where a is some random variable, µ is the mean of x, and Λ is related to the covariance
of x. When a is takes a Chi distribution (not Chi-squared) with n degrees of freedom,
we recover the multivariate normal.

Moments of products of elements of x are given, for the normal case, by Isserlis’
Theorem; an extension of this theorem to elliptical distributions gives the following
moment relations. [74, 163] By this theorem, we have

E [xixj ] = µiµj +
E
[
a2
]

n
λi,j , (1.5)

and thus the covariance of x is

Σ =
E
[
a2
]

n
Λ.

The third moment is

E [xixjxk] = µiµjµk + µiΣj,k + µjΣi,k + µkΣi,l. (1.6)

When considering a centered version of x, we can treat µ as the zero vector, in which
case the third moment is zero. Elliptically distributed variables have no skew, which
may make them a poor choice for modeling asset returns6.

The fourth moment is

E [xixjxkxl] = µiµjµkµl +
n

n+ 2

E
[
a4
]

E [a2]
2 (Σi,jΣk,l + Σi,kΣj,l + Σi,lΣj,k)

+ µiµjΣk,l + µiµkΣj,l + µiµlΣj,k

+ µjµkΣi,l + µjµlΣi,k + µkµlΣi,j . (1.7)

The kurtosis (not the excess kurtosis) of the ith element of x is then

3n

n+ 2

E
[
a4
]

E [a2]
2 .

Often we need only consider the first four moments of an elliptical distribution. In
this case, we can think of the elliptical distribution as parametrized by µ, Σ, and the
kurtosis factor defined as

κ =df
n

n+ 2

E
[
a4
]

E [a2]
2 . (1.8)

The multivariate normal is an elliptical distribution with κ = 1. Distributions with
larger kurtosis factor are considered ‘fat tailed.’

An alternative characterization is as follows: random vector x has an elliptical
distribution if and only if the density of x is some function of the quadratic form
(x− µ)

>
Λ−1 (x− µ).

6Although slightly better than Gaussian, which have too modest kurtosis.

11
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1.3.3. The Wishart Distribution

Let the rows of the n × p matrix X be i.i.d. multivariate normals with zero mean
and covariance Σ. Then W = X>X follows a Wishart distribution with parameter Σ
and n degrees of freedom, written as W ∼ W (Σ, n) , or sometimes as W ∼ Wp (Σ, n)
to emphasize that W is p × p. [138, 5, 159] The Wishart distribution generalizes the
chi-square distribution, or rather the gamma distribution, of which the chi-square is
an example.

The density of the Wishart is

fW (W; Σ, n) =
|W|n−p−1/2

2np/2 |Σ|n/2 Γ (n/2)
e−

1
2 tr(Σ−1W). (1.9)

This density is defined for non-integral n, a case not covered by the stochastic repre-
sentation above.

The Wishart enjoys a ‘closure property’, that is, informally, a projection of a Wishart
is also a Wishart. If A is a p× k matrix of rank k where k ≤ p, then

W ∼ Wp (Σ, n)⇒ A>WA ∼ Wk

(
A>ΣA, n

)
. (1.10)

The Non-Central Wishart Distribution

As with typical non-central distributions, the non-central Wishart distribution arises
when non-centered variates are used in place of centered variates. So imagine that the
rows of the n×p matrix X are i.i.d. multivariate normals with mean µ and covariance
Σ. Then W = X>X follows a non-central Wishart distribution with parameter Σ, n
degrees of freedom, and non-centrality paramater µ, written as W ∼ Wp (Σ,µ, n) . [95]
The non-central Wishart also satisfies a closure property.

1.3.4. The Inverse Wishart Distribution

Let Y−1 ∼ W
(
Ψ−1, n

)
. Then Y follows an Inverse Wishart Distribution with param-

eter Ψ and n degrees of freedom, written as Y ∼ IW (Ψ, n) .
The density of the inverse Wishart is

fIW (Y; Ψ, n) =
|Y|n+p+1/2 |Ψ|n/2

2np/2Γ (n/2)
e−

1
2 tr(ΨY). (1.11)

1.3.5. The Multivariate t Distribution

The Multivariate t distribution generalizes the t-distribution to the multivariate set-
ting. [81] There are two equivalent stochastic representations of this distribution.
Suppose that

Y ∼ N (0p,Σ) ,

S2 ∼ χ2 (n) ,

12
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with Y and S2 independent. Then X = Y√
S2/n

+µ follows a multivariate t distribution

with n degrees of freedom, matrix Σ, and location parameter µ, written as

X ∼ T (n,Σ,µ) . (1.12)

X has the density [37]

fT (X;n,Σ,µ) =
Γ
(

1
2 (n+ p)

)
nn/2

Γ
(

1
2n
)
πp/2 |Σ|

1
2

(
n+ (X − µ)

>Σ−1 (X − µ)
)−n+p/2

. (1.13)

The multivariate t distribution admits an alternative stochastic representation. [37,
6, 81] Let

Y ∼ N (0p, nIp) ,

U ∼ W
(
Σ−1, n+ p− 1

)
,

with Y and U independent. Then

X =
(
U1/2

)−1

Y + µ ∼ T (n,Σ,µ) ,

where here A1/2 represents the symmetric square root of A. Another way of stating
this is in terms of an inverse Wishart, as follows:

W ∼ IW (Σ, n+ p− 1) ,

X |W ∼ N (µ, nW ) .
(1.14)

This form will appear in the context of posterior marginal distributions in Bayesian
analysis.

Kotz and Nadarajah claim that the distribution is “said to be central if µ = 0;
otherwise, it is said to be noncentral.” [81, page 1] It is not clear to whom they refer
in the third person invisible, but the µ 6= 0p case should emphatically not be called a
‘non-central’ multivariate t, since it does not reduce to the scalar non-central t in the
p = 1 case. Instead one should consider the µ as a locational shift. The distribution of
X is spherically symmetric around µ, a property not shared by the scalar non-central
t.

The Multivariate t satisfies a multiplicative closure property. If A is a p× k matrix
of rank k where k ≤ p, then

X ∼ T (n,Σ,µ)⇒ A>X ∼ T
(
n,A>ΣA,A>µ

)
. (1.15)

As a consequence, marginals of the Multivariate t distribution follow the (scaled,
shifted) scalar t distribution.

The Multivariate t distribution is an elliptical distribution, with mean µ, covariance
n
n−2 Σ and kurtosis factor κ = n−2

n−4 .

13
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1.3.6. The Non-central Multivariate t Distribution

Kshirsagar described a truly non-central multivariate t distribution that generalizes
the scalar non-central t distribution in the p = 1 case. Let

Y ∼ N
(
µ, σ2R

)
,

S2 ∼ χ2 (n) ,

where R is a correlation matrix, i.e., symmetric positive definite with ones along the
diagonal. Then

X =
Y√

σ2S2/n

follows the non-central multivariate t distribution with covariance Σ = σ2R, degrees
of freedom n and non-centrality parameter µ. Kshirsagar gives the density of this
distribution and notes that its marginals follow the scalar non-central t distribution.
[81, 85] This distribution is not an elliptical distribution.

1.4. † Matrix Derivatives

In the more advanced parts of this text, we will need to compute the derivatives of
matrices and the derivatives of quantities with respect to matrices. This is somewhat
complicated by considerations of notation (the derivative of an m × n matrix with
respect to a p×q matrix consists of mnpq distinct elements) as well as symmetry (e.g.,
we typically want to consider the derivative of a quantity with respect to a symmetric
matrix, only considering changes which respect symmetry). For more details Mag-
nus and Neudecker give a very good introduction. [105, 106] The Matrix Cookbook
provides a good cheat-sheet of results. [134]

Definition 1.4.1 (Derivatives). For m-vector x, and n-vector y, let the derivative dy
dx

be the n×m matrix whose first column is the partial derivative of y with respect to
x1. This follows the so-called ‘numerator layout’ convention. For matrices Y and X,
define

dY

dX
=df

dvec (Y)

d vec (X)
.

Lemma 1.4.2 (Miscellaneous Derivatives). For symmetric matrices Y and X,

dvech (Y)

d vec (X)
= L

dY

dX
,

dvec (Y)

d vech (X)
=

dY

dX
D,

dvech (Y)

d vech (X)
= L

dY

dX
D. (1.16)

Proof. For the first equation, note that vech (Y) = L vec (Y), thus by the chain rule:

dvech (Y)

d vec (X)
=

dL vec (Y)

d vec (Y)
= L

dY

dX
,

by linearity of the derivative. The other identities follow similarly. a

14
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Lemma 1.4.3 (Derivative of matrix inverse). For invertible matrix A,

dA−1

dA
= −

(
A−> ⊗ A−1

)
= −

(
A> ⊗ A

)−1
. (1.17)

For symmetric A, the derivative with respect to the non-redundant part is

dvech
(
A−1

)
d vech (A)

= −L
(
A−1 ⊗ A−1

)
D. (1.18)

Note how this result generalizes the scalar derivative: dx−1

dx = −
(
x−1x−1

)
.

Proof. Equation 1.17 is a known result. [42, 106] Equation 1.18 then follows using
Lemma 1.4.2. a

Lemma 1.4.4 (Miscellaneous Derivatives). Given conformable, symmetric, matrices
X, Y, Z, and constant matrix J, define

fP (X; J) =df −
((

J>XJ
)−1 ⊗

(
J>XJ

)−1
) (

J> ⊗ J>
)
.

Then

d
(
J>XJ

)−1

dZ
= fP (X; J)

dX

dZ
. (1.19)

dXY

dZ
= (I⊗ X)

dY

dZ
+
(
Y> ⊗ I

) dX

dZ
. (1.20)

dXX>

dZ
= (I + K) (X⊗ I)

dX

dZ
. (1.21)

dtr (XY)

dZ
= vec

(
X>
)> dY

dZ
+ vec (Y)

> dX>

dZ
. (1.22)

d|X|
dZ

= |X| vec
(
X−>

)> dX

dZ
. (1.23)

d|XY|
dZ

= |XY|
(

vec
(
X−>

)> dX

dZ
+ vec

(
Y−>

)> dY

dZ

)
. (1.24)

d
∣∣∣(XY)

−1
∣∣∣

dZ
= |XY|−1

(
vec
(
X−>

)> dX

dZ
+ vec

(
Y−>

)> dY

dZ

)
. (1.25)

Here K is the ‘commutation matrix.’

Let λj be the jth eigenvalue of X, with corresponding eigenvector νj, normalized so
that νj

>νj = 1. Then

dλj
dZ

=
(
νj
> ⊗ νj>

) dX

dZ
. (1.26)
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Proof. For Equation 1.19, write

d
(
J>XJ

)−1

dZ
=

d
(
J>XJ

)−1

d (J>XJ)

d
(
J>XJ

)
dZ

.

Lemma 1.4.3 gives the derivative on the left; to get the derivative on the right, note
that vec

(
J>XJ

)
=
(
J> ⊗ J>

)
vec (X), then use linearity of the derivative.

For Equation 1.20, write vec (XY) =
(
Y> ⊗ X

)
vec (I). Then consider the derivative

of vec (XY) with respect to any scalar z :

dvec (XY)

dz
=

d
(
Y> ⊗ X

)
vec (I)

dz
= vec−1

(
d
(
Y> ⊗ X

)
dz

)
vec (I) ,

where vec−1 (·) is the inverse of vec (·). That is, vec−1 (vec (·)) is the identity over
square matrices. (This wrinkle is needed because we have defined derivatives of ma-
trices to be the derivative of their vectorization.)

For Equation 1.21, by Equation 1.20,

dvec
(
XX>

)
d vec (Z)

= (I⊗ X)
dvec

(
X>
)

d vec (Z)
+ (X⊗ I)

dvec (X)

d vec (Z)
,

= (I⊗ X) K
dvec (X)

d vec (Z)
+ (X⊗ I)

dvec (X)

d vec (Z)
.

Now let A be any conformable square matrix. We have:

(I⊗ X) K vec (A) = (I⊗ X) vec
(
A>
)

= vec
(
XA>

)
=

K vec
(
AX>

)
= K (X⊗ I) vec (A) .

Because A was arbitrary, we have (I⊗ X) K = K (X⊗ I) , and the result follows.
Using the product rule for Kronecker products [134], then using the vector identity

again we have

dvec (XY)

dz
=

(
vec−1

(
dY>

dz

)
⊗ X + Y> ⊗ vec−1

(
dX

dz

))
vec (I) ,

= (I⊗ X)
dY

dz
+
(
Y> ⊗ I

) dX

dz
.

Then apply this result to every element of vec (Z) to get the result.
For Equation 1.22, write

tr (XY) = vec
(
X>
)>

vec (Y) ,

then use the product rule.
For Equation 1.23, first consider the derivative of |X| with respect to a scalar z. This

is known to take form: [134]

d|X|
dz

= |X| tr
(

X−1vec−1

(
dX

dz

))
,
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where the vec−1 (·) is here because of how we have defined derivatives of matrices.
Rewrite the trace as the dot product of two vectors:

d|X|
dz

= |X| vec
(
X−>

)> dX

dz
.

Using this to compute the derivative with respect to each element of vec (Z) gives
the result. Equation 1.24 follows from the scalar product rule since |XY| = |X| |Y|.
Equation 1.25 then follows, using the scalar chain rule.

For Equation 1.26, the derivative of the jth eigenvalue of matrix X with respect to
a scalar z is known to be: [134, equation (67)]

dλj
dz

= νj
>vec−1

(
dX

dz

)
νj .

Take the vectorization of this scalar, and rewrite it in Kronecker form:

dλj
dz

=
(
νj
> ⊗ νj>

) dX

dz
.

Use this to compute the derivative of λj with respect to elements of vec (Z). a

Lemma 1.4.5 (Cholesky Derivatives). Let X be a symmetric positive definite matrix.
Let Y be its lower triangular Cholesky factor. That is, Y is the lower triangular matrix
such that YY> = X. Then

dvech (Y)

d vech (X)
=
(
L (I + K) (Y ⊗ I) L>

)−1
, (1.27)

where K is the ‘commutation matrix.’

Proof. By Equation 1.21 of Lemma 1.4.4,

dvec
(
YY>

)
d vec (Y)

= (I + K) (Y ⊗ I) .

By the chain rule, for lower triangular matrix Y, we have

dvech
(
YY>

)
d vech (Y)

=
dvech

(
YY>

)
d vec (YY>)

dvec
(
YY>

)
d vec (Y)

dvec (Y)

d vech (Y)
,

= L (I + K) (Y ⊗ I) L>.

The result now follows since

dvech (Y)

d vech (X)
=

dvech (Y)

d vech (YY>)
=

(
dvech

(
YY>

)
d vech (Y)

)−1

.

a
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Lemma 1.4.6 (Inverse Cholesky Derivatives). Let X be a symmetric positive definite
matrix. Let Y be the lower triangular Cholesky factor of the inverse of X. That is, Y
is the lower triangular matrix such that YY> = X−1, sometimes written as Y = X−1/2.
Then

dvech (Y)

d vech (X)
= −

(
L (I + K)

((
Y>
)−1 ⊗

(
YY>

)−1
)

L>
)−1

. (1.28)

Proof. By the chain rule,

dvech
((

YY>
)−1
)

d vech (Y)
=

dvech
((

YY>
)−1
)

d vech (YY>)

dvech
(
YY>

)
d vech (Y)

.

The term on the left is given by Lemma 1.4.3. The one on the right was derived in
the proof of Lemma 1.4.5. Together they give us

dvech
((

YY>
)−1
)

d vech (Y)
=
(
−L
((

YY>
)−1 ⊗

(
YY>

)−1
)

D
) (

L (I + K) (Y ⊗ I) L>
)
.

Now note that I + K is a special matrix which symmetrizes quantities to the right of it.
(One half of this quantity is what Magnus calls the ‘symmetric idempotent matrix.’
[105]) Then note that DL is idempotent on symmetric matrices. Thus DL (I + K) =
I + K, and we can eliminate the DL from our expression. From this it follows, via
implicit differentiation, that

dvech (Y)

d vech (X)
= −

(
L
((

YY>
)−1 ⊗

(
YY>

)−1
) (

(I + K) (Y ⊗ I) L>
))−1

.

Now note that the matrix I + K (equal to twice the symmetric idempotent matrix Nn)
can be placed on either side of expressions of the form A⊗A. [105, eqn. (40)] Thus it
can be shifted to the left of the equation. We then use the fact that matrix product
commutes with Kronecker product to arrive at

dvech (Y)

d vech (X)
= −

(
L (I + K)

(((
YY>

)−1
Y
)
⊗
(
YY>

)−1
)

L>
)−1

. (1.29)

From this the result follows. a

Note how this result generalizes the scalar derivative: dx−1/2

dx = −
(
2x1/2x

)−1
.
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Exercises
* Ex. 1.1 Note on exercises Exercises which are more difficult than others
will typically be marked with a star, as above. Some questions may be marked with
they symbol “§” to denote that the author is not sure that there is a nice answer.

1. Some exercises might be labelled as “boring”. The point of these is not to bore
you, rather to ensure that you have understood some computational recipe well
enough to reproduce on your own.

Ex. 1.2 Trace Let A be a square matrix.

1. Show that if A is diagonal, then tr (A) = 1>A1.

2. Show that tr
(
A2
)

= vec (A)
>

vec (A) for symmetric matrix A.

Ex. 1.3 Elimination and Duplication Write out the 3 × 4 Elimination ma-
trix. Write out the 4× 3 Duplication matrix.

Ex. 1.4 Matrix Calculus Exercises Assume X is symmetric.

1. What is dtr(X)
dX ?

2. Compute
dtr(X2)

dX .

Ex. 1.5 Inverse Kronecker Suppose A and B are square non-singular matri-
ces. Prove that

(A⊗ B)
−1

= A−1 ⊗ B−1.

Ex. 1.6 Numerical Derivatives Use a differencing scheme to approximate
the derivative of matrix-valued operations of matrix input. That is, letting ε be a
small quantity, compute, for some input matrix X and function f

f
(
X + εJij

)
− f (X)

ε
,

vectorize it, and set this equal to the i, jth column of the approximate derivative.

1. Using the numerical differencing scheme, confirm the result of Lemma 1.4.5.
Note that some implementations of the Cholesky operation will assume the
input is symmetric and thus ignore the lower or upper triangular part of the
input. Take care to deal with this in your numerical approximation. (Hint:
apply the symmetric idempotent matrix to your input.)

2. Using the numerical differencing scheme, confirm the result of Lemma 1.4.6.

Ex. 1.7 Wishart Facts 1. Prove the closure property of the Wishart dis-
tribution, Equation 1.10.
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2. The Sharpe ratio and the
signal-noise ratio

A man who seeks advice about
his actions will not be grateful
for the suggestion that he
maximise expected utility.

(A. D. Roy, Safety First and the
Holding of Assets)

Hey, Paul! Let’s get rid of
Clarence and steal all his good
ideas!

(John Lennon, attributed)

2.1. Introduction

The Sharpe ratio is arguably the most commonly used metric of the historical perfor-
mance of financial assets–mutual funds, hedge funds, stocks, etc. It is defined as

ζ̂ =df
µ̂− r0

σ̂
, (2.1)

where µ̂ is the historical, or sample, mean return of the mutual fund, σ̂ is the sample
standard deviation of returns, and r0 is some fixed risk-free or disastrous rate of return.

Under the original definition of Sharpe’s “reward-to-variability ratio”, r0 was equal
to zero. [149] One typically uses the vanilla sample mean and the Bessel-corrected
sample standard deviation in computing the ratio, viz.

µ̂ =df

∑
1≤i≤n

xi, σ̂ =df

√∑
1≤i≤n (xi − µ̂)

2

n− 1
. (2.2)

In this text, Sharpe ratio will refer to this quantity, computed from sample statistics,
whereas signal-noise ratio will refer to the analagously defined population parameter,

ζ =df
µ− r0

σ
. (2.3)

In general, hats will be placed over quantities to denote population estimates. Sharpe
himself notes that ideally population values would be used in the computation of
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his reward-to-variability ratio, but “Since the predictions cannot be obtained in any
satisfactory manner, . . . ex post values must be used–the average rate of return of a
portfolio must be substituted for its expected rate of return, and the actual standard
deviation of its rate of return for its predicted risk.” [149, p. 122]

In some situations, the risk-free rate, which acts as a benchmark, varies significantly
over the measured period, and this time dependence is incorporated into the compu-
tation. In this case, the Sharpe ratio is defined as the ratio of the sample mean to the
sample standard deviation of xt − rt, where xt is the return of the asset in question,
and rt is the varying risk free rate.

Example 2.1.1 (Sharpe ratio of the Market). Here we consider the raw returns of the
Market, introduced in Example 1.2.1. The mean monthly return from Jan 1927 to Dec
2018 is 0.92%; the standard deviation is 5.3%. Thus the Sharpe ratio is 0.17 mo.−1/2.
(More on the funny units later.) a
Example 2.1.2 (Sharpe ratio of the Market, excess returns). Continuing Example 2.1.1,
if we compute the excess returns of ‘the Market’ by subtracting the risk-free rate from
the Market returns, the Sharpe ratio is 0.1211 mo.−1/2. a

In practice, the Sharpe ratio is often used to answer the following kinds of questions:
1. “Should I invest a predetermined amount of money (long) in a given asset?”
2. “Should our quant fund replace strategy A with strategy B?”
3. “Should we invest in asset B given that we will keep our investment in asset A?”

Note that each of these questions is binary: we are not asking how much should we
invest in a given asset, nor whether we should potentially short the asset. Rather, the
amount and side are predetermined. Later we will consider portfolio problems, which
are less constrained in nature.

We stress again the Sharpe ratio is a historical measure, but it is used to guide
future investments. But as is often hidden in the fine print, historical performance
is no guarantee of future results. In these notes we aim to explain just how much
this historical measure can be trusted as an estimate of future results, under certain
assumptions.

2.1.1. Which Returns?

Let p be the mark price of an asset. The relative return (also known as ‘arithmetic’,
‘percent,’ or ‘simple’ return) from t to t+ 1 is defined as

pt+1 − pt
pt

=
pt+1

pt
− 1. (2.4)

The log return (also known as ‘geometric’ return) is defined as

log
pt+1

pt
. (2.5)

There is no clear standard which form of returns should be used in computation of
the Sharpe ratio. Log returns are typically recommended because they aggregate over
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time by summation (e.g., the sum of a week’s worth of daily log returns is the weekly
log return), and thus taking the mean of them is sensible. For this reason, adjusting
the time frame (e.g., annualizing) of log returns is trivial.

However, relative returns have the attractive property that they are additive ’later-
ally’: the relative return of a portfolio on a given day is the dollar-weighted mean of the
relative returns of each position. This property is important when one considers more
general attribution models, or Hotelling’s distribution. To make sense of the sums of
relative returns one can think of a fund manager who always invests a fixed amount of
capital, siphoning off excess returns into cash, or borrowing cash1 to purchase stock.
Under this formulation, the returns aggregate over time by summation just like log
returns.

Moreover, log returns are unbounded in the case that there is a non-zero possibility
of an investment losing 100%. In such a case the log returns do not have finite first (or
higher) moments, and the signal-noise ratio is undefined. While this detail is typically
swept under the rug, academics often worry about the assumption of finite second
moments. In their favor, relative returns are for most, and perhaps all, investments
bounded: pick some insanely large number larger than 100, say 101010

; the return of
an investment, in percent, will not exceed this large number, in absolute value, and
thus all moments of relative returns are finite.

One reason fund managers might use relative returns when reporting Sharpe ratio
is because it inflates the results! The ‘boost’ from computing the Sharpe ratio using
relative returns is approximately:

ζ̂r − ζ̂
ζ̂
≈ 1

2

∑
i x

2∑
i x

, (2.6)

where ζ̂r is the Sharpe ratio measured using relative returns and ζ̂ uses log returns.
This approximation is most accurate for daily returns, and for the modest values of
Sharpe ratio one expects to see for real funds. See Exercise 2.16.

It goes without saying that it is generally assumed that prices are measured at equal
intervals, and so the returns are ‘over’ comparable time periods. That is, if x1 is one
(market) day’s return, then so is x2, x3, and so on. (Though see Example 4.1.3 for
how to deal with jumbled periodicities.)

Example 2.1.3 (Sharpe ratio of the Market, log returns). Continuing Example 2.1.1,
the returns of the Market were expressed as log returns. The mean monthly return is
0.0078; the standard deviation is 0.0533. Thus the Sharpe ratio is 0.15 mo.−1/2. The
boost from computing the Sharpe ratio on relative returns instead of log returns is
around 19%. a
Caution. It should be noted, however, that the use of simple returns is considered
objectionable in some circles. Because simple returns do not sum as geometric returns
do, summing them to estimate long horizon returns is inaccurate. [142] Another way
to express this is that the change of time units we will introduce in the next section is
misleading, and the Sharpe ratio should only be used on the time horizon over which

1At no interest.
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returns are measured. Nonetheless, there should be little in this text that is specific
to simple returns, and one may apply most or all of the results to the analysis of log
returns.

2.2. Units of Sharpe ratio

The Sharpe ratio is often quoted without units. This is a recipe for disaster, since it
is emphatically not a unit-less quantity, and often quoted in units different from those
which it is measured.

To compute the units of Sharpe ratio, consider the units of µ and σ. Given two
successive returns, x1, x2, which are assumed independent, let x1:2 = x1 + x2. Note
that x1:2 is the return of the asset over the two time periods only if the returns are log
returns. The expected value of x1:2 is 2µ; the variance of x1:2 is 2σ2. Thus the units
of µ must be ‘return per time,’ and the units of σ2 must be ‘return squared per time’,
where the units of return are those in which x are measured. The units of Sharpe ratio
are thus ‘per square root time’. Thus when presented as an ‘annualized’ number, the
units of Sharpe ratio are ‘per square root years’, or yr−1/2.

Once the units are explicit, any engineering student armed with sufficient domain
knowledge can translate the units, as in the following example2.

Example 2.2.1 (Annualization). Suppose one computes the sample mean and standard
deviation of daily log returns of Asset Corp. to be, respectively, 3 bps day−1 and
120 bps day−1/2. The Sharpe ratio is then estimated as 0.025 day−1/2. To translate
into ‘annualized’ units, note there are around 252 market days per year, thus multiply
by the unit quantity

√
252 day1/2yr−1/2 to get a Sharpe ratio of around 0.4yr−1/2. a

Example 2.2.2 (Annualized Sharpe ratio, the Market). Continuing Example 2.1.1, the
monthly Sharpe ratio of the Market is 0.17 mo.−1/2. To get annualized terms, multiply
by the unit quantity

√
12 mo.1/2yr−1/2 to get a Sharpe ratio of around 0.6yr−1/2. a

This annualization is exact in the case where one computes the Sharpe ratio on log
returns, and the returns are independent. That is, if one defines x1:252 =

∑
1≤i≤252 xi,

where xi are daily log returns, then x1:252 is the actual annual log return, and the
signal-noise ratio of x1:252 (its expected value divided by its standard deviation) is
exactly equal to

√
252 times the signal-noise ratio of x.

Often the Sharpe ratio is annualized in this manner without checking for potential
autocorrelation of returns. Strong positive (negative) autocorrelation tends to cause
one to underestimate (overestimate) the volatility of an asset, and thus overestimate
(underestimate) the Sharpe ratio. For example, consider a lazy fund manager who
provides a historical ‘daily’ mark-to-market constructed by linear interpolation of the
quarerly marks of the fund. The standard deviation of daily returns will be an under-
estimate, since they do not reflect the real volatility of an accurate mark to market. On
the other extreme, consider a fund with a strong negative autocorrelation of monthly
returns, resulting in a sawtooth mark to market: observing this pattern, one could

2Herein you will see bps (pronounced ‘bips,’ or, jocularly, ‘beeps’) used to refer to basis points, or
hundredths of a percent. Sometimes it is erroneously used to mean 10−4 in log return units.
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time when to buy and when to sell the fund, in order to get in at a trough and out
at a peak, and thus the actual volatility of returns is effectively overstated. See also
Exercise 2.29 and Section 4.1.4.

2.2.1. Probability of a loss

Because the units are per square root time, it may make more sense to consider the
parameter ζ−2, which has time units. Indeed, if one measures signal-noise ratio on log
returns, and assuming ζ > 0, then κ2ζ−2 is the time at which having accumulated a
loss (or a loss against the risk-free rate) is a κ standard-deviation event. For a fund
with a signal-noise ratio of 0.7yr−1/2, the event of experiencing a loss over 8.1633yr is
a ‘2-sigma event.’

Typically when one states that an outcome is a ‘2-sigma event’, one uses the CDF
of the Gaussian to estimate its probability. While the central limit theorem should
make the yearly returns of a trading strategy approximately normal, we can apply
a very loose upper bound regardless of the form of the returns (assuming indepen-
dence). By Cantelli’s inequality, the probability of a κσ deviation below the mean is

no greater than
(
1 + κ2

)−1
. This is the loosest bound on the probability of a loss (or

underperformance relative to the risk-free rate) over a period of length (κ/ζ)
2
.

If the returns are sufficiently well behaved that one can accept the normal approx-
imation, the probability of a loss is bounded from above by e−κ

2/2/
√

2πκ2, which is
to say that doubling the Sharpe ratio of an asset cuts the probability of a loss by
much more than a half. To be concrete, under the normal approximation, the proba-
bility of a 2-sigma event is around 0.0228; the probability of a 4-sigma event is around
3.1671× 10−5;

Example 2.2.3 (Probability of a loss, Market returns). Using the monthly log returns
of the Market (Example 1.2.1), the Sharpe ratio is computed as 0.5 yr−1/2. Under
Cantelli’s inequality, the probability of a down year is no greater than 0.8; under the
normal approximation, the probability is around 0.31. For the 92 year sample, the
empirical probability of a down year is around 0.25. Thus Cantelli’s inequality is far
too conservative, and the normal approximation appears reasonable.

Note that the reasoning is circular here: the Sharpe ratio and empirical rate of down
years were computed using the same data. a

2.2.2. Interpretation of Sharpe ratio

The range of sane values one might expect to see of the Sharpe ratio vary depending
on the type of asset, the market, relevant risk-free rate, and whether the returns are
net or gross3. Among mutual funds and hedge funds, loosely, one should consider a
signal-noise ratio above 0.5yr−1/2 to be ‘good’, while values above 1yr−1/2 to be ‘very
good.’ Apparently Warren Buffet’s Bershire Hathaway fund achieved a Sharpe ratio of

3Of course, the number of samples over which one computes the Sharpe ratio is also relevant; more
on this in the sequel.
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‘only’ 0.76yr−1/2 over a 30 year period. [49] Jim Simons is reported to have achieved
a Sharpe ratio of 1.89yr−1/2 over a 10 year period. [102]

Those who engage in low-latency, ‘high frequency trading’ will often demur when
asked what their achieved Sharpe ratio is, but may quote numbers as high as 20yr−1/2

or higher4. Often these numbers ignore large fixed costs in maintaining their infras-
tructure, or keeping up in the technological arms race.

Mkt SMB HML UMD

0.60 0.23 0.37 0.49

Table 2.1.: The Sharpe ratio of the four factor portfolios are given, in units of yr−1/2,
computed on monthly relative returns from Jan 1927 to Dec 2018.

Example 2.2.4 (Sharpe ratio of the Fama French Four Factors). The Sharpe ratio
of the Market, SMB, HML and UMD portfolios introduced in Example 1.2.1 were
computed on the monthly relative returns, annualized, then tabulated in Table 2.1.
The takeaway is that very simple monthly-rebalancing strategies have achieved Sharpe
ratio in the ballpark of 0.5 yr−1/2, subject to the survivorship bias of examining the
U. S. stock market. a

Consumer Manufacturing Technology Healthcare Other

0.65 0.60 0.59 0.67 0.49

Table 2.2.: The Sharpe ratio of the five industry portfolios are given, in units of yr−1/2,
computed on monthly relative returns from Jan 1927 to Dec 2018.

Example 2.2.5 (Sharpe ratio of the five industry portfolios). The Sharpe ratio of the
five industry portfolios introduced in Example 1.2.3 were computed on the monthly
relative returns, annualized, then tabulated in Table 2.2. These achieve about the
same Sharpe ratio as the Market factor, all around 0.6 yr−1/2. a

2.3. Historical perspective

That we call this ratio the ‘Sharpe ratio’ is another example of Stigler’s Law of
Eponymy. [156] In 1952, Roy introduced the ‘Safety First’ criterion as an objective
to be maximized in investment decisions. [144] Arguing from Chebyshev’s inequality,
Roy shows that

Pr {x ≤ r0} ≤
(

σ

µ− r0

)2

, (2.7)

4Novice quants will often quote similar numbers based on broken backtests of low frequency strate-
gies.
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and thus one should seek to minimize the right hand side quantity, equivalent to maxi-
mizing (µ− r0) /σ. Roy then goes on to illustrate what we now call the mean-variance
frontier. Harry Marowitz and William Sharpe shared the 1990 Nobel Prize, while Roy
died penniless and insane, trying to play a gramophone record with a peanut5. [157]

As a sample statistic, the Sharpe ratio is fairly similar to the t-statistic. The t-test
for the hypothesis H0 : µ ≤ r0 uses the quantity

µ̂− r0√
σ̂2/n

=
√
nζ̂.

This modern form of the t-test is not the form first considered by Gosset (writing as
“Student”).[60] Gosset originally analyzed the distribution of

z =
µ̂

sN
=

µ̂

σ̂
√

(n− 1)/n
= ζ̂

√
n

n− 1
,

where sN is the “standard deviation of the sample,” a biased estimate of the population
standard deviation that uses n in the denominator instead of n− 1. Gosset’s statistic
is asymptotically equivalent to the Sharpe ratio, a fact we will abuse in the sequel.

2.4. Linear attribution models

The Sharpe ratio can be viewed as a specific case of an attribution model, or factor
model. In the general case one attributes the returns of the asset in question as the
linear combination of l factors, one of which is typically the constant one:

xt = β01 +

l−1∑
i

βifi,t + εt, (2.8)

where fi,t is the value of some ith ‘factor‘ at time t, and the innovations, ε, are assumed
to be zero mean, and have standard deviation σ. Here we have forced the zeroth factor
to be the constant one, f0,t = 1.

Given n observations, let F be the n × l matrix whose rows are the observations
of the factors (including a column that is the constant 1), and let x be the n length
column vector of returns; then the multiple linear regression estimates are

β̂ =df

(
F>F

)−1
F>x, σ̂ =df

√√√√(x− Fβ̂
)> (

x− Fβ̂
)

n− l
. (2.9)

We can then define a ex-factor Sharpe ratio as follows: let v be some non-zero vector,
and let r0 be some risk-free, or disastrous, rate of return. Then define

ζ̂g =df
β̂
>
v − r0

σ̂
. (2.10)

5This is an exageration; however, Roy has received little recognition for his work.
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In all of the factor models we will consider here, we choose v = e0, the vector of all
zeros except a one corresponding to the intercept term. Let ex-factor signal-noise ratio
be the population analogue.

Remark (Nomenclature). The terms “ex-factor Sharpe ratio” and “ex-factor signal-
noise ratio” are idiosyncratic to this text. The author is not aware of any commonly
used terms for these concepts, though the term “information ratio” is close. The
information ratio refers to the Sharpe ratio of returns from which benchmark returns
have been subracted, which is close to what we call the ex-factor Sharpe ratio, except
no regression to the benchmark is performed.

There are numerous candidates for the factors, and their choice should depend on
the return series being modeled. For example, one would choose different factors when
modeling the returns of a single company versus those of a broad-market mutual fund
versus those of a market-neutral hedge fund, etc.. Moreover, the choice of factors
might depend on the type of analysis being performed. For example, one might be
trying to ‘explain away’ the returns of one investment as the returns of another in-
vestment (presumably one with smaller fees) plus noise. Alternatively, one might be
trying to establish that a given investment has idiosyncratic ‘alpha’ (i.e., β0) without
significant exposure to other factors, either because those other factors are some kind
of benchmark, or because one believes they have zero expectation in the future.

2.4.1. Examples of linear attribution models

• As noted above, the vanilla Sharpe ratio employs a trivial factor model, viz.
xt = β01 + εt. This simple model is generally a poor one for describing stock
returns; one is more likely to see it applied to the returns of mutual funds, hedge
funds, etc.

• The simplest refinement to the trivial model would be to include some form of
the interest rate, say xt = β01+βfff,t+εt, where ff,t is the properly scaled ‘risk
free’ rate of return. This model can lead to rank-deficiencies unless the interest
rate has changed over the observation period. It is actually uncommon to fit
the coefficient βf , however; typically it is assumed to be 1, and the prevailing
risk-free rate is subtracted from the return x before any modeling is performed.

• The models above do not take into account the influence of ‘the market’ on the
returns of stocks. This suggests a factor model equivalent to the Capital Asset
Pricing Model (CAPM)6, namely xt = β01 + βMfM,t + εt, where fM,t is the
return of ‘the market‘ at time t. [16, 35, 82]
This is clearly a superior model for stocks and portfolios with a long bias (e.g.,
typical mutual funds), but may seem inappropriate for e.g., a long-short balanced
hedge fund. In this case, however, the loss of power in including a market term
is typically very small, while the possibility of reducing type I errors is quite
valuable. For example, one might discover that a seemingly long-short balanced
fund actually has some market exposure, but no significant idiosyncratic returns

6The term ‘CAPM’ ’ usually encompasses a number of assumptions used to justify the validity of
this model for stock returns; here the term is abused to refer only to the factor model.
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(one finds that β̂0 is very small); this is valuable information, since a hedge-fund
investor might balk at paying high fees for a return stream that replicates a
(much less expensive) ETF plus noise.

• Generalizations of the CAPM model abound. For example, the Fama-French
3-factor model (I drop the risk-free rate for simplicity):

xt = β01 + βMfM,t + βSMBfSMB,t + βHMLfHML,t + εt, (2.11)

where fM,t is the return of ‘the market‘, fSMB,t is the return of ‘small minus
big cap‘ stocks (the difference in returns of these two groups), and fHML,t is the
return of ‘high minus low book value‘ stocks. [43] Carhart adds a momentum
factor:

xt = β01 + βMfM,t + βSMBfSMB,t + βHMLfHML,t + βUMDfUMD,t + εt, (2.12)

where fUMD,t is the return of ‘ups minus downs‘, i.e., the returns of the previous
period winners minus the returns of previous period losers. [26] Alternative
factor models include Elton et al., Chen et al. and Asness et al. [41, 32, 9]
These factor models are designed to explain the returns of stocks, and are typi-
cally judged by their parsimony, explanatory power (lack of significant β̂0 terms
across a wide universe of stocks), orthogonality of the factors, and narrative ap-
peal. However, there is no reason they cannot be used to describe (or explain
away, in terms of simpler strategies) the returns of an actively managed portfo-
lio. In fact, there is typically little power lost in a ‘kitchen sink’ approach, if the
objective is to eviscerate a proposed trading strategy.

• Henriksson and Merton describe a technique for detecting market-timing ability
in a portfolio. One can cast this model as

xt = β01 + βMfM,t + βHM(−fM,t)
+

+ εt,

where fM,t are the returns of ‘the market’ the portfolio is putatively timing, and
x+ is the positive part of x. [68]
Actually, one or several factor timing terms could be added to any factor model.
Note that unlike the factor returns in models discussed above, one expects
(−fM)

+
to have significantly non-zero mean. This will cause some decrease

in power when testing β0 for significance. Also note that while Henriksson and
Merton intend this model as a positive test for βHM, one could treat the tim-
ing component as a factor which one seeks to ignore entirely, or downweight its
importance.

• Often the linear factor model is used with a ‘benchmark’ (mutual fund, index,
ETF, etc.) used as the factor returns. In this case, the process generating xt
may or may not be posited to have zero exposure to the benchmark, but usually
one is testing for significant idiosyncratic term.

• Any of the above models can be augmented by splitting the idiosyncratic term
into a constant term and some time-based term. For example, it is often argued
that a certain strategy ‘worked in the past’ but does no longer. This implies a
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splitting of the constant term as

xt = β01 + β0
′f0,t +

∑
i

βifi,t + εt,

where f0,t = (n − t)/n, given n observations. In this case the idiosyncratic
part is an affine function of time, and one can test for β0 independently of the
time-based trend (one can also test whether β0

′ > 0 to see if the ‘alpha’ is truly
decaying). One can also imagine time-based factors which attempt to address
seasonality or ‘regimes’. [34]

Example 2.4.1 (UMD attribution). Consider the monthly simple returns of the Market,
SMB, HML and UMD portfolios, as described in Example 1.2.1. In a somewhat
unorthodox analysis, the returns of UMD are attributed to the other three factors
and an intercept term. The regression fit for the monthly returns, against intercept,
Market, SMB, and HML, is β̂ = [1.0395,−0.2127,−0.0337,−0.4752]

>
; the residual

volatility is σ̂ = 4.1239 mo.−1/2. This yields ζ̂g = 0.8732 yr−1/2. This is somewhat
larger than the value of Sharpe ratio computed without the attribution model, namely
ζ̂ = 0.4884 yr−1/2, as found in Example 2.2.4. The factor model here acted to increase
the expected value slightly and decrease the idiosyncratic volatility slightly. This is
somewhat atypical: adding more factors to a model tends to decrease the Sharpe
ratio. a
Example 2.4.2 (UMD, Chow test). A strawman argument against momentum strate-
gies is that ‘they worked in the past,’ but no longer do. Here we consider the monthly
simple returns of the UMD portfolio, as described in Example 1.2.1. An attribution
is made against the factor model where f0 is the constant 1, and where f1,t is an
indicator function for the event that t is prior to 1980-01-01. That is, f1,t is one for
all time prior to 1980-01-01 and zero thereafter. (This is essentially a Chow test, but
we are interested in the significance of the intercept term, rather than looking for a
structural break. [34, 79])

The regression fit gives β̂ = [0.5829, 0.1367]
>

in units of % mo.−1; the residual

volatility is fit as σ̂ = 4.6945 mo.−1/2. This yields ζ̂g = 0.4301 yr−1/2, slightly lower

than the value of Sharpe ratio computed in the unattributed model, ζ̂ = 0.4884 yr−1/2,
as found in Example 2.2.4. a

2.4.2. † Heteroskedasticity attribution models

We have defined a linear attribution model where some vector of covariates (be they
contemporaneous returns of other assets, random predictive ‘signal’ variables, season-
ality variables, etc.) accounts for the expected returns of an asset, especially how they
deviate from the unconditional expected return when conditioning on those covariates.
Can we imagine a similar model where some variable(s) explains differences in het-
eroskedasticity? After all, while forecasting returns is considered difficult, there is a
well known conditional heteroskedasticity effect in many markets [36, 115] that ought
to be accounted for.
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As it is much more difficult to deal with the case of multiple variables that explain
heteroskedasticity, we will stick to the scalar case for now. Consider a strictly positive
scalar random variable, st, observable at the time the investment decision is required
to capture xt+1. It is more convenient to think of st as a ‘quietude’ indicator, or a
‘weight’ for a weighted regression, rather than as a ‘volatility’ indicator.

We can then generalize Equation 2.8 to

xt = β01 +

l−1∑
i

βifi,t + s−1
t−1εt, (2.13)

where we allow the fi,t to be correlated to, or even equal to, the quietude indicator,
st, and where the error term εt is homoskedastic.

We present some examples of conditional heteroskedasticity models:
• The market clock or volatility clock model posits that returns should be measured

on a volatility or volume basis rather than wallclock time. As such, under this
theory, if variance of returns is, say, twice the long term variance, then expected
returns ought to be twice the long term expectation. Another way of putting this
is the returns over half a day in this regime should have the same distribution
as daily returns over the long term7. Supposing that volatility can be measured
before the investment decision, we have

xt = st−1
−1β0 + s−1

t−1εt,

where s−1
t−1 is the volatility factor. When s· has a long term average of 1, then

β0 is the long term average return.
Note that for any given time t, the single period return xt has a signal-noise ratio
independent of st−1, namely β0 divided by the standard deviation of εt. When
we consider multiple periods, however, the signal-noise ratio will deviate from
this value. Note, however, that there is nothing particular to fear in this model
about periods of high volatility since the asset holder is perfectly compensated
with increased excess returns.

• A more depressing, though perhaps realistic, model of heteroskedasticity is that
in periods of higher volatility there is no compensating increase in expected
returns. We can express this as

xt = β0 + s−1
t−1εt,

where s−1
t−1 is the volatility factor. In this case the single period return xt has

signal-noise ratio proportional to st−1. That is to say the risk to reward is higher
in periods of lower volatility, or “volatility drinks your milkshake.”

• Rather than be forced to choose among these two models of heteroskedasticity,
one can consider a mixed model of the form

xt = β0 + s−1
t−1β1 + s−1

t−1εt,

7Never mind that this theory is rarely supported by data.
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where now the coefficients β0 and β1 may be zero or non-zero, but can give
us either of the two previously mentioned models, volatility clock and volatility
milkshake, with values to be estimated from the data.

The trick for dealing with conditional heteroskedasticity models is to use the qui-
etudes for weighted estimation. That is, rewrite Equation 2.13 as

x̃t = β0st−1 +

l−1∑
i

βi ˜fi,t + εt, (2.14)

where we define x̃t =df st−1xt, and ˜fi,t =df st−1fi,t. We can now fit the data x̃t on the

new attribution factors ˜fi,t using the machinery of the homoskedastic case.

Example 2.4.3 (VIX reweighting Market returns). Consider the daily VIX index in-
troduced in Example 1.2.4 as a volatility indicator. We lag it by one trading day, then
join to the daily returns of the Market introduced in Example 1.2.1. We rescale the
inverse VIX to have unit mean in our sample period, which ranges from 1990-01-03
through 2020-12-31.

Over this period, the regular Sharpe ratio of the Market component is 0.64 yr−1/2,
again assuming 252 trading days per year. When we rescale the daily Market returns
by the inverse VIX, then compute the Sharpe ratio we compute a value of 0.76 yr−1/2.
This is essentially the ‘pessimistic model’ where quietude weighted returns are modeled
as having a constant expected return, conditional on the quietude. Under the ‘vol
clock’ model we compute the ex-factor Sharpe ratio as 0.72 yr−1/2. Note that using an
Information Criterion based approach, we slightly prefer the ‘vol clock’ model, but the
difference in residual sum of squares between them is so very small that this is hardly
conclusive proof.

a

2.5. † Should you maximize Sharpe ratio?

In some circles the question ‘should you maximize Sharpe ratio?’ has an obviously
affirmative answer: professional money managers are routinely asked to provide their
achieved (or, more dubiously, backtested) Sharpe ratio to prospective clients. To a
first order approximation, it is the only quantitative aspect of a trading strategy that
clients care about. While volatility, capacity, leverage, fees, lockup terms, etc. are also
important, the mythical ‘utility’ underpinning most investment theory [35, 39, 113, 82]
has zero currency in these discussions: the author has never heard (nor heard of) an
investor quote their utility function or risk-aversion parameter, while discussion of
strategy Sharpe ratio is routine8.

Pragmatics aside, there are two distinct questions regarding the investment decision
and the Sharpe ratio, viz. 1. if all the population parameters of investment strategies
were somehow known, should one maximize the signal-noise ratio? 2. is the sample
Sharpe ratio a good predictor of whatever function of the population parameters one

8Often without any acknowledgement of the sample variance of the Sharpe ratio.
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wishes to optimize? While the first question contains a glaring counterfactual, it is
important nonetheless, since the second question relies on one’s answer to the first.

It is generally assumed that investor’s preferences are aligned with the stochastic
dominance relations. We say that z (first-order) stochastically dominates x if, for all
c, Pr {x ≥ c} ≤ Pr {z ≥ c}, with inequality holding for some c. First order stochastic
dominance implies second order stochastic dominance. The definition of second order
stochastic dominance is too involved for our purposes here, but it should be noted that
if z second-order stochastically dominates x, then z has no smaller mean and no larger
variance than x.

While the stochastic dominance relations are typically considered sancrosanct, i.e.,
all investors would prefer a returns stream to another that it stochastically dominates,
stochastic dominance does not form a total ordering.9 That is, it is possible to con-
struct two returns streams such that neither stochastically dominates the other. For
purposes of selecting an investment, one would like to be able to compare any two
investments, so a total ordering is required. Here the term ‘objective’ will be used
to mean some real-valued function of the population parameters of a returns stream
(e.g., µ, σ, etc.) which one wishes to maximize. An objective trivially forms a total
ordering.

At a bare minimum one expects an objective should be consistent with stochastic
dominance. That is, if z stochastically dominates x, it should have a larger objec-
tive. Regretably, the signal-noise ratio as an objective function is not consistent with
stochastic dominance. It is not consistent with second order stochastic dominance,
as most clearly demonstrated by considering the case µ < 0, where the signal-noise
ratio ‘prefers’ higher σ2. This wrinkle is not fixed by assuming away the µ < 0
case10, since the signal-noise ratio is not even consistent with the stronger first-order
stochastic dominance relation, as shown by Hodges’ counterexample, cf. Exercise 2.33.
[71, 154, 178]

Despite these failings, it is taken as axiomatic in this text that one should optimize
the signal-noise ratio, µ/σ. There are numerous reasons to optimize the signal-noise
ratio. Among them: 1. the signal-noise ratio bounds the probability of a loss against
the disastrous rate, r0; 2. a large signal-noise ratio approximately bounds the proba-
bility of experiencing a large drawdown, as measured in units of volatility; 3. a large
signal-noise ratio increases the probability of experiencing a large Sharpe ratio in a
fixed period of trading.11 4. since the signal-noise ratio is simply defined, it is a
relatively easy objective to optimize analytically (again, assuming one knew the pop-
ulation parameters; noisy estimation thereof adds extra complication). Moreover, the
deficiencies of the signal-noise ratio are somewhat mitigated for the long term investor,
since the central limit theorem guarantees convergence to normality.

If the goal is maximization of the signal-noise ratio, then the Sharpe ratio is a decent

9The example of ‘non-transitive dice’ illustrate that some forms of probabilistic dominance do not
even form partial orders. [54, 45]

10No investor should consider a returns stream with µ < 0 if they can keep their wealth as cash.
11This is a bit (a)circular: a large achieved Sharpe ratio is supposed to instill confidence in prospective

investors that µ > r0, but it is proposed that one achieve a large Sharpe ratio by maximizing µ/σ,
rather than simply maximizing µ.
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yardstick by which to measure investments, modulo a number of provisos: the Sharpe
ratio must be measured over the same length of time, as in e.g., Sharpe’s original
paper [149], or some correction should be made for different standard errors; if the
returns are measured over common time intervals, one must take into account possibly
correlated errors; the Sharpe ratio measured on a backtest should be viewed with great
suspicion, as backtests are often riddled with methodological and coding errors, and
the product of great amounts of data snooping. While, taken together, these make the
Sharpe ratio seem like an awful objective on realized returns streams, all other metrics
share the same problems. Moreover, many of the proposed alternative metrics defined
on achieved returns streams lack any kind of theoretical justification, and many have
worse sample variances. See Exercise 2.38.

Example 2.5.1 (Sample variance of the Sortino ratio). The Sortino ratio is defined
as the sample mean divided by the downside semivariation. While this sounds like
a perfectly reasonable metric, the downside semivariation has slightly higher sample
variation than the standard deviation. For the case of symmetric returns, the Sortino
ratio should, then, have slightly higher variance than the Sharpe ratio.

To test this, 52 weeks of weekly returns were drawn from a population with µ =
0wk.−1, σ = 0.02wk.−1/2, and the Sortino ratio was computed. The signal-noise ratio
was also computed. This was repeated 5000 times. The same computations were
then repeated using µ = 0.003wk.−1, σ = 0.02wk.−1/2. Empirical critical values for
Frequentist tests based on both statistics were computed by taking the 0.95 quantiles
of each statistic under the first population. The empirical powers were then computed
by computing the proportion of statistics from the second population exceeding the
critical value. The Sortino ratio was found to have a power of approximately 0.2552,
while the Sharpe ratio had a power of approximately 0.2732. a

2.6. † Probability of a loss, revisited

The crux of Roy’s justification for the ‘Safety-First’ criterion, which is just the signal-
noise ratio, is that it bounds the probability of a loss, defined as a return less than
r0, cf. Equation 2.7. [157] This argument is based on Chebyshev’s inequality, and
so is a fairly rough upper bound. There are some situations where the signal-noise
ratio is exactly monotonic in the probability of a loss. For example, if the returns are
drawn from a scale-location family, i.e., if the probability density of x is 1

σf
(
x−µ
σ

)
,

for some function f (·). In this case the probability that the return is less than r0 is
exactly equal to F

(
r0−µ
σ

)
for some function F (·). In this case the signal-noise ratio

is consistent with first order stochastic dominance.
The central limit theorem tells us that, conditional on finite variance, the mean

return of x will converge to a normal distribution. Noting that for log returns, by
the telescoping property, the mean return is just the total return rescaled, thus the
long term log return is approximately drawn from a scale-location family. (cf. Exer-
cise 2.35.)

One can construct tighter approximations than given by Chebyshev’s inequality by
considering the classical approximations to the central limit theorem. These will result
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in objectives which are sensitive to the investor’s time horizon and the disastrous rate,
r0. [154, 178, 20]

Suppose that one will observe n independent draws from the returns stream, x. The
disastrous event is that the observed mean sample return, µ̂, is less than r0. This is
equivalent to

√
n
µ̂− µ
σ
≤
√
n
r0 − µ
σ

.

The cumulative distribution function of the quantity on the left hand side can be
approximated via some truncation of the Edgeworth expansion. [33]

Define12 δ =df
√
n (µ− r0) /σ. The Edgeworth expansion is [2, 26.2.48]

Pr

{√
n
µ̂− µ
σ
≤ −δ

}
= Φ (−δ)− φ (δ)

[
γ1

6
√
n
He2 (δ)

]
+ φ (δ)

[
γ2

24n
He3 (δ) +

γ1
2

72n
He5 (δ)

]
− φ (δ)

[
γ3

120n3/2
He4 (δ) +

γ1γ2

144n3/2
He6 (δ) +

γ1
3

1296n3/2
He8 (δ)

]
. . . (2.15)

where Φ (x) and φ (x) are the cumulative distribution and density functions of the
standard unit normal, Hei (x) is the probabilist’s Hermite polynomial [2, 26.2.31],
and γi is the standardized i − 2th cumulant, defined as the i + 2th cumulant of the
distribution divided by σi+2. It happens to be the case that γ1 is the skewness, and
γ2 is the excess kurtosis of the distribution.

Truncating beyond the n−1/2 term, and applying basic facts of probability, gives

Pr {µ̂ ≥ r0} ≈ Φ (δ) +
φ (δ)√
n

[γ1

6

(
δ2 − 1

)]
. (2.16)

The implication is that the probability that µ̂ exceeds r0 will be increased if δ is large.
Moreover, for a fixed δ, the probability that µ̂ exceeds r0 is increased for large positive
skew if δ2 > 1, but for large negative skew when when δ2 < 1. The implication is that
when δ2 is ‘large’ (compared to the unit), one would buy lottery tickets, otherwise one
would sell lottery tickets13. This is asymptotically compatible, as n → ∞, with the
commonly held belief that investors universally prefer positive skew.

The Edgeworth expansion suggests a ‘higher order signal-noise ratio’, defined as
[125]

ζh =df −
1√
n

Φ−1

(
Pr

{√
n
µ̂− µ
σ
≤ −δ

})
. (2.17)

When all the higher order cumulants are zero, i.e., when returns are normally dis-
tributed, the probability of a loss is exactly Φ (−δ), so in this case ζh = δ/

√
n =

12In the sequel, we will see that δ so defined is the non-centrality parameter of the t-distribution
associated with the Sharpe ratio.

13This illustrates the possible mismatch between the objectives of an investor and the money manager:
the former is likely concerned about the long term, while the latter may be focused on the short
term.
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(µ− r0) /σ, which is just the signal-noise ratio with a risk-free rate r0. This definition
gives an objective which is consistent with first-order stochastic dominance (Exer-
cise 2.36), and generalizes the signal-noise ratio in an intuitive way that is easy to
understand. However, it is essentially investor-dependent in that it is parametrized by
n and r0. [154]

The implicit definition of Equation 2.17 is a bit unwieldy for use as an objective.
One would prefer a definition in terms of the cumulants of the returns stream. Rather
than use the Taylor series expansion of Φ−1 (x), one can instead use the Cornish Fisher
expansion of the sample quantile. [91, 75, 160]

Let Y =
√
n (µ̂− µ) /σ. This is a random variable with zero mean and unit standard

deviation. Let γi be the i+ 2th standardized cumulant of x. The i+ 2th standardized
cumulant of Y is n1−i/2γi. The Cornish Fisher expansion is [2, 26.2.49]

Pr {Y ≤ w} = Φ (z) ,

where

w = z +
1√
n

[γ1

6
He2 (z)

]
+

1

n

[
γ2

24
He3 (z)− γ1

2

36
[2He3 (z) +He1 (z)]

]
+

1

n3/2

[
γ3

120
He4 (z)− γ1γ2

24
[He4 (z) +He2 (z)] +

γ1
3

324
[12He4 (z) + 19He2 (z)]

]
+ . . .

(2.18)

To estimate the higher-order signal-noise ratio, recognize that z = −
√
nζh, and

w = −δ. This gives

ζh =
(µ− r0)

σ
+

1

n

[γ1

6
He2

(√
nζh
)]

− 1

n3/2

[
γ2

24
He3

(√
nζh
)
− γ1

2

36

[
2He3

(√
nζh
)

+He1

(√
nζh
)]]

+ . . .

(2.19)

While this defines ζh implicitly, truncation gives polynomial equations, whose roots
can be found analytically or numerically. See Exercise 2.37.

Example 2.6.1 (Higher order signal-noise ratio of the Market). Here we consider what
might be called the higher order Sharpe ratio of the Market, introduced in Exam-
ple 1.2.1. The mean simple return of the Market was estimated by sampling, with
replacement, 12 months of returns. This process was repeated 5000 times, and the
empirical probability that the mean monthly return was less than 0%mo.−1 was com-
puted. The normal quantile was then computed, yielding an approximate higher order
Sharpe ratio of 0.4394yr−1/2. The computation was repeated for r0 = 0.25%mo.−1,
yielding a higher order Sharpe ratio of 0.2997yr−1/2. Compare these with the Sharpe
ratio computed on monthly returns for these two choices of r0, which were found to
be 0.4194yr−1/2 and 0.2574yr−1/2, respectively. a
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2.7. † Drawdowns and the signal-noise ratio

Drawdowns are the quant’s bugbear. Though a fund may have a reasonably high
signal-noise ratio, it will likely face redemptions and widespread managerial panic if
it experiences a large or prolonged drawdown. Moreover, drawdowns are statistically
nebulous: the sample maximum drawdown does not correspond in an obvious way to
some population parameter; the variance of sample maximum drawdown is usually
large, and depends on sample size in a subtle way; traded strategies are typically
cherry-picked to not have a large maximum drawdown in backtests; the distribution
of maximum drawdowns is affected by skew and kurtosis, heteroskedasticity, omitted
variable bias and autocorrelation. Even assuming i.i.d. Gaussian returns, modeling
drawdowns is non-trivial. [103, 14]

Given n observations of the mark to market of a single asset, pi, the drawdown from
the high water mark, as a time series, is defined as

Dj =df max1≤i≤j log

(
pi
pj

)
. (2.20)

As so defined, the drawdown is negative the most extreme peak to point log return,
and so is always non-negative14. The drawdown can be expressed as a a percent loss
from the high watermark as 100

(
1− e−Dj

)
%.

Example 2.7.1 (drawdowns of the Market). Consider the Market portfolio, introduced
in Example 1.2.1. Its drawdown from high watermark is shown in Figure 2.1. The
maximum drawdown over the period is around 80%. a

The maximum drawdown is a commonly computed statistic of backtested and live
strategy returns. It is literally the maximum of the drawdown series, or

Mn =df max1≤j≤nDj = max1≤i<j≤n log

(
pi
pj

)
. (2.21)

There is a connection between drawdowns and the signal-noise ratio, which is made
obvious when one uses volatility as the units in which drawdown is measured. Let xi
be the log returns: xi = log pi

pi−1
, assumed to be i.i.d. Let µ and σ be the population

mean and standard deviation of the log returns xi. Now note that

log

(
pi
pj

)
= −

∑
i<k≤j

xk = −

[j − i− 1]µ+ σ
∑
i<k≤j

yk

 ,

= −σ

[j − i− 1] ζ +
∑
i<k≤j

yk

 ,

where yi is a zero-mean, unit-variance random variable that is a shifted, rescaled
version of xi.

14Under this definition a large drawdown is a bad event, which matches common informal usage of
the term.
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Figure 2.1.: The drawdown from high watermark of the Market is shown, as a percent
loss.

Now re-express the maximum drawdown in units of the volatility of log returns at
the sampling frequency:

Mn

σ
= −min1≤i<j≤n

[j − i− 1] ζ +
∑
i<k≤j

yk

 . (2.22)

The volatility is a natural numeraire: one expects an asset with a larger volatility to
have larger drawdowns. Moreover, the quantity on the righthand side is a random
variable drawn from a one parameter (the signal-noise ratio) family, rather than a two
parameter (location and scale) family. It should be clear, moreover, that within this
one parameter family, stochastic dominance of the drawdown distribution is monotonic
in the signal-noise ratio. That is, a higher signal-noise ratio leads to a lower probability
of a drawdown of a fixed size, ceterus paribus.

2.7.1. Worst statistic ever?

Equation 2.22 illustrates one reason why the sample maximum drawdown is a terrible
statistic for estimating future performance of a strategy: it depends on volatility and
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signal-noise ratio in ways that are hard to disambiguate. That is, if one performed a
hypothesis test based solely on the sample maximum drawdown, one would reject the
null15 if either the signal-noise ratio were high or the volatility were low.

Secondly, it is not at all clear that the variance of the sample maximum drawdown
statistic is actually decreasing with sample size. That is, if one considers a longer time
history, the sample maximum drawdown for any backtest can only increase, but the
variance of that statistic may increase as well. For an arbitrarily long backtest history
(longer than one could sensibly ever produce) one suspects that all sample maximum
drawdowns should be nearly 100%. Depending on the signal-noise ratio there is likely
to be an ‘unsweet spot’ of sample length where the variance of the maximum drawdown
is actually maximized.

Another problem with sample maximum drawdown is that the statistic typically has
a higher variance than other statistics. To illustrate this, 8192 Monte Carlo simulations
of 5 years of weekly returns data were drawn from two populations. Returns are
normally distributed with an equivalent daily volatility of around 0.013 day−1/2. The
two populations correspond to the null, with ζ = 0yr−1/2 and the alternative, with
ζ = 0.75yr−1/2, where signal-noise ratio is measured on log returns. For each draw of
historical data, the sample maximum drawdown and Sharpe ratio were computed. The
0.95 empirical quantile for sample maximum drawdown under the null was around 22%.
However, it is not the case that a large number of simulations under the alternative have
smaller maximum drawdown. Only 2524 do, thus the empirical power is around 0.31.
In comparison, the empirical power for the Sharpe ratio statistic in this experiment is
around 0.53. (The theoretical power in this case is closer to 0.51. See Section 3.5.3.)

The empirical cumulative distributions of the two statistics for the two populations
are shown in Figure 2.2, with vertical lines plotted at the 0.95 empirical quantile for
the null population. The lack of power for the sample drawdown is apparent in this
plot. See also Exercise 2.38 and Exercise 2.39.

2.7.2. Controlling drawdowns via the signal-noise ratio

While the sample maximum drawdown is an inherently flawed statistic, real portfo-
lio drawdowns are nevertheless a serious occupational hazard. How can drawdowns
be controlled? Ignoring the contributions to drawdown caused by autocorrelation or
skewed distributions, the decomposition in Equation 2.22 indicates that, on a per-vol
basis, drawdowns are stochastically monotonic in the signal-noise ratio when choosing
from a one parameter family.

One reasonable way a portfolio manager might approach drawdowns is to define
a ‘knockout’ drawdown from which she will certainly not recover16 and a maximum
probability of hitting that knockout in a given epoch (i.e., n). For example, the desired
property might be “the probability of a 40% drawdown in one year is less than 0.1%.”
These constrain the acceptable signal-noise ratio and volatility of the fund.17

15Presumably the null is that the strategy is ‘not good’, but this would have to be made precise in
terms of the population parameters to form an actual hypothesis test.

16This is certainly a function of the fund’s clients, or the PM’s boss.
17Another problem with this formulation is that humans typically have poor intuition for rare events.
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As a risk constraint, this condition shares the hallmark limitation of the value-at-risk
(VaR) measure, namely that it may limit the probability of a certain sized drawdown,
but not its expected magnitude. For example, underwriting catastrophe insurance
may satisfy this drawdown constraint, but may suffer from enormous losses when a
drawdown does occur. Nevertheless, this VaR-like constraint is simple to model, and
may be more useful than harmful.

Fix the one parameter family of distributions on y. Then, for given ε, δ, and n, the
acceptable funds are defined by the set

C (ε, δ, n) =df {(ζ, σ) | σ > 0, Pr {Mn ≥ σε} ≤ δ } . (2.23)

These are the points in the two dimensional signal-noise ratio and volatility space that
have strictly positive volatility and for which the probability of a drawdown exceeding
σε is less than δ. When the x are daily returns, the range of signal-noise ratio one may
reasonably expect for portfolios of equities is fairly modest. In this case, the lower
boundary of C (ε, δ, n) can be approximated by a half space:

{(ζ, σ) ∈ C (ε, δ, n) | |ζ| ≤ ζbig } ≈ {(ζ, σ) | σ ≤ σ0 + bζ, |ζ| ≤ ζbig } ,

where σ0 and b are functions of ε, δ, n, and the family of distributions on y. The
minimum acceptable signal-noise ratio is −σ0/b. It may be the case that σ0 is negative.
The contants σ0 and b have to be approximated numerically, as in Example 2.7.2.
It should be noted that a linear approximation of this form is easy to encode as a
constraint in a portfolio optimizer.

Example 2.7.2 (halfspace for drawdown control). 5 years of weekly returns are drawn
from a Gaussian distribution with a fixed signal-noise ratio and volatility. The max-
imum drawdown is computed in volatility units. This is replicated 50000 times for
a fixed value of signal-noise ratio, and the 1 − 0.005 quantile is computed. Then
the volatility such that this quantile is equal to a 40% loss is computed, abusing the
rescaling relationship of Equation 2.22. This is repeated for signal-noise ratio ranging
from 0yr−1/2 to 2.5yr−1/2. This estimated cutoff volatility of log returns, in annual-
ized units (i.e., log return yr−1/2) is plotted versus the signal-noise ratio (in units of
yr−1/2), along with a linear fit, in Figure 2.3. The linear fit is σ0 ≈ 0.0856logret yr−1/2

and b ≈ 0.0906logret. As indicated in the figure, a quadratic model is likely to give a
better fit, a finding supported by an F test. See also Exercise 2.40.

a
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Figure 2.2.: 8192 Monte Carlo simulations of 5 years of weekly returns data were drawn
from two populations. The first has a signal-noise ratio of 0yr−1/2, the
other 0.75yr−1/2, where signal-noise ratio is measured on log returns. Re-
turns are normally distributed with a daily volatility of around 0.013. The
sample maximum drawdown and the Sharpe ratio were computed for each
series. On the left empirical CDFs of the negative maximum drawdown
(in percent) are shown for the two populations; on the right the empirical
CDFs of the Sharpe ratio are plotted. For both these statistics, larger
values is considered better. Vertical lines are plotted at the 0.95 empirical
quantile for the ζ = 0yr−1/2 case. The power of the implicit Sharpe ratio
test is much higher than for the sample maximum drawdown.
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Figure 2.3.: The maximum annualized volatility of log returns such that the proba-
bility of a drawdown of 40% is less than 0.005, as estimated by 50, 000
Monte Carlo simulations of weekly Gaussian returns is plotted versus the
annualized signal-noise ratio. The fit is given by σ ≈ 0.086logret yr−1/2 +
0.091logretζ.
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Exercises

Ex. 2.1 Units conversion

1. Convert a Sharpe ratio of 0.2 mo.−1/2 computed on monthly returns to annual
units.

2. Convert an annual Sharpe ratio of 0.8 yr−1/2 to daily units.

Ex. 2.2 Compute the Sharpe ratio Select some publicly traded company
you consider successful. Compute the Sharpe ratio of its log returns over the past
five years.

Ex. 2.3 Returns aggregation How do returns aggregate?

1. Let xi be the relative return of an asset over some period. Show that the relative
return of the asset over n periods is∏

1≤i≤n

(1 + xi)− 1.

2. Now let xi be log returns of an asset over some period. Show that the total log
return of the asset over n periods is the sum

∑
1≤i≤n xi.

Ex. 2.4 Leverage By borrowing money, one can purchase an asset with lever-
age: One borrows l proportion of one’s wealth, purchases an asset worth 1+l proportion
of one’s wealth, waits a single period, sells the asset, and returns the original loan,
with interest paid. (In the simple formulation, we ignore the borrow costs.)

1. What is the relative return of a leveraged long holder of an asset?

2. What is the log return of a leveraged long holder?

Ex. 2.5 Shorting Suppose that the relative return of an asset is x. Suppose
that you short the asset: you borrow (say, without interest) from a long holder, sell
the borrowed asset, wait one period, buy the asset (preferrably at a lower price), and
return to the lender.

1. What is the one-period relative return of the short holder?

2. Suppose −1 ≤ x ≤M , where M > 1 is some large maximum return. What are
the bounds of the returns to the short holder?

3. What is the one-period log return of shorting? Is it necessarily well-defined?

4. Suppose one holds the asset short for multiple periods, without any rebalancing.
The relative returns of the asset for each period are x1, x2, . . . , xn. What is the
relative return of the short holder?

Ex. 2.6 Returns of a portfolio Show that relative returns are laterally addi-
tive. That is, suppose you hold ai > 0 proportion of your wealth in asset i, which
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experiences return xi in a given period. Show that the relative return of your wealth
is
∑
i aixi. Does this still hold when one uses ai < 0 to represent holding an asset

short? Does this still hold when allowing ai > 1 to represent buying with leverage?

Ex. 2.7 Concavity of log returns Use calculus to show that log returns are
always less than the equivalent relative returns. That is show that log (1 + x) ≤ x,
where x is the relative return.

Ex. 2.8 The Fundamental Law of Asset Management Suppose you
could invest an equal proportion of your wealth in n independent assets, each with
identical mean and variance, µ and σ2, respectively. Show that the signal-noise ratio
of your portfolio, measured on relative returns, scales as

√
n.

This is an example of the ‘Fundamental Law of Asset Management’, which vaguely
states that a constant ‘edge’ aggregates as the square root of the number of indepen-
dent opportunities to apply the edge. [61] Note that the same scaling applies in the
translation of time units of the signal-noise ratio.

Ex. 2.9 The opposite of a bad strategy Suppose that Alice and Bob have
antithetical views of the market. If Alice holds ai proportion of her wealth in an asset
at a given time, Bob shorts ai proportion of his wealth in that asset, and vice versa.
(That is, imagine that at each day’s close, Alice and Bob instantaneously trade so that
their portfolios have this property, incur no trade costs, get the same trade price, etc.)

1. If Alice’s relative return over some period is x, what is Bob’s relative return
over the same period?

2. Can it be the case that both Alice and Bob lose money over a single rebalance
period?

3. Can it be the case that both Alice and Bob lose money over the span of multiple
rebalance periods?

4. Suppose you traded at random, i.e., used a random number generator to allocate
your wealth among some fixed set of assets. Ignoring trading costs, why should
it be the case that your expected log returns are negative?

Ex. 2.10 Leveraged ETFs Certain leveraged ETFs purport to have daily rel-
ative returns which are some multiple of the daily relative returns of some index (or
some other ETF). [180] It is noted that these products tend to underperform in ‘flat’
markets.

Let x be the relative return of an ETF tracking an index, and let y be the relative
returns of a 3× levered ETF on the same index. Suppose that the ETF makes a two
period ‘round trip’: x1 = ε, x2 = −ε/ (1 + ε).

1. Show that the total relative return is zero.

2. What is the total relative return of y? Plot this as a function of ε. Include
negative values of ε.
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3. Is there an arbitrage opportunity if one can trade an ETF on an index and a
leveraged ETF on the same index?

Ex. 2.11 Leverage and log return signal-noise ratio Let µ, σ2 be the
mean and variance of the relative returns of a strategy. By levering up the strat-
egy by a factor of k, the mean becomes kµ and the variance k2σ2. Let ζg be the
signal-noise ratio measured on the log returns. Using the approximation

ζg ≈
µ− 1

2σ
2

σ
,

what happens to ζg as k becomes large? How do you interpret these results?

Ex. 2.12 Translation to log returns The transformation from relative re-
turns to log returns is given by flog (x) = log (1 + x).

1. Compute the Taylor series expansion of flog (·) around zero.

2. Let x be the relative returns, and let αi = E
[
xi
]
. Find the series represen-

tation of E
[
flog (x)

]
in terms of αi. What is the two term approximation of

E
[
flog (x)

]
?

3. Compute the first three terms of the expansion of
(
flog (·)

)2

. What is the two

term approximation of E

[(
flog (x)

)2
]
?

4. What is the two term approximation of E

[(
flog (x)

)2
]
−
(

E
[
flog (x)

])2

?

5. Using the fact that
1√

σ2 + ε
≈ 1

σ

(
1− 1

2

ε

σ2

)
,

express the signal-noise ratio computed on log returns in terms of that computed
on relative returns and some of the moments αi.

6. Suppose the relative returns are normally distributed with mean µ 6= 0 and
variance σ2. Then we have α1 = µ, α2 = µ + σ2, α3 = µ3 + µσ2, α4 =
µ4 + 6µ2σ2 + 3σ4. Write an approximation to the signal-noise ratio measured
on log returns in terms of µ and σ.

Ex. 2.13 Translation to relative returns Repeat the previous exercise, but
make the reverse translation. That is, let the transformation from log returns to
relative returns be given by fexp (x) = ex − 1. Let x be the log returns, and let
αi = E

[
xi
]
. Express the signal-noise ratio measured on relative returns in terms of

the αi using Taylor’s series expansions.

Ex. 2.14 Fractal returns Suppose that daily log returns, x, are normally dis-
tributed. mean µ and variance σ2.
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1. Show that the weekly returns are normally distributed.

2. Assume hourly returns are independent and identically distributed. Argue that
they are normally distributed. (i.e., go look up Cramér’s theorem.)

* 3. If x are normally distributed relative returns, are weekly returns normally dis-
tributed? Hourly returns?

Ex. 2.15 Fractal returns II Compare the daily relative returns of the Market
component of the Fama French factors to ‘fortnightly’ returns. That is, first scale up
the daily returns by multiplying them by 10, calling this sample A. Then convert
relative returns to log returns, sum them in groups of 10, and convert back to relative
returns to get sample B.

1. Perform a two-sample empirical Q-Q plot of the two.

2. Perform a two-sample non-parametric test of equality of the two distributions,
like the Kolmogorov-Smirnov test, or the Baumgartner-Weiss-Schindler test.
[13, 127]

3. Which returns ‘look more normal’? That is, Q-Q plot both in turn against a
normal law.

4. Perform the same comparisions on random data: let the fake daily returns be
drawn from a fat-tailed distribution, say a t (4) distribution, but independent
of each other. Draw a sample of the same size as the daily market returns, and
with the same standard deviation. Do you see similar changes to the fortnightly
returns? Can we blame the apparent ‘smoothing’ of real fortnightly returns to
mean reversion, or is it purely an effect of the central limit theorem?

* Ex. 2.16 Boost from relative returns Suppose ζr is the signal-noise ratio
measured on relative returns, and ζg is the signal-noise ratio measured using log re-
turns.

1. Show that
ζr − ζg
ζg

≈ 1

2

α2,g

µg
,

where µg = E [x] and α2,g = E
[
x2
]
, and x are the log returns.

2. Suppose µg = 3 × 10−4day−1, and σg = 1.3 × 10−2day−1/2 are the mean and
standard deviation of daily log returns. Compute the boost from computing
signal-noise ratio on relative returns instead of log returns, expressed as a per-
cent, the left hand side of the above approximation. Also evaluate the right
hand side.

3. Write an approximation for ζg, the signal-noise ratio on log returns, in terms
of ζr and σr, the signal-noise ratio and volatility of relative returns. What is
the order of the error? Does the approximation improve in the case where log
returns have zero skew?

Ex. 2.17 Cantelli’s inequality Describe a random variable for which Can-
telli’s inequality is an equality. Is this a reasonable model for the returns of e.g., a
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mutual fund?

* Ex. 2.18 Higher order moments It is often said that investors have posi-
tive appetite for odd order moments of returns (mean and skew), and negative appetite
for even order moments (volatility, kurtosis). Here you will expand Roy’s argument to
include higher order moments. [157] Let r0 ≤ µ be the ‘disastrous rate’ of return. Let
p > 2.

1. Show that
Pr {x ≤ r0} ≤

µp
|µ− r0|p

,

where µp =df E [(x− µ)
p
]. (Hint: Express the probability as an integral of a

dummy indicator, and multiply the numerator and denominator by |x− µ|p,
then bound the integral. This should be similar to the proof of Chebyshev’s
inequality.)

2. For even p, rewrite this as

Pr {x ≤ r0} ≤
(
γp

1/p

ζ

)p
,

where ζ includes the ‘risk-free’ rate r0, and

γp =df
E [(x− µ)

p
]

σp

is the standardized pth moment. The conclusion is that one should maximize
ζ/γp

1/p.

3. Ignoring the fact that this ignores odd-order moments, do you think this line
of argument will improve upon Roy’s original argument? (Hint:

Pr {x ≤ r0} ≤
1

ζ
∧

∧
p=2,4,...

(
γp

1/p

ζ

)p
,

and thus only the smallest bound matters. Estimate the bounds for p = 2, 4, 6
using empirical data from returns of e.g., a broad market ETF.)

Ex. 2.19 Contours of Sharpe ratio In the (µ, σ)-space, plot contours of con-
stant signal-noise ratio, assuming r0 = 0. Plot them again assuming r0 = 0.01.

Ex. 2.20 The Sharpe ratio as yardstick The Sharpe ratio is used as a met-
ric to compare funds. However, it is often lamented that when the sample mean is
negative, use of this metric ‘prefers’ higher volatility funds.

1. Suppose you observe, for two different funds, ζ̂1 < ζ̂2 < 0. Is there justification
to prefer the second fund to the first?

2. Suppose you are omniscient, and know that ζ1 < ζ2 < 0. Is there any justified
preference?
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Ex. 2.21 Generalized Sharpe ratio Confirm that the ex-factor Sharpe ratio
defined in Equation 2.10, for the case where the factors are only the constant one,
corresponds to the traditional Sharpe ratio defined in Equation 2.1

* Ex. 2.22 Approximate Sharpe ratio For a given return, x, let α2 = E
[
x2
]

be the uncentered second moment. Define

ftas (x) =df tan (arcsin (x)) =
x√

1− x2
. (2.24)

1. What is the domain of ftas (·)? Show that |µ| ≤ √α2

2. Show that ζ = ftas
(
µ/
√
α2

)
.

3. Compute the first derivative of ftas (·). Via Taylor’s theorem, derive the linear
approximation to ftas (·); call it f̄tas (·).

4. Derive the Lagrange form of the remainder to the linear approximation.

5. Assuming |x| ≤ 0.1, find an upper bound on the absolute error,∣∣ftas (x)− f̄tas (x)
∣∣. Find an upper bound on the absolute relative error∣∣1− f̄tas (x) /ftas (x)
∣∣.

6. Having observed n returns x1, . . . , xn, let the first two sample moments be

µ̂ =
1

n

∑
1≤i≤n

xi, α̂2 =
1

n

∑
1≤i≤n

xi
2.

Show that ζ̂ =
√

n−1
n ftas

(
µ̂/
√
α̂2

)
.

* Ex. 2.23 Market Timing Suppose that a fund engages in market timing on
an underlying asset. That is, for some ε with |ε| ≤ 1, the fund correctly guesses the
sign of the next month’s return on the market with probability 1+ε

2 , and takes long or
short positions accordingly.

1. What is the signal-noise ratio of the fund, computed on relative returns? Your
answer should be expressed in terms of ε and

κ =
E [|x|]√
E [x2]

.

2. Is the signal-noise ratio infinite for ε = 1? Why or why not?

3. Compute the value of κ for the case where x follows a normal distribution with
mean µ and standard deviation σ. For this value of κ plot ζ as a function of ε.

* 4. For monthly relative returns of the Market factor, κ = 0.7166. For this value
of κ, plot ζ as a function of ε. Express ζ in annualized terms. What value of ε
is required to achieve ζ = 1yr−1/2? (See also, Sharpe on market timing. [150])

5. Compute the value of κ for the case where x follows a normal distribution with
mean µ and standard deviation σ. For this value of κ plot ζ as a function of ε.
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* Ex. 2.24 Correlation and Market Timing Suppose you observe a ran-
dom variable fi, called ‘a signal’, prior to the time needed to make an investment
decision to capture the relative return xi+1. Suppose that x is zero mean, as is fi, and
the correlation between fi and xi+1 is ρ.

1. Suppose that fi takes only values ±1. If you allocate fi of your capital (long
or short, depending on the sign of fi) to the asset, show that the signal-noise
ratio of your trading strategy, measured on relative returns, is ftas (ρ), where
ftas (·) is defined as in Equation 2.24.

* 2. Suppose instead that fi and xi+1 are jointly normal, zero mean variables with
correlation ρ. Suppose that you allocate cfi, long or short, in the asset, where c
is chosen to maintain risk constraints. Show that the signal-noise ratio of your
trading strategy, measured on relative returns, is ρ/

√
1 + ρ2. (Hint: If y ∼

N (µ,Σ), then E
[
y>Ay

]
= tr (AΣ) +µ>Aµ, and Var

(
y>Ay

)
= 2 tr (AΣAΣ) +

4µ>AΣAµ for symmetric A.)

* 3. Suppose instead that fi and xi+1 are general zero mean variables with finite
fourth moments, and with correlation ρ, but make no further assumptions.
Suppose that you allocate cfi, long or short, in the asset, where c is chosen
to maintain risk constraints. Give a lower bound on the signal-noise ratio of
your trading strategy, measured on relative returns, in terms of the first four
moments of fi and xi+1. How small can your bound on signal-noise ratio be
for a given ρ > 0? (Hint: apply the Cauchy-Schwarz inequality to bound the
second moment of your returns from above.)

** 4. Construct zero mean, finite variance random variables fi and xi+1 with corre-
lation ρ > 0, but such that the signal-noise ratio of the market timing portfolio
(i.e., the one with returns cfixi+1, for some positive c) is arbitrarily small?

** 5. § Suppose that fi and xi+1 are jointly normal, zero mean variables with corre-
lation ρ, and the variance of fi is known. Can you construct a trading strategy
with higher signal-noise ratio than the one suggested in the previous question?
You may assume the variance of both fi and xi+1 are known.

** 6. § Suppose that fi and xi+1 are zero mean random variables with correlation
ρ, and known variances. Can you find the ‘maximin’ trading strategy, and its
signal-noise ratio? That is, find the trading strategy conditional on fi that has
maximal worst-case signal-noise ratio over all random variables with the given
properties.

* Ex. 2.25 Bid/Ask Bounce One commonly rediscovered, putative trading
strategy is the phantom bid/ask bounce trade. This supposed anomaly is found by
assuming that one can simultaneously observe and trade in e.g., an auction. This odd
assumption typically follows from using low frequency data for backtest simulations.

Assume that the price quoted in the data feed is either at the bid or the ask, that
is, from a market participant crossing the spread to sell to, or buy the asset from, a
liquidity provider. Let the price pt be given by log pt = logmt + bt, where the log
of midpoint mt is a zero mean random walk, and bt, the (log) bid/ask bounce, takes
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values of ±εb. The presence of the bid/ask bounce causes negative autocorrelation of
the log returns xt+1 = log pt+1/pt. If it was assumed one could observe and trade on
price pt, a mean reverting strategy would appear profitable, when in reality the effect
cannot be captured.

1. Let the midpoint log returns, logmt+1 − logmt be i.i.d. and have zero mean
and variance σ2

m. Let the bt be i.i.d., and let bt be independent of m1, . . . ,mt+1.
Show that the total log returns xt+1 = log pt+1 − log pt have autocorrelation of

ρ =
−ε2b

2ε2b + σ2
m

2. Although it is only an approximation, and not completely correct (see Exer-
cise 2.24, and also note this question deals with log returns, not relative), assume
that the trading strategy which allocates −cxt capital to the asset achieves a
signal-noise ratio of −ρ. How does the annualized signal-noise ratio scale with
the time period ∆t between trades? You may assume that the bid/ask bounce
are i.i.d. at all scales.

3. Estimate σ2
m and εb from bid/ask data for a real asset. (For ex-

ample, use the data sample for OEX options provided by Market
Data Express, http://www.marketdataexpress.com/User_Data/Files/mdr_
20070516_OEB.csv.gz .) At what time scale would the mean reverting strategy
have a signal-noise ratio of 4yr−1/2?

4. Compute ρ in the case that the bid/ask variable is correlated to the midpoint
log returns. Let η be the correlation of logmt − logmt−1 and bt. For more on
microstructure models see e.g., Hasbrouck. [67]

* Ex. 2.26 The signal-noise ratio of a sum Let x and y be independent
random variables. Let µx, σx, ζx be the mean, standard deviation and signal-noise
ratio of x, and so on.

1. For some constants a, b, let z = ax + by. Derive an expression for ζz in terms
of µx, σx, µy, σy, a and b.

2. Show that ζz is scale invariant with respect to a and b. That is, for any c > 0
ax+ by and cax+ cby have the same signal-noise ratio.

3. Find the a, b which maximize ζz. Because of the scale invariance, these can be
determined only up to scale, so choose a and b such that a2 + b2 = 1. (This is
a basic portfolio optimization problem, of which more in the sequel.)

4. Find ζz for the optimal a, b.

5. In the above, a and b were denominated in dollar-proportional units. Instead, we
could denominate them in units of risk. That is, define z = (a/σx)x+ (b/σy) y.
Find the a and b which maximize ζz. To bypass the scale invariance, express
your answer as the ratio a/b. What is the takeaway rule of thumb for portfolio
optimization?
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* Ex. 2.27 The signal-noise ratio of a product Let z = xy, where x and y
are independent random variables. Let ζi be the signal-noise ratio of variable i.

1. Derive an expression for ζz entirely in terms of ζx and ζy.

2. Suppose that y is the level of the VIX index. [27] Then ζy ≈ 2.4677 day−1/2,

based on data from 1990-01-02 to 2018-12-31. [28] Suppose ζx = 0.1 day−1/2.
Compute ζz.

3. Compute the derivative
dζz
dζy

.

Does ζz have a local maximum with respect to ζy?

4. Find

lim
ζy→∞

ζz

5. Viewing y as some kind of random ‘leverage’ on the strategy with returns x,
what is the best case for an investor in z?

* Ex. 2.28 Autocorrelated returns and higher order moments Assume
that daily log returns, x, follow an AR(1) process: xt+1−µ = ρ (xt − µ) + εt+1, where
εt are independent zero-mean error terms with standard deviation σ. Let y be the
annualized18 log returns of the same process. So, for some fixed n, the number of
days in an epoch, let yt =

∑
(t−1)n<i≤tn xi.

1. What is the mean of y in terms of the mean of x, n and ρ?

2. What is the standard deviation of y in terms of the standard deviation of x, n
and ρ?

* 3. What is the third moment of y in terms of the first three moments of x, n and
ρ? What is the skew of y?

** 4. What is the fourth moment of y in terms of the first four moments of x, n and
ρ? What is the excess kurtosis of y?

* Ex. 2.29 Autocorrelated returns and signal-noise ratio In Section 2.2,
the method for annualizing the Sharpe ratio was given for independent returns. As
in Exercise 2.28, assume daily log returns, x, follow an AR(1) process: xt+1 − µ =
ρ (xt − µ)+εt+1, where εt are independent zero-mean error terms with standard devia-
tion σ. So, for some fixed n, the number of days in an epoch, let yt =

∑
(t−1)n<i≤tn xi.

1. Compute the signal-noise ratio of x. [99]

2. Compute the signal-noise ratio of y.

3. Compute the ratio of the signal-noise ratio of y to
√
n times the signal-noise

ratio of x. Plot this ratio versus the signal-noise ratio of x for n = 252, using
ρ = 0.1. Plot it against ρ assuming the signal-noise ratio of x is 0.05day−1/2.

18Or weekly, or monthly, whatever.
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Ex. 2.30 Attribution fits Consider the monthly returns of the Fama-French
factor data from aqfb.data, using code as given in Example 1.2.1. Each of the following
asks you to perform a factor attribution. For each of them, compute the ex-factor
Sharpe ratio.

1. The ‘Market’ returns have the risk-free rate subtracted from them, but there
may be residual exposure of these excess returns to the risk-free rate. Perform
an attribution of the excess returns of the market to the risk free rate, computing
the ex-factor Sharpe ratio.

2. Perform a CAPM attribution on the SMB portfolio returns. For simplicity, use
the excess returns of the Market portfolio as the market.

3. Perform a CAPM attribution on the HML portfolio returns.

4. Perform a Chow-test like attribution on the excess returns of the Market port-
folio, with an indicator factor that is one prior to 1960.

5. Perhaps it is the case that the small cap premium is disappearing, and does
not currently exist. Test this by attributing the monthly returns of the SMB
portfolio against a factor which is linearly decreasing over time, taking value of
1 at the start of the data, and value 0 at the end.

6. Can all the excess returns of the Market be attributed to the ‘January Effect’?
Perform an attribution against an indicator variable that is 1 exactly in January,
and 0 elsewhere.

Ex. 2.31 Geometric utility Suppose µ and σ2 are the mean and variance of
the simple returns of a strategy, x. Show that E [log (1 + x)] ≈ µ − 1

2σ
2, the mean-

variance objective function.

Ex. 2.32 Other objectives Construct several objective functions on the pop-
ulation parameters of returns distributions which sound like plausible objectives for
an investor. Which of them are consistent with first order stochastic dominance?

* Ex. 2.33 The signal-noise ratio and mean-variance preferences
Suppose x is a returns stream with mean µ > 0 and standard deviation σ. Let y be a
contingent claim (a 0/1 Bernoulli random variable) which pays out with probability
p, independent of x. Suppose z = x+ y.

1. Show that z (first order) stochastically dominates x. That is, show that, for all
c, Pr {x ≥ c} ≤ Pr {z ≥ c}.

2. Find the signal-noise ratio of z.

3. Find conditions on µ, σ2, p such that the signal-noise ratio of z is less than that
of x.

* Ex. 2.34 Is the signal-noise ratio monotonic? Let x and y be paired ran-
dom variables.

1. Suppose that Pr {xi ≤ yi} = 1 for all i. Let ζx, and ζy be the signal-noise
ratios of these variables. Can you prove that ζx ≤ ζy? If not, can you find a
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counterexample?

2. Suppose you observe n paired observations of x and y and notice that xi ≤ yi
for all i. You measure their Sharpe ratios, ζ̂x and ζ̂y. Must it be the case that

ζ̂x ≤ ζ̂y? If not, can you find a counterexample?

Ex. 2.35 Approximate normality Load the daily returns of ‘the Market’
from aqfb.data. Resample, with replacement, 250 days of market returns, and compute
the mean. Repeat this 5000 times, and Q-Q plot the means against normality.

1. What implications does this have for the argument that signal-noise ratio is an
inappropriate objective because it assumes returns are normal?

Ex. 2.36 Higher order signal-noise ratio Consider the higher order signal-
noise ratio, defined in Equation 2.17.

1. Show that the higher order signal-noise ratio is consistent with first-order
stochastic dominance.

2. Is it necessarily consistent with second-order stochastic dominance?

Ex. 2.37 Solving for higher order signal-noise ratio Consider the ap-
proximate higher order signal-noise ratio given by Equation 2.19.

1. Find the roots of the equation

ζh =
(µ− r0)

σ
+
γ1

6

(
ζ2
h −

1

n

)
.

2. Which root do you suspect gives a closer approximation to the higher order
signal-noise ratio defined in Equation 2.17?

3. Suppose (µ− r0) /σ = 0.1day−1/2, γ1 = 1.5 and n = 252day. Find the approx-
imate higher order signal-noise ratio.

* Ex. 2.38 Sample variance of alternative metrics Explore the sample
variation of some alternative metrics, as compared to the Sharpe ratio. For exam-
ple, the Calmar ratio: draw 1 year of daily returns from a population with Gaussian
log returns, using µ = 0day−1, σ = 0.01day−1/2, then compute the Calmar ratio on
the returns. Also compute the Sharpe ratio. Repeat this 1000 times. Then do the
same using µ = 0.001day−1, σ = 0.01day−1/2. Estimate, empirically, the power of the
test with 0.05 type I rate via the samples of the statistics on these two populations.
The Calmar ratio, is provided in R by the PerformanceAnalytics package, as are all
the alternative metrics mentioned below, while the Sharpe ratio can be computed via
the SharpeR package. [135, 122]

1. Repeat this exercise for the Sterling ratio.

2. Repeat this exercise for the ‘upside potential ratio’.

3. Repeat this exercise for the maximum drawdown. (You will have to turn the
log returns series into a price series to compute drawdown.)
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4. Repeat this exercise for the so-called “Fano ratio,” defined as µ̂/σ̂2. [78] (See
also Exercise 2.42.)

* Ex. 2.39 Drawdown and distribution Draw 2 years of daily log returns
from the Gaussian distribution with µ = 0day−1, σ = 0.01day−1/2. Turn the returns
series into a price series, then compute the maximum drawdown. Repeat this 10,000
times. Compute the 0.95 empirical quantile.

1. Repeat this exercise but using draws from a shifted, rescaled t-distribution with
4 degrees of freedom. You need to make sure you have achieved the proper mean
and variance.

2. Repeat this exercise but using draws from a shifted, rescaled, ‘Lambert W ×
Gaussian’ distribution using β = 0.1. [57] (The LambertW package is recom-
mended for this task. [59])

3. How sensitive is the critical maximum drawdown to the distribution from which
returns are drawn?

* Ex. 2.40 Drawdown and distribution II Repeat the experiment of Ex-
ample 2.7.2, but draw returns from a shifted, rescaled t-distribution with 4 degrees of
freedom. How do the half space constraint regression coefficients change?

Ex. 2.41 Drawdown and distribution III Rej et al. note a connection be-
tween the length and depth of the current drawdown and the signal-noise ratio. [141]
Perform simulations to confirm their findings. Here the ‘current drawdown’ is not the
same as the maximum drawdown, rather it is the difference between the maximum
fund value over a history and the recent value. So let xi be i.i.d. Gaussian log returns
and let

pi = e
∑

1≤j≤i xj .

The current drawdown at time t is defined as

max
1≤i≤t

pi − pt.

Simulate 2 years of weekly data using volatility of σ = 0.04wk.−1/2, and compute the
current drawdown at the end of the 2 year period. Repeat this 1000 times for each
choice of µ = 0, 0.001wk.−1, . . . , 0.010wk.−1.

1. Compute the median drawdown for each choice of µ and scatter plot against
ζ−1. Do you see a linear fit?

* Ex. 2.42 A Drawdown estimator of signal-noise ratio Challet intro-
duced an estimator of the signal-noise ratio based on the number of drawdowns (and
draw ups) of an asset’s price level. [30] This estimator is purported to have lower
standard error (and by implication, lower mean square error) than the Sharpe ratio
when returns are drawn from leptokurtic distributions.
Test this assertion empirically. The code to compute the drawdown-based estimator
is available in the R package, sharpeRratio. Draw 1000 days of returns from a t
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distribution, and compute the Sharpe ratio and the drawdown estimator, then compute
the error of each. Repeat this 10000 times. Perform this experiment for the case
where the signal-noise ratio is 0.5yr−1/2 and again when it is 2yr−1/2. For the returns
distribution vary the degrees of freedom of the t distribution, taking it to be 8, or 4.25.
You will compute estimates of the mean square error of each of these two estimators
for 4 different parameter settings.

1. Does the drawdown-estimator consistently have lower mean square error? If
not, why not?

2. What do you think should happen when returns are normally distributed? Re-
peat the experiment with normal returns to find out.

Ex. 2.43 Mr. Buffett’s Bet In 2007 Warren Buffett made a million dollar bet
with Ted Seides that the Vanguard S&P 500 index fund would outperform the average
return of five funds of hedge funds returns over a ten year period. Mr. Buffett prevailed
in this bet. [25, 1] Let us consider Mr. Seides’ odds.
We downloaded the BarclayHedge Equity Market Neutral Index data, then joined
to the monthly Market returns data from the Fama French factor returns. In total
we consider 240 months of data from 1997-01-01 to 2016-12-01. Supposing that the
Hedge Fund returns were similar to those of the Market Neutral Index (they weren’t),
and that the S&P fund from Vanguard tracked the Market (a decent approximation),
consider the relative returns of one dollar long on Market and one dollar short on the
Market neutral index.
Over the sample period, this combined strategy had an empirical mean return of
0.3% mo.−1 and a standard deviation of 4.5%−1/2 mo.−1/2.

1. What is the probability that a normally distributed random variable with mean
0.3 and standard deviation 4.5 will be positive?

2. What is the probability that the sum of 120 independent normally distributed
random variables with mean 0.3 and standard deviation 4.5 will be positive?

3. We have taken the sample standard deviation of the difference in returns of the
two series, which exhibit sizeable correlation over the sample period (around
0.21). Instead consider the influence of correlation. The two returns series have
volatilities of 0.88%−1/2 mo.−1/2 and 4.6%−1/2 mo.−1/2. Suppose the correla-
tion between them is 0. What is the volatility of their difference? How would
this affect the probability that their difference, assumed normal, would have
positive sum over 120 months?

4. Suppose instead that the Fund of Funds has zero expected mean and that
the Market has mean return of 0.74% mo.−1, and their difference has standard
deviation 4.5%−1/2 mo.−1/2. What is the probability that their difference will
be positive over 120 months assuming normal returns?
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3. The Sharpe ratio for Normal
Returns

If the track is tough and the hill
is rough,
THINKING you can just ain’t
enough!

(Shel Silverstein, The Little
Blue Engine)

An intellectual is a man who
doesn’t know how to park a
bike.

(Spiro Agnew, attributed)

While normality of returns is a terrible model for most market instruments [36], it is a
terribly convenient model. For the rest of this chapter, then, unless stated otherwise,
we will adhere to this terrible model and assume returns are unconditionally i.i.d.
Gaussian, i.e., xt ∼ N

(
µ, σ2

)
. In the sequel, we will examine the consequences of

assuming normality, independence, homoskedasticity, etc., and correct for them when
possible.

The Sharpe ratio is, up to a scaling, the Student t-statistic for testing the mean of a
(typically Gaussian) random variable. Sharpe himself never mentions this relationship,
although he quotes regression fit t-statistics in his original paper. [149] This connection
to t-statistics, perhaps first noted by Miller and Gehr [112], allows us to translate
known statistical results from testing of the mean to testing of the signal-noise ratio.

3.1. The non-central t-distribution

Let Z be a random variable following a normal distribution with mean δ and variance 1,
which we write as Z ∼ N (δ, 1). Let X, independent of Z take a chi-square distribution
with ν degrees of freedom, written X ∼ χ2 (ν). Then the variable

t =
Z√
X/ν

follows a non-central t distribution with non-centrality parameter δ and ν degrees of
freedom. [77, 147, 120] We write this as t ∼ t (ν, δ). As a special case, when δ = 0,
t follows a (central) t distribution. (The non-central t is a special case of the more
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general doubly non-central t distribution, wherein X follows a non-central chi-square
distribution.)

Suppose now that Z ∼ N
(
µ0, σ

2/ν
)

independently of (ν − 1)X/σ2 ∼ χ2 (ν − 1).
Then

√
ν
Z − µ1√

X
∼ t
(
δ =
√
ν
µ0 − µ1

σ
, ν − 1

)
. (3.1)

The non-centrality parameter δ is
√
ν times the difference in signal-noise ratio values,

µ0/σ and µ1/σ.

3.1.1. Distribution of the Sharpe ratio

Let x1, x2, . . . , xn be i.i.d. draws from a normal distribution N (µ, σ). Let µ̂ =df∑
i xi/n and σ̂2 =df

∑
i(xi − µ̂)2/(n − 1) be the unbiased sample mean and vari-

ance statistics. It is well known that µ̂ and σ̂ are independent, µ̂ ∼ N
(
µ, σ

2

n

)
, and

(n− 1) σ̂2/σ2 ∼ χ2 (n− 1). [11, 155] This gives the distribution of the Sharpe ratio
under the assumption of Gaussian returns. That is

√
nζ̂ =

√
n
µ̂− r0

σ̂
∼ t
(√

n
µ− r0

σ
=
√
nζ, n− 1

)
. (3.2)

Note the non-centrality parameter, δ =
√
n (µ− r0) /σ, looks like the sample statistic√

n (µ̂− r0) /σ̂, but defined with population quantities. Informally, it is the ‘population
analogue’ of the sample statistic.

3.1.2. Distribution of the ex-factor Sharpe ratio

Now consider the ex-factor Sharpe ratio introduced in Equation 2.10 of Section 2.4.
Suppose that x1, x2, . . . , xn are the observed returns, and that f1,f2, . . . ,fn are the
corresponding factors in a factor model. Let F be the n× l matrix whose rows are the
vectors f t

>. Assume the model is properly specified: conditional on observing f t,

xt = f t
>β + εt,

where the errors are i.i.d. normal, εt ∼ N (0, σ). The multiple linear regression
estimates are

β̂ =df

(
F>F

)−1
F>x, σ̂ =df

√√√√(x− Fβ̂
)> (

x− Fβ̂
)

n− l
. (3.3)

Then, conditional on observing F,

β̂ ∼ N
(
β, σ2

(
F>F

)−1
)
, (n− l) σ̂

2

σ2
∼ χ2 (n− l) ,

and the estimators are independent. [11, 140]
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The ex-factor Sharpe ratio is then distributed as

ζ̂g =df
β̂
>
v − r0

σ̂
∼
N
(
β>v − r0, σ

2v>
(
F>F

)−1
v
)

√
σ2χ2 (n− l) / (n− l)

,

∼
√
v>(F>F)

−1
v

N
((
v>
(
F>F

)−1
v
)−1/2

β>v−r0
σ , 1

)
√
χ2 (n− l) / (n− l)

,

and therefore(
v>
(
F>F

)−1
v
)−1/2

ζ̂g ∼ t
((
v>
(
F>F

)−1
v
)−1/2

ζg, n− l
)
,

where ζg =df
β>v − r0

σ
. (3.4)

Compare this with Equation 3.2. Most of the results we will explore concerning the
Sharpe ratio have equivalent results for the ex-factor Sharpe ratio. However, keeping

track of the scaling parameter
(
v>
(
F>F

)−1
v
)−1/2

would be unweildy, so generalizing

the results will be left as an exercise for the reader.
While many of the results in this chapter have analagous forms for the ex-factor

Sharpe ratio, strictly speaking they only apply to the case where the factors f t are
deterministic, and controlled by the experimenter. This is decidedly not the case
for many models in which attribution will be performed, e.g., CAPM, the Fama-
French models, Henriksson-Merton, etc. Indeed, few, if any, of the models listed in
Section 2.4.1 feature deterministic f t. The issue is that the randomness of the f t
contributes to estimation error. Methods for dealing with attribution for random
covariates will be considered in Chapter 4.

3.2. † Density and distribution of the Sharpe ratio

Since the Sharpe ratio is distributed as a non-central t up to scaling, its density,
cumulative distribution, and quantile functions can be defined in terms of their non-
central t counterparts, as follows:

fSR

(
ζ̂; ζ, n

)
= n−1/2ft

(√
nζ̂;
√
nζ, n− 1

)
,

FSR

(
ζ̂; ζ, n

)
= Ft

(√
nζ̂;
√
nζ, n− 1

)
,

SRp (ζ, n) = n−1/2tp
(√
nζ, n− 1

)
.

(3.5)

Here fSR

(
ζ̂; ζ, n

)
is the density (or PDF) of the Sharpe ratio distribution with signal-

noise ratio ζ on n samples; FSR

(
ζ̂; ζ, n

)
is the cumulative distribution (or CDF); and
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SRp (ζ, n) is the pth quantile. The functions on the right hand side of the equations
are the PDF, CDF, and quantile of the non-central t distribution.

The PDF, CDF, and quantile functions of the non-central t have stock implementa-
tions. For example, in R, these are available as dt, pt, and qt. As a practical matter,
these should be used instead of writing your own. If your interests are practical, rather
than theoretical, you can safely skip the rest of this section.

3.2.1. The PDF of the Sharpe ratio

First, let us compute the density of the Sharpe ratio under i.i.d. normal returns.
Following Walck [165], let ζ̂ = z/

√
x, where z ∼ N

(
ζ, 1

n

)
independently of x ∼

χ2 (n− 1). The joint density of x, z is

f (x, z; ζ, n) =

[
1

2
n−1
2 Γ

(
n−1

2

)xn−1
2 −1e−

x
2

] [√
n

2π
e−

n(z−ζ)2
2

]
. (3.6)

Now we make the transformation [x, z]
> → [x, z/

√
x]
>

=
[
x, ζ̂
]>

. The determinant

of the Jacobian of the inverse transform is
√
x. Thus

f
(
x, ζ̂; ζ, n

)
=
√
xf (x, z; ζ, n) =

√
xf
(
x, ζ̂
√
x; ζ, n

)
.

To get the density of ζ̂, integrate out x. This gives the integral form of the density as

fSR

(
ζ̂; ζ, n

)
=

∫ ∞
0

√
x

[
x
n−1
2 −1e−

x
2

2
n−1
2 Γ

(
n−1

2

)]
√ n

2π
exp

−n
(
ζ̂
√
x− ζ

)2

2


 dx,

=

√
n/2√

2πΓ
(
n−1

2

) ∫ ∞
0

(x
2

)n−2
2

exp

−x
2
−
n
(
ζ̂
√
x− ζ

)2

2

 dx.

(3.7)

3.2.2. The CDF and quantile of the Sharpe ratio

Finding the CDF of the Sharpe ratio consists of ‘simply’ integrating the PDF given in
Equation 3.7. Witkovsky gives a few different forms for the CDF of the non-central
t distribution. [172] The equivalent formulations for the Sharpe ratio distribution are
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as follows, for ζ̂ > 0,

FSR

(
ζ̂; ζ, n

)
=

1√
n− 1

∫ ∞
0

Φ

(
ζ̂

√
n

n− 1
z −
√
nζ

)
fχ2 (z;n− 1) dz,

= Φ
(
−
√
nζ
)

+

∫ ∞
−
√
nζ

(
1− Fχ2

(
(n− 1) (z +

√
nζ)

2

nζ̂2
;n− 1

))
φ (z) dz,

= Φ
(
−
√
nζ
)

+
1

2

∞∑
i=0

[(
nζ2

2

)i
e−nζ

2/2

i!
I nζ̂2

n−1+nζ̂2

(
i+

1

2
,
n− 1

2

)]

+
1

2

∞∑
i=0

[(
nζ2

2

)i+1/2
e−nζ

2/2

Γ (i+ 3/2)
I nζ̂2

n−1+nζ̂2

(
i+ 1,

n− 1

2

)]
.

(3.8)

Here Ix (a, b) is the incomplete beta function [2, 6.6.2], and Fχ2 (x; ν) and fχ2 (x; ν)
are, respectively, the CDF and PDF of the chi-square distribution with ν degrees
of freedom. The connection between the non-central t distribution and the lambda
prime distribution (cf. Section 3.4) are evident in some of these forms. The last form
is essentially that used in the standard computation of the CDF of the t distribution
via ‘AS 243’. [94, 62]

The inverse CDF, or quantile function, of the non-central t-distribution is not easily
expressed in compact notation. The ‘exact’ computation, provided by e.g.,qt in R, is
due to Hill. [69, 70] Akahira et al. present an approximation to the quantile function,
first described by Akahira, based on the Cornish Fisher expansion1. [3, 4] The Akahira
approximation generalizes the quantile approximation of Johnson and Welch. [77]

3.3. Moments of the Sharpe ratio

The moments of the non-central t-distribution are known, and can easily be translated
into those of the Sharpe ratio. [72, 165, 171] Suppose that t ∼ t (δ, n− 1). Then, for
0 ≤ i < n− 1,

E
[
ti
]

=

(
n− 1

2

)i/2 Γ
(
n−1−i

2

)
Γ
(
n−1

2

) (
e−δ

2/2 dieδ
2/2

dδi

)
. (3.9)

The quantity in parenthesis is a variant of the ‘probabilist’s Hermite polynomial’, but
has all positive coefficients in δ. [2] Since

√
nζ̂ ∼ t (

√
nζ, n− 1) under our assumption

of normal returns, the moments of the Sharpe ratio are

αi

(
ζ̂
)

=df E
[
ζ̂i
]

=

(
n− 1

2

)i/2 Γ
(
n−1−i

2

)
Γ
(
n−1

2

) 1

ni/2
e−nζ

2/2 dienζ
2/2

d (
√
nζ)

i
, (3.10)

1Akahira et al. use the inversion that connects the t-distribution to the Lambda prime distribution,
see Section 3.4.

63



Short Sharpe Course, version v0.2.999;

and so

α1

(
ζ̂
)

=

(
n− 1

2

)1/2 Γ
(
n−2

2

)
Γ
(
n−1

2

) (n 1
2 ζ

n
1
2

)
= dnζ,

α2

(
ζ̂
)

=

(
n− 1

2

)
Γ
(
n−3

2

)
Γ
(
n−1

2

) (1 + nζ2

n

)
=
n− 1

n− 3

(
1 + nζ2

n

)
,

α3

(
ζ̂
)

=

(
n− 1

2

)3/2 Γ
(
n−4

2

)
Γ
(
n−1

2

) (3n
1
2 ζ + n

3
2 ζ3

n
3
2

)
=
n− 1

n− 4
dn
ζ

n

(
3 + nζ2

)
,

α4

(
ζ̂
)

=

(
n− 1

2

)2 Γ
(
n−5

2

)
Γ
(
n−1

2

) (3 + 6nζ2 + n2ζ4

n2

)
=

(n− 1)
2

(n− 3) (n− 5)

(
3 + 6nζ2 + n2ζ4

n2

)
,

α5

(
ζ̂
)

=

(
n− 1

2

)5/2 Γ
(
n−6

2

)
Γ
(
n−1

2

) (15n
1
2 ζ + 10n

3
2 ζ3 + n

5
2 ζ5

n
5
2

)
,

=
(n− 1)

2

(n− 4) (n− 6)
dn

ζ

n2

(
15 + 10nζ2 + n2ζ4

)
,

(3.11)

where we have defined

dn =df

√
n− 1

2

Γ
(
n−2

2

)
Γ
(
n−1

2

) , (3.12)

as the ‘bias term’. The even moments enjoy cancellation due to definition of the
Gamma function, while the odd moments have this irreducible constant, dn. Thus we
have

E
[
ζ̂
]

= dnζ,

Var
(
ζ̂
)

=
(1 + nζ2)(n− 1)

n(n− 3)
− (dnζ)

2
,

skew
(
ζ̂
)

=
α3

(
ζ̂
)
− 3α2

(
ζ̂
)
α1

(
ζ̂
)

+ 2α1

(
ζ̂
)3

(
α2

(
ζ̂
)
− α1

(
ζ̂
)2
)3/2

,

ex kurtosis
(
ζ̂
)

=
α4

(
ζ̂
)
− 4α3

(
ζ̂
)
α1

(
ζ̂
)

+ 6α2

(
ζ̂
)
α1

(
ζ̂
)2

− 3α1

(
ζ̂
)4

(
α2

(
ζ̂
)
− α1

(
ζ̂
)2
)2 − 3.

(3.13)

Example 3.3.1 (Cumulants of the Sharpe ratio). Suppose you observe 60 months of

Gaussian log returns with ζ = 0.3 mo.−1/2. Then E
[
ζ̂
]

= 0.3039 mo.−1/2, Var
(
ζ̂
)

=

0.0181 mo.−1, skew
(
ζ̂
)

= 0.1202, ex kurtosis
(
ζ̂
)

= 0.1288. The skewness and excess

kurtosis are unitless quantities by definition.
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To check these calculations, 107 samples from the Sharpe ratio distribution with
ζ = 0.3, mo.−1/2 and n = 60 months were drawn. The empirical mean of the Sharpe
ratio was 0.3039 mo.−1/2, the empirical variance was 0.0181,mo.−1, and the empirical
skew and excess kurtosis were measured to be 0.1213, and 0.1291. a

3.3.1. The Sharpe ratio is biased

The geometric bias term, dn, is related to the constant c4 from the statistical control
literature via

dn =
n− 1

n− 2
c4 (n) .

The bias term does not equal one, thus the Sharpe ratio is a biased estimator of the
signal-noise ratio (when it is nonzero), as first described by Miller and Gehr. [112, 76]
The bias is multiplicative and larger than one, so the Sharpe ratio will overestimate the
signal-noise ratio when the latter is positive, and underestimate it when it is negative.
The bias term is a function of sample size only, and approaches one fairly quickly. A
A decent asymptotic approximation [38] to dn is given by

dn+1 = 1 +
3

4n
+

25

32n2
+O

(
n−3

)
. (3.14)

In Figure 3.1, 1 − dn is plotted versus n, along with this approximation. Higher
order formulæ for the bias of the Sharpe ratio for non-Gaussian returns are given in
Section 4.2.3, and suggest the approximation

dn+1 ≈ 1 +
3

4n
+

49

32n2
.

In Section 4.2.3, we will give the bias of the Sharpe ratio for general, non-Gaussian
returns.

Example 3.3.2 (Bias in Sharpe ratio). Looking at one year’s worth of returns with
monthly marks, the bias is fairly large: d12 = 1.0753, i.e., almost 8%. When looking
at one year’s worth of weekly marks, the bias is more modest: d52 = 1.015; for a year
of daily marks d252 = 1.003. When n > 100, say, this bias is negligible. a

3.3.2. Moments under up-sampling

Suppose, as a prospective investor in a fund, you are given one year’s worth of daily
log returns of the fund, say n = 252. You are offered, for a small fee, the option of
viewing the log returns of every minute the market is open, a 390-fold increase in n.
Should you accept this offer? Again, in this chapter we are assuming returns are i.i.d.
normally distributed. How will this up-sampling affect the moments of the sample
Sharpe ratio? Your intution should tell you that under the i.i.d. assumption, not
much can be gleaned from higher resolution data, even though it appears to be a huge
increase in the sample size. Indeed, because the daily returns and minutely log returns
have the same sum the mean over minute marks is exactly the daily mean divided by
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Figure 3.1.: The relative bias of the Sharpe ratio, dn− 1 is plotted versus sample size.
The approximation given by dn+1 ≈ 1 + 3

4n + 25
32n2 is also plotted.

390; only a change in the sample variance could cause the annualized Sharpe ratio to
change.

To be concrete, let ζ̂ be the Sharpe ratio computed based on n marks, and let k be
some positive integer. Let ζ̂k be the Sharpe ratio computed over the same time period,
but with each log return divided into k pieces. Under the assumption of normality,

√
knζ̂k ∼ t

(√
knζk, kn− 1

)
,

where ζk = ζ/
√
k to make the units match. (That is, we are measuring returns over

a higher frequency time scale, so the signal-noise ratio decreases in the usual way.)

Similarly, because of how the units are defined, we should compare ζ̂ to
√
kζ̂k, since

they have the same units. The moments of this estimate, with limits as k →∞, are

E
[(√

kζ̂k

)]
=
√
kdknζk = dknζ → ζ,

E

[(√
kζ̂k

)2
]

= k
kn− 1

kn− 3

(
1 + knζ2

k

kn

)
→
(

1 + nζ2

n

)
,

E

[(√
kζ̂k

)3
]

= k3/2 kn− 1

kn− 4
dkn

ζk
kn

(
3 + knζ2

k

)
→ ζ

n

(
3 + nζ2

)
,

E

[(√
kζ̂k

)4
]

= k2 (kn− 1)
2

(kn− 3) (kn− 5)

(
3 + 6knζ2

k + k2n2ζ4
k

k2n2

)
,

→
(

3 + 6nζ2 + n2ζ4

n2

)
,

(3.15)

and so on. All terms in Equation 3.11 containing
√
nζ̂ remain unchanged (they are
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unitless), while the ratios of terms in n converge to 1. The decrease in bias and variance

in using
√
kζ̂k instead of ζ̂ will be small, indeed, even when n is modest, say bigger

than only 100. As k →∞, in fact, we have
√
kζ̂k

d→ N
(
ζ, 1

n

)
. Thus the variance in the

Sharpe ratio statistic is limited by the length of time over which we measure returns,
and only weakly dependent on sample size (when sample size is reasonably large). It
is not clear that changes in the higher order moments will have any meaningful impact
on inference.

Example 3.3.3 (Up-sampling). Suppose you observe 252 days of Gaussian log returns

with ζ = 0.05 day−1/2 = 0.7937 yr−1/2. You also observe the up-sampled data with
k = 390. Then the percent change in the mean is

100%
E
[√

kζ̂k

]
− E

[
ζ̂
]

E
[
ζ̂
] = −0.2984%,

which is very small. The similarly defined percent change in the variance is −0.92%;
in the skewness −99.7%; in the excess kurtosis −99.7%. a
Example 3.3.4 (Down-sampling Market returns). The Sharpe ratio of the Market port-
folio, introduced in Example 1.2.1, was computed on relative returns from Jan 1927 to
Dec 2018. Returns were resampled at frequencies up to yearly, then the Sharpe ratios
were computed, and tabulated in Table 3.1. The signal-noise ratios are all around
0.6 yr−1/2. We do not know which estimate is more accurate, but we also do not see
radically different Sharpe ratios from different resampling frequencies.

daily weekly monthly quarterly yearly

0.63 0.62 0.60 0.53 0.58

Table 3.1.: The Sharpe ratio of the Market factor is shown, in units of yr−1/2, com-
puted at different sampling frequencies, based on relative returns from Jan
1927 to Dec 2018.

a

3.3.3. Unbiased estimation and efficiency

While ζ̂ is a biased estimator for ζ, it is asymptotically unbiased. Moreover, we can
easily construct an unbiased estimator

ζ̃ =df
ζ̂

dn
. (3.16)

This estimator is only of academic interest, as any fund manager reporting this statistic
would be putting themselves at a relative disadvantage, since it is smaller than the
biased estimator2.
2Assuming their Sharpe ratio is positive!
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It is well known that
[
µ̂, σ̂2

]>
is a sufficient statistic for the parameters

[
µ, σ2

]>
of a normal distribution. [11] Because

[
ζ̃, σ̂
]>

is a one-to-one transformation of this

sufficient statistic, it is sufficient as well.
Suppose that x1, x2, . . . , xn are drawn i.i.d. from a normal distribution with un-

known signal-noise ratio and variance. Suppose one has an (vector) estimator of the
signal-noise ratio and the variance. The Fisher information matrix can easily be shown
to be:

I (ζ, σ) = n

(
1 ζ

2σ2

ζ
2σ2

2+ζ2

4σ4

)
(3.17)

Inverting the Fisher information matrix gives the Cramer-Rao lower bound for an
unbiased vector estimator of signal-noise ratio and variance:

I−1 (ζ, σ) =
1

n

(
1 + ζ2/2 −ζσ2

−ζσ2 2σ4

)
(3.18)

Now consider the estimator
[
ζ̃, σ̂2

]>
. This is an unbiased estimator for

[
ζ, σ2

]>
.

One can show that the variance of this estimator is

Var

([
ζ̃, σ̂2

]>)
=

 (1+nζ2)(n−1)
dn2n(n−3)

− ζ2 ζσ2
(

1
dn
− 1
)

ζσ2
(

1
dn
− 1
)

2σ4

n−1

 . (3.19)

The variance of ζ̃ follows from Equation 3.13. The cross terms follow from the in-
dependence of the sample mean and variance, and from the unbiasedness of the two
estimators. The variance of σ̂2 is well known.

Since dn = 1 + 3
4(n−1) + O

(
n−2

)
, the asymptotic variance of ζ̃ is

(n−1)+n
2 ζ

2

(n+(3/2))(n−3) +

O
(
n−2

)
, and the covariance of ζ̃ and σ̂2 is −ζσ̂2 3

4n + O
(
n−2

)
. Thus the estima-

tor
[
ζ̃, σ̂2

]>
is asymptotically efficient, i.e., it achieves the Cramer-Rao lower bound

asymptotically.

3.4. † The lambda prime distribution

Now we turn our attention to Lecoutre’s lambda prime distribution, which is, in some
sense, ‘dual’ to the t-distribution. It is defined as follows: let Z ∼ N (0, 1) indepen-
dently of χ2 ∼ χ2 (ν). Then λ = Z+t

√
χ2/ν follows a lambda prime distribution with

parameter t and degrees of freedom ν. [87, 88, 137] Let us write this as λ ∼ λ′ (t, ν),
and we write the density, cumulative distribution, and quantile functions of the lambda
prime distribution as, respectively, fλ′ (x; t, ν) , Fλ′ (x; t, ν) , and λ′p (t, ν).

The connection between the lambda prime and the non-central t distribution shows
up in the construction of frequentist confidence intervals (see Section 3.5.1), hypothesis
tests on Sharpe ratio for independent samples (Section 3.5.3), and the Bayesian analysis
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(Section 3.7). It is also the ‘confidence distribution’ of the non-central t, and appears
in Fisher’s work on Fiducial inference.

The connection between the two distributions is apparent. Suppose that t ∼ t (δ, ν).
This means that there are independent random variables Z ∼ N (0, 1) and χ2 ∼ χ2 (ν)
such that

t =
δ + Z√
χ2/ν

.

This can be rearranged as
δ = t

√
χ2/ν − Z.

Because the normal distribution is symmetric, −Z has the same distribution as Z, so
conditional on observing t, we have δ ∼ λ′ (t, ν).

This also connects the cumulative distribution functions (equivalently, the quantile
functions) of the two distributions. For example, we have

Ft (x; δ, ν) = 1− Fλ′ (δ;x, ν) , (3.20)

and thus

FSR (x; ζ, n) = Ft
(√
nx;
√
nζ, n− 1

)
= 1− Fλ′

(√
nζ;
√
nx, n− 1

)
. (3.21)

See Exercise 3.10. We can also define confidence intervals on δ in terms of the quan-
tile function of the lambda prime distribution. An α confidence bound for the non-
centrality parameter, δ, conditional on observing t, is λ′1−α (t, ν). Thus the confidence
intervals given in Equation 3.27 (see later) can be expressed as

1√
n

[
λ′α/2

(√
nζ̂, n− 1

)
, λ′(2−α)/2

(√
nζ̂, n− 1

)]
. (3.22)

The distribution and quantile functions of the lambda prime can be evaluated di-
rectly [137], but they can be more easily implemented via off-the-shelf implementations
of the distribution and quantile of the t distribution. For our purposes, we will at times
need the distribution and quantile of a more general distribution, described below.

3.5. Frequentist inference on the signal-noise ratio

3.5.1. Confidence intervals

The variance of ζ̂ is given in Equation 3.13. Using the asymptotic expansion dn =
1 + 3

4(n−1) +O
(
n−2

)
, the variance of ζ̂ is approximated by

Var
(
ζ̂
)

=
(1 + nζ2)(n− 1)

n(n− 3)
− (dnζ)

2 ≈ n− 1

n (n− 3)
+

ζ2

2 (n− 3)
+ ζ2O

(
n−2

)
. (3.23)

This is often quoted in the following more convenient form, which is asymptotically
equivalent,

se
(
ζ̂
)

=df

√
Var

(
ζ̂
)
≈

√
1 + ζ2

2

n
. (3.24)
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This is the most widely used form of the standard error of the Sharpe ratio. This
standard error was described by Jobson and Korkie, and later by Lo [99, 76]. The
equivalent result concerning the non-central t-distribution (which is the Sharpe ratio
up to scaling by

√
n) was published in 1940 by Johnson and Welch. [77] We will

refer to Equation 3.24 informally as the “vanilla” standard error, or the “Johnson and
Welch” formula.

Since the signal-noise ratio, ζ̂, is unknown, it is typically approximated with the
Sharpe ratio (the so-called ‘plug-in’ method), giving the following approximate 1− α
confidence interval on the signal-noise ratio:

ζ̂ ± zα/2

√
1 + ζ̂2

2

n
,

where zα/2 is the α/2 quantile of the normal distribution. In practice, the asymptoti-
cally equivalent form

ζ̂ ± zα/2

√
1 + ζ̂2

2

n− 1
(3.25)

has better small sample coverage for normal returns.
We can take this one step further for the small sample case by adjusting for the

bias in the Sharpe ratio. Using the Taylor approximation dn
−1 ≈ 1− 3

4(n−1) gives the

approximate 1− α confidence interval

ζ̂

(
1− 3

4 (n− 1)

)
± zα/2

√
1 + ζ̂2

2

n− 1
(3.26)

We can find confidence intervals on ζ assuming only normality of x (or large n and
an appeal to the Central Limit Theorem), by inversion of the cumulative distribution
of the non-central t-distribution. A 1−α confidence interval on ζ has endpoints [ζl, ζu]
defined implicitly by

1− α/2 = Ft

(√
nζ̂;
√
nζl, n− 1

)
, α/2 = Ft

(√
nζ̂;
√
nζu, n− 1

)
, (3.27)

where Ft (x; δ, n− 1) is the CDF of the non-central t-distribution with non-centrality
parameter δ and n− 1 degrees of freedom. Computationally, this method requires one
to invert the CDF (e.g., by Brent’s method [21]), which is slower than approximations
based on asymptotic normality. The endpoints of this confidence interval, ζl, ζu are
actually quantiles of the lambda prime distribution. (cf. Section 3.4)

Mertens gives the form of standard error

se
(
ζ̂
)
≈

√
1 + 2+γ2

4 ζ2 − γ1ζ

n
, (3.28)

where γ1 is the skew, and γ2 is the excess kurtosis of the returns distribution. [111,
119, 10] These are both zero for normally distributed returns, and so Mertens’ form
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reduces to the Johnson & Welch form of the standard error. These are unknown in
practice, and have to be estimated from the data, which results in some mis-estimation
of the standard error when skew is extreme. We will consider Mertens’ form further
in the sequel, see Chapter 4.

Example 3.5.1 (Confidence intervals, Market returns). Consider the monthly relative
returns of the Market, introduced in Example 1.2.1, which span from Jan 1927 to Dec
2018. The Sharpe ratio was measured to be 0.5982yr−1/2. 95% confidence intervals,
based on the ‘exact’ method were computed as [0.3922, 0.8039] yr−1/2. a
Example 3.5.2 (Confidence intervals, UMD returns, attribution model). Consider
the monthly relative returns of UMD, under an attribution against intercept, Mar-
ket, SMB and HML, using the data introduced in Example 1.2.1, 1104 months of
data from Jan 1927 to Dec 2018. The ex-factor Sharpe ratio was measured to be
0.2521mo.−1/2. 95% confidence intervals, based on the ‘exact’ method were computed
as [0.1911, 0.3129] mo.−1/2. a

3.5.2. † Symmetric confidence intervals

The implicit confidence intervals on ζ given above are ‘symmetric’ in the sense that
they are typically computed with equal type I error rates on both sides. That is, a
1− α confidence interval [ζl, ζu] is usually computed such that

Pr {ζ < ζl} = α/2 = Pr {ζ > ζu} .

However these are typically not symmetric around the observed Sharpe ratio, ζ̂,
rather they are usually slightly imbalanced. However, symmetric confidence intervals
can easily be constructed numerically by finding δ such that

Ft

(√
nζ̂;
√
n
(
ζ̂ − δ

)
, n− 1

)
− Ft

(√
nζ̂;
√
n
(
ζ̂ + δ

)
, n− 1

)
= 1− α.

The advantage of a symmetric interval is that we can express it as

Pr
{∣∣∣ζ − ζ̂∣∣∣ ≤ δ} = 1− α,

a fact which we will abuse later.

Example 3.5.3 (Confidence intervals, Symmetric). Consider the case of 504 daily ob-
servations of some hypothetical asset’s returns, which result in a measured Sharpe
ratio of exactly 0.6yr−1/2, assuming 252 days per year. The ‘exact’ 95% confi-
dence intervals are computed as [−0.7867, 1.9861] yr−1/2, which we can write as[
ζ̂ − 1.3867, ζ̂ + 1.3861

]
yr−1/2. These are almost symmetric.

Numerically we compute the symmetric intervals as approximately

ζ̂ ± 1.3864yr−1/2.

These are very close to the exact intervals. They are also close to, but smaller than,
the confidence intervals computed by the standard error approximation, Equation 3.25,
which we compute as

ζ̂ ± 1.3878yr−1/2.
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a
The symmetry condition is useful in the following situation. Suppose you observe

the Sharpe ratio of an asset; if it is positive, you will hold the asset long, otherwise
you will hold the asset short. This simple “opportunistic” strategy seems perfectly
natural, though perhaps somewhat näıve. It is not obvious how you would compute
confidence intervals on your achieved returns, since they depend not just on the pop-
ulation parameter, ζ, but also on the statistic ζ̂, which you will also use to compute
your confidence intervals.

We can easily compute such intervals. Starting from the symmetric confidence

interval condition, Pr
{∣∣∣ζ − ζ̂∣∣∣ ≤ δ} = 1− α, multiply the inside of the absolute value

by a ±1 in the form of sign
(
ζ̂
)

to arrive at

Pr
{∣∣∣sign

(
ζ̂
)
ζ −

∣∣∣ζ̂∣∣∣∣∣∣ ≤ δ} = 1− α.

And thus ∣∣∣ζ̂∣∣∣± δ (3.29)

form a 1− α confidence intervals on the returns of this simple opportunistic strategy.

While the confidence intervals are symmetric about
∣∣∣ζ̂∣∣∣, the rates of type I errors

are typically not balanced on the two sides. Moreover, the imbalance depends on the
unknown signal-noise ratio: when |ζ| is near 0, the type I errors will mostly be found
below the lower bound; conversely when |ζ| is ‘large’, the type I errors will be more
evenly balanced.

To illustrate this effect, we consider the rate of type I errors separately for “lower”
and “upper” violations of the symmetric confidence bound. These can be defined
respectively as

Pr
{

sign
(
ζ̂
)
ζ ≤

∣∣∣ζ̂∣∣∣− δ} , and Pr
{

sign
(
ζ̂
)
ζ ≥

∣∣∣ζ̂∣∣∣+ δ
}
.

We construct the symmetric confidence intervals using the standard error approx-
imation of Equation 3.25, with the actual signal-noise ratio, i.e., we are setting

δ =
∣∣zα/2∣∣√ 1+ ζ̂2

2

n−1 . We consider the case of 3 years of daily data, at 252 days per

year. We compute the lower and upper type I rates, and plot them against ζ ranging

from 0yr−1/2 to 2.5yr−1/2 in Figure 3.2. When ζ ≤
∣∣zα/2∣∣√ 1+ ζ̂2

2

n−1 we see that there

are no upper type I errors. (See Exercise 3.24.)
Note this imbalance in type I rates is a function of the unknown signal-noise ratio,

and not of the observed Sharpe ratio. It is not possible to say much about the balance
of type I errors conditional on the Sharpe ratio without leaning on a prior distribution
for ζ, which would take us out of the Frequentist framework.

Note that one can turn the symmetric confidence interval
∣∣∣ζ̂∣∣∣ ± δ into a one-sided

‘symmetric’ confidence interval [∣∣∣ζ̂∣∣∣− δ,∞] (3.30)
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Figure 3.2.: Rates of upper and lower type I errors are plotted versus ζ for the case of
3 years of daily data, using the approximate standard error from Equa-
tion 3.25. The symmetric confidence interval has a total type I rate of
approximately 0.05.

by extending one side. This confidence interval should have coverage between 1 − α
and 1− α/2 depending on the unknown signal-noise ratio.

One can also analyze the opportunistic strategy via conditional inference, cf. Sec-
tion 5.1.5.

3.5.3. Hypothesis tests

There are a few statistical tests for hypotheses involving the signal-noise ratio. The
classical t-test for the mean can be considered a hypothesis test on the signal-noise
ratio with a disastrous rate of return. In each of these, the sample Sharpe ratio is
used.

1 sample mean test The classical one-sample test for mean involves a t-statistic
which is like a Sharpe ratio with constant benchmark. Thus to test the null hypothesis:

H0 : µ = µ0 versus H1 : µ > µ0,

we reject if the statistic

t0 =
√
n
µ̂− µ0

σ̂

is greater than t1−α (n− 1), the 1−α quantile of the (central) t-distribution with n−1
degrees of freedom.
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If µ = µ1 > µ0, then the power of this test is

1− Ft (t1−α (n− 1) ; δ1, n− 1) ,

where δ1 =
√
n (µ1 − µ0) /σ and Ft (x; δ, n− 1) is the cumulative distribution function

of the non-central t-distribution with non-centrality parameter δ and n− 1 degrees of
freedom. [147, 120]

1 sample signal-noise ratio test A one-sample test for signal-noise ratio can also be
interpreted via the t-statistic. To test:

H0 : ζ = ζ0 versus H1 : ζ > ζ0,

we reject if the statistic t =
√
nζ̂ is greater than t1−α (δ0, n− 1), the 1 − α quantile

of the non-central t-distribution with n − 1 degrees of freedom and non-centrality
parameter δ0 =

√
nζ0. Equivalently we reject if ζ̂ > SR1−α (ζ0, n).

If ζ = ζ1 > ζ0, then the power of this test is

1− Ft (t1−α (δ0, n− 1) ; δ1, n− 1) ,

where δ1 =
√
nζ1 and Ft (x; δ, n− 1) is the cumulative distribution function of the non-

central t-distribution with non-centrality parameter δ and n − 1 degrees of freedom.
[147, 120] Equivalently the power can be expressed as

1− FSR (SR1−α (ζ0, n) ; ζ1, n) .

Hypothesis tests of the signal-noise ratio involving dependent returns will be con-
sidered later, see Section 4.3 and Equation 4.44.

Example 3.5.4 (Hypothesis testing, the Market). Consider the monthly relative re-
turns of the Market, introduced in Example 1.2.1. To test the null hypothesis,
H0 : µ = 0.5%mo.−1, we essentially compute the Sharpe ratio with benchmark rate of
0.5%mo.−1, which is computed as 0.2736yr−1/2. Multiplying this by the square root
of n = 1104mo. gives the t-stat of 9.0895. We reject the null at the 0.05 level.

To test the null hypothesis, H0 : ζ = 0.3yr−1/2, against the alternative H1 : ζ >
0.3yr−1/2, we compute ζ̂ = 0.5982yr−1/2. The 0.975 quantile of the Sharpe ratio dis-
tribution under the null for n = 1104mo. is SR0.975

(
0.3yr−1/2, 1104

)
= 0.5055yr−1/2,

and thus we reject the null hypothesis at the 0.025 level. This is essentially the same
conclusion as could be drawn from the confidence intervals given in Example 3.5.1. a

3.5.4. † Two One-sided and other Intersection Union Tests

It is sometimes lamented that hypothesis tests only allow you to cast doubt on the null
hypothesis, rather than somehow positively assert some condition on the population
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parameters. The use of “Two One-Sided Tests” is sometimes prescribed3 for this
situation, as they potentially allow one to reject ‘towards’ some relationship, rather
than away from one. [86]

Suppose the goal is to establish that the signal-noise ratio of an asset is equal to
some fixed value, say ζ0. Since strict equality is unlikely to be true, one instead seeks
to establish equality within some range, or up to some uncertainty. So let us say that
ζ is equivalent to ζ0 if and only if ζl ≤ ζ ≤ ζh, for some suitably defined ζl, ζh selected
to give the proper precision to the notion of equivalence.

To try to show equivalence, one performs a test under the null hypothesis of un-
equivalence, with the hope of rejecting in favor of equivalence. That is, one tests

H0 : ζ < ζl or ζ > ζh versus H1 : ζl ≤ ζ ≤ ζh.

To perform this test, one conducts two hypothesis tests, namely

H0a : ζ < ζl versus H1a : ζ ≥ ζl, and

H0b : ζ > ζh versus H1b : ζ ≤ ζh.

If one rejects both H0a and H0b, then effectively one is rejecting H0 ‘in favor of’
the alternative hypothesis of equality, H1. To conduct these tests, as outlined in
Section 3.5.3, we reject if

t1−α
(√
nζl, n− 1

)
≤
√
nζ̂ ≤ tα

(√
nζh, n− 1

)
.

Here, as above, tα (δ, n− 1) is the α quantile of the non-central t-distribution with
n− 1 degrees of freedom and non-centrality parameter δ.

If we truly have equivalence, that is if ζl ≤ ζ ≤ ζh, then the power of this test is[
1− Ft

(
t1−α

(√
nζl, n− 1

)
;
√
nζ, n− 1

)]∧[
Ft
(
tα
(√
nζh, n− 1

)
;
√
nζ, n− 1

)]
.

That is, the power of the test is the minimum of the powers of the two sub-hypothesis
tests.

This combined test is an example of an Intersection Union Test, wherein one is
testing a null hypothesis that can be expressed as the union of multiple testable hy-
potheses. The critical region, wherein one rejects based on the sample statistic (the
Sharpe ratio in this case) is the intersection of critical regions of the separate tests4

[148, 15]
In a similar manner, any of the equality tests of Section 3.5.3 and Section 3.5.5 can

be reformulated as Intersection Union tests, see Exercise 3.23.

3To be fair, Bayesian methods are probably more popular for this task.
4In contrast, in a Union Intersection test, one is testing the null which is the intersection of hypothe-

ses, and the critical region is the union of critical regions. The order of words in the nomenclature
here seems somewhat arbitrary.
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Example 3.5.5 (TOST for signal-noise ratio equivalent to zero). Consider the case of
testing equivalence of the signal-noise ratio to zero by means of a symmetric inter-
val, with ζl = −0.2yr−1/2, ζh = 0.2yr−1/2 at the type I rate of 0.05. Suppose one
observes n = 1008 days of data. Then, the critical region for TOST in this case is
[−0.1479, 0.1479] yr−1/2. We reject the null hypothesis precisely when the Sharpe ratio
falls in this interval. The power of this test, the probability of correctly rejecting the
null when the signal-noise ratio falls within [−0.2, 0.2] yr−1/2 for a type I rate of 0.05,
is shown in Figure 3.3. We see that this test has very high power in this case when
the signal-noise ratio is between about −0.1yr−1/2 and 0.1yr−1/2.

Figure 3.3.: Power of the two-sided test for −0.2yr−1/2 ≤ ζ ≤ 0.2yr−1/2 for the case
of 1008 daily observations is plotted versus the true signal-noise ratio, for
a type I rate of 0.05.

a

3.5.5. Hypothesis tests involving the linear attribution model

Given n observations of the returns and the factors, let x be the vector of returns and
let F be the n × l matrix consisting of the returns of the l factors and a column of
all ones. Again we should stress that the factors must be deterministic, as otherwise
their variability would contribute to extra uncertainty in the test statistics. This
requirement is relaxed in Section 4.4, where we consider random Gaussian returns and
factors. The ordinary least squares estimator for the regression coefficients is expressed
by the ‘normal equations’:

β̂ =
(
F>F

)−1
F>x.

The estimated variance of the error term is σ̂2 =
(
x− Fβ̂

)> (
x− Fβ̂

)
/(n− l).

76



Short Sharpe Course, version v0.2.999;

1 sample test for regression coefficients The classical t-test for regression coeffi-
cients tests the null hypothesis:

H0 : β>v = c versus H1 : β>v > c,

for some conformable vector v and constant c. To perform this test, we construct the
regression t-statistic

t =
β̂>v − c

σ̂

√
v>(F>F)

−1
v
. (3.31)

This statistic should be distributed as a non-central t-distribution with non-centrality
parameter

δ =
β>v − c

σ

√
v>(F>F)

−1
v
,

and n− l degrees of freedom. Thus we reject the null if t is greater than t1−α (n− l),
the 1− α quantile of the (central) t-distribution with n− l degrees of freedom.

1 sample test for ex-factor signal-noise ratio To test the null hypothesis:

H0 : β>v = σc versus H1 : β>v > σc,

for given v and c, one constructs the t-statistic

t =
β̂>v

σ̂

√
v>(F>F)

−1
v
. (3.32)

Under the null this statistic should be distributed as a non-central t-distribution with
non-centrality parameter

δ =
c√

v>(F>F)
−1
v
,

and n− l degrees of freedom. Thus we reject the null if t is greater than t1−α (δ, n− l),
the 1− α quantile of the non-central t-distribution with n− l degrees of freedom and
non-centrality parameter δ.

Equivalently, by definition,

ζ̂g =
β̂
>
v

σ̂
,

thus we should compare ζ̂g to the cutoff value of rt1−α (c/r, n− l) , where r =√
v>(F>F)

−1
v is the rescaling parameter.

77



Short Sharpe Course, version v0.2.999;

Example 3.5.6 (Hypothesis testing, UMD, attribution model). Consider the monthly
relative returns of the Market, SMB, HML, and UMD portfolios, introduced in Exam-
ple 1.2.1. Ignoring the error in the factors, we perform an attribution of the returns
of UMD as some exposure to Market, SMB and HML. The ex-factor Sharpe ratio
of the residual term under this attribution model is computed to be approximately
0.2521mo.−1/2 on n = 1104mo. This actually corresponds to a rather large t statistic.

To test the null hypothesis that the residual mean of UMD is 0.5%mo.−1, we com-
pute the t-statistic to have value of 4.2742, and reject the null at the 0.05 level.

To test the null hypothesis that the ex-factor signal-noise ratio of UMD is equal
to 0.1mo.−1/2, we compute the 0.95 quantile of the non-central t distribution with
non-centrality parameter δ = 3.2671 and n − l = 1100 degrees of freedom. This has
value 4.9221, equivalent to comparing the computed value of the ex-factor Sharpe
ratio to 0.1507mo.−1/2. Since we compute the ex-factor Sharpe ratio to be around
0.2521mo.−1/2, we reject the null at the 0.05 level. a
Example 3.5.7 (Hypothesis testing, Technology ex-factor signal-noise ratio). Consider
the monthly relative returns of the Technology industry portfolio, introduced in Ex-
ample 1.2.3. We align these with the corresponding monthly Market returns, Exam-
ple 1.2.1. Joining the two series, we have 1104 months of data, ranging from Jan 1927
through Dec 2018. We compute the ‘beta’ of Technology to the market to be close
to one, taking value 0.9476. We compute the ex-factor Sharpe ratio to be around
0.0327mo.−1/2.

To test the null hypothesis that the ex-factor signal-noise ratio of Technology is
equal to 0.01mo.−1/2, we compute the 0.95 quantile of the non-central t distribution
with non-centrality parameter δ = 0.3274 and n − l = 1102 degrees of freedom. This
has value 1.9742, leading to cutoff value 0.0603mo.−1/2 > 0.0327mo.−1/2, and we fail
to reject the null at the 0.05 level. a
Example 3.5.8 (Hypothesis testing, VIX reweighting Market returns). Consider the
daily Market returns scaled by inverse previous day VIX weights, as introduced in
Example 2.4.3. Joining the two series, we have 7808 days of data, ranging from 1990-
01-03 through 2020-12-31. The inverse VIX weights have been rescaled to have unit
mean in the sample period. We perform the attribution

x̃t = xtst−1 = β0st−1 + β1 + εt,

and test H0 : β>v = σc with c = 0.3175 yr−1/2 and v> = [1, 1]
>
.

We compute ζ̂g = 0.7599 yr−1/2. To test at the α = 0.05 rate, we compare this to
rt1−α (c/r, n− l) = 0.6131 yr−1/2, and narrowly reject the null hypothesis.

a

3.5.6. † Confidence intervals on the linear attribution model

The hypothesis tests given above can be converted into confidence intervals on the ex-
factor signal-noise ratio. Such confidence intervals can be constructed by inverting the
non-central t distribution, in analogue to the confidence intervals on the signal-noise
ratio discussed in Section 3.5.1.
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Again, we are assuming we observe n-vector of returns x and n× l matrix of asso-
ciated factors F. The returns are Gaussian and independent, but are related to the
factors which we assume here are deterministic. Let v be a given l vector. Then a
1−α confidence interval on the quantity ζg = β>v/σ has endpoints [ζg,l, ζg,u] defined
implicitly by

1− α/2 = Ft

(
ζ̂g/r; ζg,l/r, n− l

)
, α/2 = Ft

(
ζ̂g/r; ζg,u/r, n− l

)
, (3.33)

where ζ̂g = β̂
>
v/σ̂ is the ex-factor Sharpe ratio, r =

√
v>(F>F)

−1
v is a rescaling

parameter, and Ft (x; δ, n− l) is the CDF of the non-central t-distribution with non-
centrality parameter δ and n− l degrees of freedom. (cf. Equation 3.33.)

Additionally by using the connection to the t-distribution as we did in Section 3.5.1,
we can approximate the standard error of the ex-factor Sharpe ratio as

se
(
ζ̂g

)
=df

√
Var

(
ζ̂g

)
≈

√
1 +

ζ2g
2r2(n−l+1)

n− l + 1
, (3.34)

where again r =

√
v>(F>F)

−1
v is the rescaling parameter.

Example 3.5.9 (Confidence intervals, UMD, attribution model). Consider the monthly
relative returns of the Market, SMB, HML, and UMD portfolios, introduced in Ex-
ample 1.2.1. We perform an attribution of the returns of UMD as some exposure to
Market, SMB and HML, treating the latter returns as deterministic. The ex-factor
Sharpe ratio of the residual term under this attribution model is computed to be
approximately 0.2521mo.−1/2 on n = 1104mo. We compute ‘exact’ 95% confidence
intervals on the ex-factor Sharpe ratio as [0.1911, 0.3129] mo.−1/2.

By plugging in the sample value, we estimate the standard error of the ex-factor
Sharpe ratio via Equation 3.34 to be approximately 0.0306mo.−1/2. Then we can
compute an approximate 95% confidence intervals on the ex-factor Sharpe ratio as
[0.1921, 0.312] mo.−1/2. cf. Example 4.4.1. a
Example 3.5.10 (Confidence intervals, Technology ex-factor signal-noise ratio). Con-
sider the attribution of monthly Technology industry returns to those of the Mar-
ket, as described in Example 3.5.7. The ex-factor Sharpe ratio of the residual term
under this attribution model is computed to be approximately 0.0327mo.−1/2 on
n = 1104mo. We compute ‘exact’ 90% confidence intervals on the ex-factor Sharpe
ratio as [−0.0176, 0.0829] mo.−1/2.

By plugging in the sample value, we estimate the standard error of the ex-factor
Sharpe ratio via Equation 3.34 to be approximately 0.0301mo.−1/2. Then we can
compute an approximate 90% confidence intervals on the ex-factor Sharpe ratio as
[−0.0169, 0.0822] mo.−1/2, which contains zero. a

3.5.7. Type I errors, true incidence rate, and false discovery

Caution (On ‘Significance’). Often, in the social sciences and elsewhere, a p-value
smaller than 0.05 is deemed ‘significant’, a word which has come to have no meaning
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other than “exhibiting a p-value smaller than 0.05.”

One should recognize, moreover, that the incidence rate of profitable trading strate-
gies is certainly very low, likely lower than 0.05. In fact, some forms of the Efficient
Markets Hypothesis would posit that the incidence rate is actually zero, and all trading
strategies are type I errors. [107] One should exercise extreme caution, and use Bayes
rule and some amount of guesstimation to avoid false discoveries.

Example 3.5.11 (Testing, incidence, and false discovery rate). Suppose that you sample
randomly from trading strategies where the incidence rate of ‘good’ strategies is 0.001.
If one employs a test for strategies with a 0.001 type I rate, and a power of 0.8, the
false discovery rate will be as high as 0.5553. Which is to say around half of strategies
which pass the significance test will not actually be ‘good’. If, however, the incidence
rate is as low as 10−6, using the same test with the same type I and type II rates, the
false discovery rate jumps to 0.9992; the vast majority of strategies passing the test
are type I errors. a

Unfortunately, the true incidence rate is unknown. Moreover, there is often no real
gold standard for determining whether a trading strategy is in fact ‘good’: even stellar
performance of a strategy in real trading for some fixed time after the analysis was
performed may be the result of a type I error, and not an indication of true goodness.

It should also be noted that this simple model of randomly selecting trading strate-
gies for significance testing is often an inaccurate description of strategy development.
Typically strategies are developed by building off of well known ideas and theories,
sometimes from published studies, and often involves sequential refinement of code
and ideas, typically only accepting changes which improve some metric (e.g., Sharpe
ratio) of backtested returns. Dealing with the false discovery rate under this model of
strategy development is addressed in Chapter 5. See also Exercise 3.28 to Exercise 3.29.

3.5.8. Power and sample size

Consider the test of the hypothesis H0 : ζ = 0, against the alternative H1 : ζ > 0.
Note that this is equivalent to the traditional t-test for zero mean, i.e., for testing
the hypothesis H0 : µ = 0. A power rule ties together the (unknown) true effect size
(ζ), sample size (n), and the type I and type II rates implicitly into a single equation.
Typically, starting from three of these quantities, one infers the fourth, as illustrated
by the following use cases:

1. Suppose you wanted to analyze a pairs trade on a pair of stocks which have only
existed for two years. Is this enough data assuming the signal-noise ratio is 2.0
yr−1/2?

2. Suppose investors in a fund you manage want to ‘see some returns’ within a year
otherwise they will withdraw their investment. What signal-noise ratio should
you be hunting for so that, with probability one half, the actual returns will ‘look
good’ over the next year?

3. Suppose you observe three months of a fund’s returns, and you fail to reject the
null under the one sample t-test. Assuming the signal-noise ratio of the process
is 1.5 yr−1/2, what is the probability of a type II error?
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The power equation can be derived simply. The hypothesis test for H0 : ζ = ζ0
against the alternative H1 : ζ > ζ0 rejects the null precisely when

ζ̂ ≥ SR1−α (ζ0, n) ,

where the quantity on the right hand side is the 1 − α quantile of the Sharpe ratio
distribution with signal-noise ratio ζ0 on sample size n. Now suppose that we wish the
test to have power 1−β when the true signal-noise ratio is ζe. This requires the cutoff
value to be the β quantile when the signal-noise ratio is ζe. Thus the power equation
is

SR1−α (ζ0, n) = SRβ (ζe, n) . (3.35)

Because the quantile function is the inverse CDF, this can be expressed in two other,
equivalent, ways, viz.

1− α = FSR (SRβ (ζe, n) ; ζ0, n) , or, FSR (SR1−α (ζ0, n) ; ζe, n) = β. (3.36)

From one of these two equations, one can infer either α or β as needed. If the goal is
to infer the requisite ζe or n, numerical search using Equation 3.35 is indicated.

Example 3.5.12 (Basic power computations). Suppose you wish to test H0 : ζ =
0yr−1/2 against H1 : ζ > 0yr−1/2, with a 0.05 type I rate. Given 4 years of daily
observations, the significance test rejects when ζ̂ exceeds 0.8232yr−1/2. Supposing
ζ = 1.5yr−1/2, the power of the test is 0.912. a

For sufficiently large sample size (say n ≥ 30), the power law for the t-test of
H0 : ζ = 0 is well approximated by

n ≈ c

ζ2
, (3.37)

where the constant c depends on the type I rate and the type II rates, and whether one
is performing a one- or two-sided test. This relationship was first noted by Johnson
and Welch. [77] Unlike the type I rate, which is traditionally set at 0.05, there is no
widely accepted traditional value of power.

Values of the coefficient c are given for one and two-sided t-tests at different power
levels in Table 3.2. The case of α = 0.05, 1 − β = 0.80 is known as “Lehr’s rule”.
[162, 92]

one.sided two.sided

power = 0.25 0.96 1.68
power = 0.50 2.72 3.86
power = 0.80 6.20 7.87

Table 3.2.: Scaling of sample size with respect to ζ2 required to achieve a fixed power
in the t-test, at a fixed α = 0.05 rate.

Consider now the scaling in the rule n ≈ cζ−2. If the signal-noise ratio ζ is given in
daily units, the sample size will be in days. One annualizes ζ by multiplying by the
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square root of the number of days per year, which downscales n appropriately. That
is, if ζ is quoted in annualized terms, this rule of thumb gives the number of years
of observations required. This is very convenient since we usually think of ζ and ζ̂ in
annualized terms.

The following rule of thumb may prove useful:

Power rule

The number of years required to reject non-zero mean with power of one half
is around 2.7/ζ2.

The mnemonic form of this is “e = nz2”. Note that Euler’s number appears here

coincidentally, as it is nearly equal to
[
Φ−1 (0.95)

]2
. The relative error in this approx-

imation for determining the sample size is shown in Figure 3.4, as a function of ζ; the
error is smaller than one percent in the tested range.

Figure 3.4.: The percent error of the power mnemonic e ≈ nζ2 is plotted versus ζ.

The power rules are sobering indeed. Suppose you were a hedge fund manager whose
investors threatened to perform a one-sided t-test after one year. If your strategy’s
signal-to-noise ratio is less than 1.6492yr−1/2 (a value which should be considered
“very good”), your chances of ‘passing’ the t-test are less than fifty percent.

3.5.9. † Frequentist prediction intervals

Suppose, based on a sample of size n1, you observed ζ̂1 for some asset stream. What
can you expect of the Sharpe ratio for n future observations? Though this is a question
similar to that answered by the power rules given in Section 3.5.8, the power rules are
deficient because 1. they rely on the unknown population parameter, ζ, when only a
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noisy estimate is available, and 2. they make statements within the dichotomy of type
I and type II errors. To correct this, one may use a Frequentist prediction interval,
which is an interval which, conditional on ζ̂1 and n1, contains the Sharpe ratio of those
future observations with some specified probability, under replication.5 The “under
replication” clause here means that if you repeated the full experiment of generating
ζ̂1, n1, constructing the prediction interval, then observing ζ̂2, you should find that ζ̂2
is within the interval with the given probability.

Suppose you observe ζ̂1 on n1 observations of normally distributed i.i.d. returns,
then observe ζ̂2 on n2 observations from the same returns stream. We can write

ζ̂1

√
χ2

1/ (n1 − 1) + Z1/
√
n1 = ζ = ζ̂2

√
χ2

2/ (n2 − 1) + Z2/
√
n2, (3.38)

where the Zi ∼ N (0, 1), and the χ2
i ∼ χ2 (ni − 1) are independent. If there were an

exact two-sample test for equal signal-noise ratios on independent samples, one would
use that for this problem. Instead an approximation must be used.

Let ζ̂i = ζ + siεi, for i = 1, 2 where si is the standard error of the Sharpe ratio,
ζ̂i based on ni observations, and εi is a zero mean, unit variance random variable.
Usually we have si = s/

√
ni. Then if the εi are independent, we have

ζ̂2 = ζ̂1 +

√
1 +

n1

n2

s
√
n1
ε. (3.39)

Thus the prediction interval around ζ̂1 is inflated by a factor of

c =

√
1 +

n1

n2
(3.40)

compared to the equivalent confidence interval.

Example 3.5.13 (Prediction intervals, the Market). Consider the monthly relative re-
turns of the Market, introduced in Example 1.2.1. The Sharpe ratio on n1 = 1128mo.
was computed to be ζ̂1 = 0.1772mo.−1/2. For n2 = 12mo., the 95% prediction interval
on ζ̂2 was computed, via the normal approximation and standard error of Equation 3.24
to be approximately [−0.4, 0.75] mo.−1/2.

For comparison, if one simply assumes that ζ = ζ̂1 = 0.1772mo.−1/2, then the 95%
prediction interval for the Sharpe ratio on n2 = 12mo. is [−0.42, 0.86] mo.−1/2. a
Example 3.5.14 (Prediction interval coverage, the Market). Consider the daily relative
returns of the Market, introduced in Example 1.2.1. For each odd-numbered year
from 1927 through 2019, the Sharpe ratio is computed using daily returns in the odd
numbered year. Then 0.9 prediction intervals for Sharpe ratio are constructed based
on the number of days in the following (even-numbered) year. The realized Sharpe
ratio is then computed on the following even-numbered year, and compared to the
prediction interval. The empirical coverage is approximately 0.81, much smaller than

5Typically ‘prediction interval’ is reserved for an interval around a single future observation, while
‘tolerance interval’ is used for multiple future observations. Our application is somewhat between
these two.
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Figure 3.5.: The normalized Sharpe ratio of daily returns of the Market in even-
numbered years are plotted, normalized to the 0.9 prediction interval com-
puted using the previous year’s Sharpe ratio. The normalization is such
that a value of −1 corresponds to the lower limit of the prediction interval,
1 to the upper limit. The empirical coverage is approximately 0.81. See
Example 3.5.14.

the nominal coverage. Thus the prediction intervals are too conservative, likely due to
omitted variable bias or volatility clustering.

In Figure 3.5, the realized Sharpe ratio is plotted, for even-numbered years, rela-
tivized to the prediction intervals, so that a value of 1 corresponds to the realized
Sharpe ratio exactly equaling the upper limit of the prediction interval, and a −1 cor-
responds to the lower limit. There are 9 values falling outside the prediction intervals.

To diagnose the conservative prediction intervals, the daily returns were permuted,
and the experiment repeated: prediction intervals on Sharpe ratio computed using
odd ‘years’, then compared to ‘realized’ Sharpe ratio in even ‘years’. Repeating this
process 100 times, the empirical coverage is approximately 0.89, equal to the nominal
value. Thus it appears that non-normality and the standard error approximation are
not to blame for the poor coverage, rather autocorrelation of returns or volatility in
actual market returns. a

ex-factor Sharpe ratio prediction intervals

We note that this approximate form only requires the computation and inflation of
a standard error, and thus could be applied to computing prediction intervals on the
ex-factor Sharpe ratio. However, the standard error of Equation 3.34 does not take
into account randomness of the factors Fi, and may not deliver faithful prediction
intervals. We attempt to correct for this in Section 4.5.2.
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Example 3.5.15 (Prediction intervals, Technology ex-factor signal-noise ratio). Con-
sider the attribution of monthly Technology industry returns to those of the Market,
as described in Example 3.5.7. As in Example 3.5.14, for each odd-numbered year
from 1927 through 2017, the ex-factor Sharpe ratio is computed using 12 monthly
returns in the odd numbered year. Then 0.9 prediction intervals for ex-factor Sharpe
ratio are constructed for the following (even-numbered) year. Prediction intervals are
constructed by plugging in the observed ex-factor Sharpe ratio into Equation 3.34 to
compute a standard error, then multiplying by

√
2.

The realized ex-factor Sharpe ratio is then computed on the following even-numbered
year, and compared to the prediction interval. The empirical coverage is approximately
0.7, much smaller than the nominal coverage. Again the prediction intervals are too
conservative, although in this case one suspects the poor coverage may be due to the
rough approximation of Equation 3.34, the small sample size (12 monthly returns in-
sample and out-of-sample), or due to autocorrelation, or correlated heteroskedasticity,
etc.

To test this, as in Example 3.5.14 we permute the monthly paired returns of Tech-
nology and the Market and repeat the experiment, computing the ex-factor Sharpe
ratio on the odd (shuffled) ‘years’ and comparing them to realized ex-factor Sharpe
ratio on even ‘years’. Repeating this process 100 times with different shufflings of
the data, the empirical coverage is approximately 0.88, much closer to the nominal
value. We blame autocorrelation of returns or volatility for the poor performance of
the prediction intervals, and not non-normality of returns, small sample size, or the
asymptotic approximation. a

3.6. † Likelihoodist inference on the signal-noise ratio

We will now consider the likelihoodist’s view of the Sharpe ratio. While philosophically
distinct from the frequentist’s view, the likelihoodist will arrive at similar conclusions
to the frequentist.

We start with the likelihood of ζ given ζ̂. This is merely the density, given in
Equation 3.7, but expressed as a function of ζ:

LSR
(
ζ
∣∣∣ζ̂, n) =df fSR

(
ζ̂; ζ, n

)
.

The expression for the density of the Sharpe ratio given in Equation 3.7 suffices
to point out there is unlikely to be a simple closed form for the maximum likelihood
estimate, MLE. To find the MLE, take the derivative of the likelihood:

∂LSR
(
ζ
∣∣∣ζ̂, n)

∂ζ
=

√
n/2√

2πΓ
(
n−1

2

) ∫ ∞
0

n
(
ζ̂
√
x− ζ

)(x
2

)n−2
2

exp

−x+ n
(
ζ̂
√
x− ζ

)2

2

 dx.
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Then the MLE satisfies

ζ̂MLE =

ζ̂
∫∞

0

√
x
(
x
2

)n−2
2 exp

(
−x+n(ζ̂

√
x−ζ̂MLE)

2

2

)
dx

∫∞
0

(
x
2

)n−2
2 exp

(
−x+n(ζ̂

√
x−ζ̂MLE)

2

2

)
dx

. (3.41)

Thus ζ̂MLE/ζ̂ is the ratio of two integrals of positive functions, and is a positive number.

Therefore the MLE estimate has the same sign as ζ̂. Unlike the unbiased estimator,
which is smaller than ζ̂ when the latter is positive, it appears that the MLE is often
larger than ζ̂ in this case; see Example 3.6.1.

For the purposes of estimating the likelihood, or the MLE, however, we are likely
better off using off-the-shelf implementations of the density of the non-central t-
distribution, and then finding the maximum using e.g., a golden section search in
the neighborhood of ζ̂.

Figure 3.6.: The log density of ζ̂ = 0.9 yr−1/2 is plotted as a function of the signal-noise
ratio, for n = 253 daily observations.

Example 3.6.1 (MLE). Suppose, based on 253 days of Gaussian log returns, you

observe ζ̂ = 0.9 yr−1/2. The likelihood of ζ̂ as a function of ζ is plotted in Fig-
ure 3.6. The MLE is not equal to ζ̂, rather it takes a slightly larger value. We have

100%
(
ζ̂MLE

ζ̂
− 1
)
≈ 0.099%. a

Example 3.6.2 (MLE, Market returns). Consider the monthly relative returns of the

Market, introduced in Example 1.2.1. We compute ζ̂ = 0.6138yr−1/2 for n = 1128mo.
The MLE for ζ is found to be approximately ζ̂ = 0.6139yr−1/2. a
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3.6.1. Likelihood ratio test

To test H0 : ζ = ζ0 versus an unrestricted alternative, find the MLE, then compute
the test statistic

D = −2 log
LSR

(
ζ0

∣∣∣ζ̂, n)
LSR

(
ζMLE

∣∣∣ζ̂, n) = −2 log
fSR

(
ζ̂; ζ0, n

)
fSR

(
ζ̂; ζMLE, n

) . (3.42)

The unrestricted model has one extra degree of freedom. For large n, under Wilk’s
theorem, we expect D to converge to a chi-square random variable with one degree of
freedom. See Example 3.6.3.

Example 3.6.3 (LRT, simple example). Suppose, based on 1518 days of hypothetical

Gaussian log returns, you observe ζ̂ = 1.5 yr−1/2. To test H0 : ζ = 0.5 yr−1/2 against
the unrestricted alternative, the log likelihood under H0 is computed as −3.0136; the
log likelihood for the MLE is −0.0254. The test statistic is then D = 5.9764. The
probability that a chi-square with one degree of freedom takes a value this large is
around 0.0145, so we may reject H0 with high confidence. a

To test H0 : ζ = ζ0 versus H1 : ζ = ζ1, compute the test statistic

Λ =
LSR

(
ζ0

∣∣∣ζ̂, n)
LSR

(
ζ1

∣∣∣ζ̂, n) . (3.43)

When Λ is small, smaller than some cutoff, we prefer H1; when it is large, we prefer
H0. To use this test statistic in a null hypothesis test, one must find the cutoff value
to reject H0 in favor of H1, with the cutoff value chosen to achieve the desired type I
rate.

Note that the density of the Sharpe ratio is that of the non-central t distribution,

up to scaling: LSR
(
ζ
∣∣∣ζ̂, n) =

√
nLt

(√
nζ
∣∣∣√nζ̂, n− 1

)
. Thus

Λ =
Lt
(√

nζ0

∣∣∣√nζ̂, n− 1
)

Lt
(√

nζ1

∣∣∣√nζ̂, n− 1
) .

Kruskal showed that this ratio is monotonic in
√
nζ̂, and thus it is monotonic in ζ̂. [84]

That is, supposing without loss of generality, that ζ0 < ζ1, the statistic Λ is decreasing
in ζ̂. Thus to find a cutoff which achieves the desired type I rate under H0, we take
the 1 − α quantile under H0, and plug it in as the Sharpe ratio. That is, the cutoff
value is

Λc =
fSR (SR1−α (ζ0, n) ; ζ0, n)

fSR (SR1−α (ζ0, n) ; ζ1, n)
, (3.44)

where SRq (ζ0, n) is the q quantile of the Sharpe ratio for the given signal-noise ratio
and number of observations. This we can find by using off-the-shelf implementations
of the quantile function of the non-central t distribution. See Example 3.6.4.
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The upshot of all this is that the identity of H1 is largely irrelevant (other than
that it posits a larger signal-noise ratio than the null hypothesis, rather than a smaller
one). There is, in fact, no reason to compute this likelihood ratio, and we reject H0 in

favor of any larger signal-noise ratio whenever ζ̂ > SR1−α (ζ0, n). This is merely the
frequentist test for H0 presented in Section 3.5.3. However, by the Neyman-Pearson
lemma, the likelihood ratio test is the uniformly most powerful test of size α for H0

against the set of alternatives ζ > ζ0. [11] Since the frequentist test rejects exactly
when the likelihood ratio test does, it, too, is the UMP for H0.

Example 3.6.4 (LRT and Hypothesis testing). Suppose you wish to test H0 : ζ =
0.25 yr−1/2 versus H1 : ζ = 1.75 yr−1/2 for a Sharpe ratio observed on 1518 days of
Gaussian log returns. To achieve a type I rate of α = 0.005, the 1− α quantile under
H0 is computed as SR1−α (ζ0, n) = 1.3036 yr−1/2. The cutoff value for the likelihood
ratio is Λc = 0.0656. a
Example 3.6.5 (LRT, Market returns). Consider the monthly relative returns of the
Market, introduced in Example 1.2.1. Suppose you wish to test H0 : ζ = 0.25 yr−1/2

versus H1 : ζ = 0.75 yr−1/2 for ‘the Market’, assuming normality of returns. To achieve
a type I rate of α = 0.01, the 1−α quantile under H0 is computed as SR1−α (ζ0, n) =

0.4913 yr−1/2. Since we observe ζ̂ = 0.6138yr−1/2, we reject H0 at the 0.01 level.
As noted above, the identity of H1 is irrelevant, other than that it posits a larger
signal-noise ratio than H0. a

3.7. † Bayesian inference on the signal-noise ratio

Now we shall consider the Bayesian’s view of the Sharpe ratio. In the traditional de-
velopment of Bayesian inference on a Gaussian distribution with unknown parameters,
prior and posterior distributions are considered on the mean and variance, µ and σ2,
or the mean and precision, the latter defined as σ−2. [56, 114] It is a simple task to
reformulate these in terms of the signal-noise ratio, ζ, and some transform of, say, the
variance.

One commonly used conjugate prior is the ‘Normal-Inverse-Gamma’, under which
one has an unconditional inverse gamma prior distribution on σ2 (this is, up to scaling,
one over a chisquare), and, conditional on σ, a normal prior on µ. [56, 3.3] These can
be stated as

σ2 ∝ Γ−1
(
m0/2,m0σ

2
0/2
)
,

µ
∣∣σ2 ∝ N

(
µ0, σ

2/n0

)
,

(3.45)

where σ2
0 ,m0, µ0 and n0 are the hyper-parameters. The density function for the inverse

gamma law is given by

FΓ−1 (x; a, b) =
ba

Γ (a)
x−a−1e−

b
x . (3.46)

Under this formulation, an noninformative prior corresponds to m0 = 0 = n0.
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After observing n i.i.d. draws from a normal distribution, N (µ, σ), say
x1, x2, . . . , xn, let µ̂ and σ̂ be the sample estimates from Equation 2.2. The poste-
rior is then

σ2 ∝ Γ−1
(
m1/2,m1σ

2
1/2
)
,

µ
∣∣σ2 ∝ N

(
µ1, σ

2/n1

)
,

(3.47)

where

n1 = n0 + n, µ1 =
n0µ0 + nµ̂

n1
, (3.48)

m1 = m0 + n, σ2
1 =

m0σ
2
0 + (n− 1) σ̂2 + n0n

n1
(µ0 − µ̂)

2

m1
. (3.49)

This commonly used model can be trivially modified to one on the variance and
the signal-noise ratio, where the former is a nuisance parameter. Transforming Equa-
tion 3.45, we arrive at

σ2 ∝ Γ−1
(
m0/2,m0σ

2
0/2
)
,

ζ
∣∣σ2 ∝ N

(µ0

σ
, 1/n0

)
,

(3.50)

Marginalizing out σ2, we arrive at a lambda prime prior (cf. Section 3.4)

√
n0ζ ∝ λ′ (

√
n0ζ0,m0) , (3.51)

where ζ0 = µ0/σ0. The marginal posterior can be written as

√
n1ζ ∝ λ′ (

√
n1ζ1,m1) , (3.52)

where

n1 = n0 + n, ζ1 =
n0ζ0σ0 + nζ̂σ̂

n1σ1
, (3.53)

m1 = m0 + n, σ2
1 =

m0σ
2
0 + (n− 1) σ̂2 + n0n

n1

(
ζ0σ0 − ζ̂σ̂

)2

m1
, (3.54)

where ζ̂ = µ̂/σ̂.
One is tempted to rearrange the equations to try to achieve an update formula that

relies on ζ̂ alone. However, since ζ̂ follows, up to scaling, a non-central t distribution,
which is not part of the exponential family, there is no hope of finding a conjugate
prior for it. [56]

Example 3.7.1 (Basic Bayesian update). Suppose your prior is ζ0 = 0.0154day−1/2,

n0 = 10day, σ0 = 0.013day−1/2, m0 = 100day. One then observes n = 252 days of
returns with ζ̂ = 0.0088day−1/2 and σ̂ = 0.017day−1/2. The posterior is then ζ1 =
0.0095day−1/2, n1 = 262day, σ1 = 0.0159day−1/2, m1 = 352day. 50000 samples were
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Figure 3.7.: 50,000 samples were drawn from both the prior and posterior distributions
for Example 3.7.1. The empirical densities are then plotted.

drawn from the prior and posterior distributions; their empirical densities are plotted
in Figure 3.7. The signal-noise ratio is plotted in units of day−1/2. Thus while the
evidence reduces the uncertainty in the prior, the posterior still contains considerable
doubt regarding profitability. a

Example 3.7.2 (Bayesian update, Market returns). Consider the monthly relative re-
turns of the Market, introduced in Example 1.2.1. Suppose your prior (constructed
prior to Jan 1927!) was ζ0 = 0.125mo.−1/2, n0 = 12mo., σ0 = 4%mo.−1/2, m0 = 72mo.

One then observes n = 1128 months of returns with ζ̂ = 0.1772mo.−1/2 and σ̂ =
5.3544%mo.−1/2. The posterior is then ζ1 = 0.1788mo.−1/2, n1 = 1140mo., σ1 =
5.2808%mo.−1/2, m1 = 1200mo. a

3.7.1. Bayesian inference on the ex-factor signal-noise ratio

The unattributed model of the previous section can be generalized to the attribution
case by following the standard Bayesian regression analysis. Again, we are assuming
that the factors f t are deterministic. The Bayesian regression prior is typically stated
as

σ2 ∝ Γ−1
(
m0/2,m0σ

2
0/2
)
,

β
∣∣σ2 ∝ N

(
β0, σ

2Λ0
−1
)
,

(3.55)

where σ2
0 ,m0 are the Bayesian hyperparameters for the coefficient and degrees of

freedom of the error term, while β0 is that for the regression coefficient, and Λ0

parametrizes uncertainty in the regression coefficient.
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As in Section 3.1.2, assume on has n observations of f t, stacked row-wise in the
n× l matrix, F, and the corresponding returns stacked in vector x. As in Equation 3.3,

define β̂ =df

(
F>F

)−1
F>x and σ̂ =df

√(
x− Fβ̂

)> (
x− Fβ̂

)
(n− l)−1

. The posterior

distribution is

σ2 ∝ Γ−1
(
m1/2,m1σ

2
1/2
)
,

β
∣∣σ2 ∝ N

(
β1, σ

2Λ1
−1
)
,

(3.56)

where

Λ1 = Λ0 + F>F, β1 = Λ1
−1
(

Λ0β0 + F>Fβ̂
)
, (3.57)

m1 = m0 + n, σ2
1 =

m0σ
2
0 + (n− l) σ̂2 + β̂

>
F>Fβ̂ + β0

>Λ0β0 − β1
>Λ1β1

m1
.

(3.58)

A non-informative prior corresponds to Λ0 = 0,β0 = 0, σ2
0 = 0,m0 = 0.

We can collapse the prior or posterior ‘along’ the direction v via

σ2 ∝ Γ−1
(
mi/2,miσ

2
i /2
)
,

v>β
∣∣σ2 ∝ N

(
v>βi, σ

2v>Λi
−1v

)
,

(3.59)

where i = 0 for the prior and i = 1 for the posterior. As in the unattributed model,
marginalizing out σ2, we have a lambda prime prior and posterior:

(
v>Λi

−1v
)−1/2 β>v

σ
=
(
v>Λi

−1v
)−1/2

ζg ∝ λ′
((
v>Λi

−1v
)−1/2

ζg,i,mi

)
, (3.60)

where ζg,i =df βi
>v/σi.

Example 3.7.3 (Bayesian update, UMD returns, attribution model). Consider the
monthly relative returns of UMD, under an attribution against intercept, Market,
SMB and HML, using the data introduced in Example 1.2.1. Let β (and thus the
columns of F) be ordered by intercept (the idiosyncratic term), then SMB, then HML.

To keep track of the units, let U = Diag
(

[mo.,%,%,%]
>
)

be the matrix of units.

Suppose your prior (constructed prior to Jan 1927!) was

Λ0 = U


60.00 0.00 0.00 0.00
0.00 12.00 0.00 0.00
0.00 0.00 12.00 0.00
0.00 0.00 0.00 12.00

U,
β0 = U−1[0.5, 0, 0, 0]

>
%, m0 = 12mo., σ0 = 3%mo.−1/2.
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One then observes n = 1128 months of returns with

F>F = U


1128.00 1070.17 234.60 363.32
1070.17 33325.49 6435.78 5419.69
234.60 6435.78 11492.63 1689.78
363.32 5419.69 1689.78 13984.86

U,
β̂ = U−1[1.0152,−0.2173,−0.0499,−0.4691]

>
%, n = 1128mo., σ̂ = 4.1219%mo.−1/2.

The posterior is then

Λ1 = U


1188.00 1070.17 234.60 363.32
1070.17 33337.49 6435.78 5419.69
234.60 6435.78 11504.63 1689.78
363.32 5419.69 1689.78 13996.86

U,
β1 = U−1[0.9882,−0.2165,−0.0499,−0.4684]

>
%, m1 = 1140mo., σ1 = 4.1064%mo.−1/2.

The ex-factor signal-noise ratio for idiosyncratic returns under the attribution model
corresponds to v = U [1, 0, 0, 0]

>
. Thus the posterior belief on ζg, marginalizing out σ,

can be expressed as

33.9246mo.1/2%−1ζg ∝ λ′ (8.164, 1140) .

a

3.7.2. Credible intervals on the signal-noise ratio

One can construct credible intervals on the signal-noise ratio based on the posterior,
so-called posterior intervals, via quantiles of the lambda prime distribution. [56] For
example, a (1− α) credible interval on ζ is given by

1
√
n1

[
λ′α/2 (

√
n1ζ1,m1) , λ′(2−α)/2 (

√
n1ζ1,m1)

]
. (3.61)

For the case of noninformative priors (corresponding to n0 = m0 = 0), this is equivalent
to

1√
n

[
λ′α/2

(√
n

√
n

n− 1
ζ̂, n

)
, λ′(2−α)/2

(√
n

√
n

n− 1
ζ̂, n

)]
(3.62)

This is equivalent to the Frequentist confidence intervals given in Equation 3.22, but
replacing n for n − 1 in the degrees of freedom for σ. Asymptotically, the Bayesian
credible interval for an noninformed prior is the same as the Frequentist confidence
interval. Alternatively, a Bayesian quant could argue that her Frequentist cousin is a
confused Bayesian with prior n0 = 0,m0 = −1, σ2

0 = 0.
For the ex-factor signal-noise ratio, the (1− α) credible interval on ζg is

1√
v>Λ1v

[
λ′α/2

(√
v>Λ1vζg,1,m1

)
, λ′(2−α)/2

(√
v>Λ1vζg,1,m1

)]
. (3.63)
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Example 3.7.4 (Noninformative prior, Market returns). Consider the monthly rel-
ative returns of the Market, introduced in Example 1.2.1. Starting from a non-
informative prior (n0 = m0 = 0mo.), one computes n = 1128, ζ̂ = 0.1772mo.−1/2

and σ̂ = 5.3544%mo.−1/2. The posterior is then ζ1 = 0.1773mo.−1/2, n1 = 1128mo.,
σ1 = 5.352%mo.−1/2, m1 = 1128mo. From the posterior, a 95% credible in-
terval on ζ is [0.4102, 0.8177] yr−1/2. The Frequentist 95% confidence interval is
[0.4099, 0.8174] yr−1/2. The two agree to three decimal places. a
Example 3.7.5 (Noninformative prior, UMD returns, attribution model). Consider the
monthly relative returns of UMD, under an attribution against intercept, Market,
SMB and HML, using the data introduced in Example 1.2.1. Letting β be ordered by
intercept (the idiosyncratic term), then SMB, then HML, for a noninformative prior,
the posterior belief on ζg, marginalizing out σ, can be expressed as

33.0283mo.1/2%−1ζg ∝ λ′ (8.1492, 1128) .

From the posterior, a 95% credible interval on ζg is [0.1865, 0.3069] mo.−1/2. Com-
pare this to the frequentist confidence intervals, found in Example 3.5.2 to be
[0.186, 0.3065] mo.−1/2. a

3.7.3. Posterior prediction intervals on the Sharpe ratio

A Bayesian prediction interval is an interval which contains some fixed proportion of
our posterior belief about the Sharpe ratio of some future observations. This is very
similar to the Frequentist prediction interval introduced in Section 3.5.9, but dances
around the issues of frequency and belief that separate the Frequentist and Bayesian.

As in the Frequentist case, our belief is that ζ2, based on n2 future observations, will
be drawn from a compound non-central Sharpe ratio distribution with non-centrality
parameter drawn from the posterior distribution. Effectively this is a ‘t of lambda
prime’ distribution, as was the case in the Frequentist setting. We can summarize this
as

√
n1ζ ∝ λ′ (

√
n1ζ1,m1) ,

√
n2ζ̂2 |ζ ∝ t (

√
n2ζ, n2 − 1) ,

(3.64)

although this jumbles up the usual notation, since ζ̂2 is a quantity one can eventually
observe, not a population parameter. Nevertheless, the intent of these equations should
be clear. As a consequence, one could find posterior prediction intervals, by using the
the upsilon distribution. [126] However, code to compute quantiles or the cumulative
distribution of the upsilon distribution is not widely available. Instead the prediction
interval may be more easily found via direct Monte Carlo simulations: first draw a value
of ζ from the posterior, then simulate a value of ζ̂2 from a Sharpe ratio distribution
with that signal-noise ratio. That is, simulate ζ, then ζ̂2 using the generative forms
from Equation 3.64.

Example 3.7.6 (Predictive intervals, Market returns). Consider the monthly rela-
tive returns of the Market, introduced in Example 1.2.1. Based on a prior of
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ζ0 = 0.125mo.−1/2, n0 = 12mo., σ0 = 4%mo.−1/2, m0 = 72mo., one observes n = 1128
months of returns with ζ̂ = 0.1772mo.−1/2 and σ̂ = 5.3544%mo.−1/2. The posterior is
then ζ1 = 0.1788mo.−1/2, n1 = 1140mo., σ1 = 5.2808%mo.−1/2, m1 = 1200mo.

For n2 = 12mo., the 95% prediction interval on ζ̂2 was computed, by 106 Monte
Carlo simulations, to be approximately [−0.43, 0.87] mo.−1/2. Compare this to the
Frequentist prediction interval found in Example 3.5.13. a
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Exercises
Ex. 3.1 Units What are the units of the t-statistic?

Ex. 3.2 t form for ex-factor Sharpe ratio Derive the equivalents of Equa-
tion 3.5 for the ex-factor Sharpe ratio.

Ex. 3.3 Form of the t statistic Suppose that Z ∼ N
(
µ0, σ

2/ν
)

indepen-
dently of (ν − 1)X/σ2 ∼ χ2 (ν − 1). Show that

√
ν
Z − µ1√

X
∼ t
(√

ν
µ0 − µ1

σ
, ν − 1

)
.

Ex. 3.4 Regarding c4 The statistical quality control literature defines

c4 (n) =df

√
2

n− 1

Γ
(
n
2

)
Γ
(
n−1

2

) .
Prove that dn = n−1

n−2c4 (n) , for dn defined as in Equation 3.12.

Ex. 3.5 ‘Robust’ tests The t test tests the null hypothesis of zero mean re-
turn. In social sciences it is often argued that the median is a more representative
measure of some effect. Why would it be a bad idea to rely on tests of median return?

Ex. 3.6 Probability of a loss Suppose you observe n observations of i.i.d.
Gaussian log returns x ∼ N (µ, σ).

1. Show that the probability of a loss (i.e.,
∑
i xi ≤ 0) is Φ (−

√
nζ), where Φ (x)

is the probability distribution function of the normal distribution.

2. Show that, as a consequence, fSR (0; ζ, n) = Φ (−
√
nζ).

* 3. Is the function fSR (x; ζ, n)− Φ (x−
√
nζ) monotonic in x?

4. Plot the probability of a loss over one year (n = 253 days) when ζ ranges from
0.5yr−1/2 to 2.5yr−1/2, in logscale. Estimate a power law for the probability of
a loss.

Ex. 3.7 Boring Frequentist Computations Suppose you observe n daily
observations of i.i.d. Gaussian log returns x ∼ N (µ, σ).

1. Suppose that ζ = 0.1day−1/2. Compute the probability of observing ζ̂ ≥
0.02day−1/2 given n = 500.

2. Suppose that ζ = 0.1day−1/2. Compute the expected value of ζ̂ given n = 500.

3. Supposing that ζ̂ = 0.02day−1/2 based on n = 500 days of observations. Com-
pute 95% confidence intervals on ζ based on Equation 3.25. Compute them
again based on Equation 3.27.
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Ex. 3.8 More Boring Frequentist Computations

1. Compute the ex-factor Sharpe ratio of the Consumer industry returns using an
attribution against the Fama French Market, SMB, HML, and UMD returns.
You can easily join the data together in R as follows:

Test the hypothesis that the ex-factor signal-noise ratio is zero against the
alternative that it is larger than zero.

2. Repeat that test using the Manufacturing industry returns.

Ex. 3.9 Frequentist approximate test for equal signal-noise ratio
Derive the normal approximation to the hypothesis test of equality of signal-noise
ratios for two independent samples.

1. Apply your procedure to test the null hypothesis that the returns of the Market
have the same signal-noise ratio before and since January 1970.

Ex. 3.10 Lambda prime Consider the lambda prime distribution defined in
Section 3.4.

1. Show that the probability distribution of the non-central t distribution is the
survival function of the lambda prime, and vice versa, i.e., Equation 3.20.

2. Show that the lambda prime is the confidence distribution associated with the
non-central t distribution. That is, show that if t ∼ t (δ, ν), then Fλ′ (δ; t, ν) ∼
U ([0, 1]). [152, 175]

3. Derive the probability density function of the lambda prime distribution. (Hint:
it is a convolution of a Nakagami distribution density with a normal density.)

4. How does the PDF of the lambda prime relate to the PDF of the non-central
t?

5. Suppose t ∼ t (δ, ν). Is it the case that the MLE of δ conditional on observed t
is equal to the mode of the lambda prime distribution with parameter t and ν
degrees of freedom?

Ex. 3.11 CDF of Sharpe ratio Write code to compute the cumulative dis-
tribution function of the Sharpe ratio. It should take observed Sharpe ratio, ζ̂, the
signal-noise ratio, ζ, and sample size n, and return the CDF. A simple test of your
code is to randomly generate ζ̂ values for a fixed value of ζ and n, apply your CDF
function to those ζ̂ values, and Q-Q plot them against the uniform.

Ex. 3.12 CDF of the lambda prime Write code to compute the CDF of the
lambda prime distribution. Test it via randomly generating variates.

Ex. 3.13 Moments of Sharpe ratio Given 1000 daily observations of i.i.d.
normal log returns with ζ = 0.06 day−1/2, compute the first four non-central moments
of ζ̂ computed in daily units. Also compute the variance, skewness, and excess kurtosis
of ζ̂.
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Ex. 3.14 Up-sampling Suppose you are given 260 weekly observations of i.i.d.
normal log returns with ζ = 0.10 wk.−1/2.

1. Compute the first four non-central moments of ζ̂, computed in weekly units.

2. Compute the variance, skewness, and excess kurtosis of ζ̂, computed in weekly
units where appropriate.

3. Suppose you upsample to daily units, thus k = 5. Compute the percent changes
in mean, variance, skewness, and excess kurtosis of

√
kζ̂k versus ζ̂.

Ex. 3.15 Up-sampling FF3 Consider the monthly and daily returns of the
Fama-French factors, available in aqfb.data. [128] Compute the Sharpe ratio for the
three portfolios, Market, SMB, and HML, for the monthly and the daily returns.

Ex. 3.16 HFT: not about sample size It is often clumsily argued that high
frequency trading is to be preferred to daily frequency trading ‘because the sample
size is larger.’ Critique this argument.

Ex. 3.17 Standard error of the Sharpe ratio Derive the approximation of
Equation 3.23.

Ex. 3.18 Empirical verification of hypothesis tests under the null
Via Monte Carlo simulation verify the frequentist tests of Section 3.5.3 by drawing
samples under the null and computing p-values. Perform 105 simulations for each of
the following:

1. Confirm the one sample test for signal-noise ratio. Draw n = 1024day daily
returns from a normal random generator with ζ = 0.1day−1/2. Confirm that√
nζ̂ ∼ t (

√
nζ, n− 1). One easy way to perform this task is to compute p-

values and confirm they are uniformly distributed by Q-Q plotting them against
a uniform law, or by plotting their empirical CDF.

2. Confirm the independent two sample test for equality of signal-noise ratio. For
i = 1, 2, draw ni = 512i day daily returns from two independent normal asset
streams, both with ζ = 0.075day−1/2. Let the population mean of the ith

population be µi = i× 10−4day−1.

3. Confirm the independent k sample test for an equation on signal-noise ratio.
For i = 1, . . . , 7, draw ni = 512i day daily returns from seven independent
normal asset streams, with the signal-noise ratio of the ith population ζi =
(0.01 + 0.01i)day−1/2. Let the population mean of the ith population be µi =

i× 10−4day−1. The null hypothesis being tested is that
∑
i ζi = 0.35day−1/2.

Ex. 3.19 Verification of hypothesis tests under the alternative Via
Monte Carlo simulation, check that the frequentist tests of Section 3.5.3 can reject
the null, by drawing samples under an alternative hypothesis, computing p-values,
and confirming that the p-values are not uniform. (cf. Exercise 3.18.) Perform 105

simulations for each of the following:

1. Check the one sample test for signal-noise ratio. Draw n = 1024day daily
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returns from a normal random generator with ζ = 0.25day−1/2. Check the
hypothesis H0 : ζ = 0 against the alternative H1 : ζ > 0. Again, compute
p-values and Q-Q plot them against a uniform law.

2. Check the independent two sample test for equality of signal-noise ratio. For
i = 1, 2, draw ni = 512 iday daily returns from two independent normal asset
streams, with ζi = 0.05 iday−1/2. Let the population mean of the ith population
be µi =

√
i × 10−4day−1. Check the hypothesis H0 : ζ1 = ζ2 against the

alternative H1 : ζ1 < ζ2.

3. Check the independent k sample test for an equation on signal-noise ratio.
For i = 1, . . . , 7, draw ni = 512 i day daily returns from seven independent
normal asset streams, with ζi = (0.01 + 0.01 i)day−1/2. Let the population
mean of the ith population be µi = i × 10−4day−1. Check the hypothesis
H0 :

∑
i ζi = 0 day−1/2 against the alternative H1 :

∑
i ζi > 0 day−1/2.

Ex. 3.20 Rescaling parameter in linear attribution model The rescal-

ing factor r =

√
v>(F>F)

−1
v appears often in testing of the ex-factor Sharpe ratio,

in Section 3.5.6. The factor r appears in the denominator, while in the analagous
results for the Sharpe ratio, we often instead see

√
n in the numerator. We wish to

show that r is “morally equivalent” to n−1/2.

1. For the case where the linear attribution model expresses Sharpe’s model, we
take F to be the n × 1 matrix of all ones, and v is a scalar one. In this case
show that r = n−1/2.

2. Although in this chapter we usually consider the matrix F to be determin-
istic, assume here that the rows of F are independent draws of a zero-mean
l-dimensional Gaussian with identity covariance. Let v be the vector consist-

ing of a single one, and l − 1 zeros. Then v>
(
F>F

)−1
v follows an inverse

Gamma distribution with shape parameter α = (n− l + 1) /2 and scale pa-
rameter β = 1/2, and so E

[
1/r2

]
= n− l + 1. Confirm this relationship via

simulation.

Ex. 3.21 No TOST for you Consider the two one-sided test of Section 3.5.4.

1. Is it possible that the critical region is empty? What implications does this
have?

2. Under what conditions might the critical region be empty?

3. For the equivalence test and type I rate considered in Example 3.5.5, find sample
size n such that the critical region is empty.

Ex. 3.22 TOST the Market Use the TOST approach of Section 3.5.4 to test
the hypothesis ∣∣∣ζ − 0.5yr−1/2

∣∣∣ > 0.1yr−1/2

on the Market returns.
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Ex. 3.23 Intersection Union Tests Construct some Intersection Union tests
as described in Section 3.5.4.

1. For i = 1, 2, given ni i.i.d. draws from Gaussian returns from two assets with
signal-noise ratios ζi, consider the test for

H0 : |ζ2 −mζ1 − b| ≥ ε versus H1 : |ζ2 − ζm − b| < ε,

for given a, ε. The hope is that one will reject ‘towards’ the alternative which
puts the signal-noise ratios within a band of the line y = mx+ b. Under what
conditions will you reject the null?

2. For the case of ex-factor signal-noise ratio, consider the test for

H0 :
∣∣β>v − σc∣∣ ≥ ε versus H1 :

∣∣β>v − σc∣∣ < ε,

for given v and c. Under what conditions will one reject the null hypothesis?

Ex. 3.24 One sided violations of symmetric confidence interval Prove
that when ζ ≤ δ,

Pr
{

sign
(
ζ̂
)
ζ ≥

∣∣∣ζ̂∣∣∣+ δ
}

= 0.

Ex. 3.25 Narrowest confidence interval on signal-noise ratio Just as
the confidence intervals given in Equation 3.27 may not be symmetric about ζ̂, they
might not be the narrowest confidence intervals for ζ based on the exact method. By
“width”, we mean ζu − ζl. This question is hard to study theoretically, but easy to
consider empirically. Assume α = 0.05. Take x from 0.001 to 0.0499. Compute ζl and
ζu via

0.95 + x = Ft

(√
nζ̂;
√
nζl, n− 1

)
, x = Ft

(√
nζ̂;
√
nζu, n− 1

)
,

then plot ζu− ζl versus x. Assume you have observed ζ̂ = 0.75yr−1/2 based on 4 years
of daily data at a rate of 253 days per year. Where do you observe the narrowest
confidence interval?

Ex. 3.26 Power I Assume log returns follow an i.i.d. Gaussian distribution.
Fix the type I rate, α at 0.01, and set the ‘combined effect size’,

√
nζe = 2.0. Compute

the power of the hypothesis test for H0 : ζ = 0 against the one sided alternative,
H0 : ζ > 0 via Equation 3.36, for various values of n. Does the power vary much?

Ex. 3.27 Boring power computations Suppose you observe n daily obser-
vations of i.i.d. Gaussian log returns x ∼ N (µ, σ), assuming 253 days per year. Con-
sider the power of the hypothesis test for H0 : ζ = ζ0 against the one sided alternative,
H0 : ζ > ζ0.

1. For n = 759, and taking α = 0.01, compute the power for testing ζ0 = 1.0yr−1/2

assuming ζ = 1.5yr−1/2.
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2. For n = 759, and taking α = 0.01, how large must ζ be to achieve a power of
90% when testing for ζ0 = 0.75yr−1/2?

3. Suppose you wish to test at a type I rate of α = 0.001, and achieve a power of
50%, when testing for ζ0 = 0.5yr−1/2. Assuming ζ = 1.0yr−1/2, how large must
n be?

* Ex. 3.28 Toy hedge fund Suppose you are starting a hedge fund. After
one year, your investors will pull all their money if your fund has not achieved a
Sharpe ratio of 1.0yr−1/2 over that year, which we will call ‘failure’. There are two
possible causes of failure: bad luck of an actually good strategy, and the ‘normal’ poor
performance from trading a strategy which had been selected due to a type I error.

1. What signal-noise ratio do you need to bound the probability of failure due to
bad luck to be no greater than ε? What value do you get for ε = 0.10? Let this
number be ζ0.

2. Suppose that you randomly select a trading strategy, backtest it over a 5 year
period, then perform a hypothesis test for H0 : ζ = 0 against H1 : ζ > 0. If the
strategy ‘passes’ the test, you trade it for a year, otherwise you randomly select
another until you find one which does. What is the cutoff for the hypothesis
test to achieve a type I rate of α = 0.05?

3. To estimate the total probability of failure, you must compute the false discovery
rate of the hypothesis test. This requires knowledge of the distribution of
signal-noise ratio in the population from which you randomly sample. For
simplicity, assume the population is bimodal: with probability 10−6, you select a
strategy with ζ = ζ0, otherwise you select a strategy with ζ = 0yr−1/2. Assume
that the strategies’ returns are independent in the backtest period (this is very
unrealistic). What is the false discovery rate of your process? (Here, the false
discovery rate is the probability that a strategy which passes the hypothesis
test is a type I error, rather than a truly good strategy.)

4. What is the total probability of failure? Note that this should include the
possibility that a strategy which is a type I error has actually performed well
when traded live.

5. Suppose your fund does not fail, rather your achieved Sharpe ratio passes the
hurdle rate. What is the probability that this was due to a type I error strategy?

* Ex. 3.29 Toy hedge fund II Suppose you are starting a hedge fund. You
have at your disposal a random stream of strategies which have independent returns.

1. Suppose your sampling process draws strategies with signal-noise ratio ζ ∼
N
(
−0.25yr−1/2, 0.5yr−1/2

)
. You draw a strategy, observe 4 years of backtest,

perform a hypothesis test for H0 : ζ = 1.0yr−1/2 against the alternative H1 : ζ >
1.0yr−1/2. Those strategies for which you reject the null, with α = 0.05, ‘pass’
to live trading. The distribution of signal-noise ratio of strategies which pass
does not have a closed form. Via simulation, estimate the mean and standard
deviation of signal-noise ratio of this distribution. Is it nearly normal? What
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is the approximate probability that a randomly drawn strategy will pass the
significance test filter? Why is the mean signal-noise ratio so much lower than
the hypothesis test cutoff?

2. To improve the quality of passed strategies, one is tempted to use a more strin-
gent test. Perform your simulations again, but testing for H0 : ζ = 1.5yr−1/2

against the alternative H1 : ζ > 1.5yr−1/2. Does the mean of passed strategies
increase? How is the probability of passing the filter affected?

* 3. Can you imagine a case where increasing the cutoff of the hypothesis test (either
via requiring a smaller type I rate, or via testing for a more stringent null hy-
pothesis) could lead to a decrease in the expected signal-noise ratio of strategies
which pass the test?

* Ex. 3.30 Distribution of optimum Sharpe ratio Let p1, p2, . . . , pk be in-
dependent random variables each uniform on [0, 1]. Consider the jth order statistic of
the pi, which is the jth largest of the pi, call it p(j). It takes a beta distribution:

p(j) ∼ B (j, k + 1− j) .

(See also Section 5.1.1.)

1. Suppose you observe k series of returns, each of length n, and each independent
of each other. Suppose all returns are normally distributed. Furthermore sup-
pose that the signal-noise ratios are all zero. Compute their Sharpe ratios and
consider their order statistics: ζ̂(1) ≤ ζ̂(2) ≤ . . . ≤ ζ̂(k). What is the distribution

of ζ̂(j)?

2. Write code to compute the CDF of ζ̂(j) under these assumptions.

3. Perform a simulation: generate 1000 days of independent normal returns with
zero mean, and compute the Sharpe ratio; repeat this 100 times and record
the largest Sharpe ratio observed; repeat that 2500 times and feed these 2500
maximal Sharpe ratio values into your CDF code. The resultant values should
be uniform. Q-Q plot then against a uniform law.

4. Write code to compute the quantile function of the jth largest of k independent
realizations of the Sharpe ratio for normal returns and a common (possibly
nonzero) signal-noise ratio.

5. Suppose you have an army of 100 quants, each of whom generates 10 strategies,
all of which are independent and have normally distributed returns. You will
pick the strategy which demonstrates the highest Sharpe ratio based on a three
year backtest of daily returns, with 252 trading days per year. Your goal for
live trading is a signal-noise ratio of 0.9yr−1/2. How large should the largest
Sharpe ratio be to trade it assuming a type I rate of 0.10?

6. Consider the test of the hypothesis on the maximal signal-noise ratio of a set
of strategies with independent returns. That is, consider testing

H0 :
∨

1≤i≤k

ζi = 0
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against the alternative

H1 :
∨

1≤i≤k

ζi > 0.

This can be tested by computing the CDF of ζ(k), having observed independent
series of normal returns each of size n, and rejecting the null if the CDF exceeds
1 − α. Does this achieve the nominal type I rate of α? What is the power of
this test?

Ex. 3.31 Freakout intervals Losses during the early days of a quantitative
strategy’s live trading often leads neophyte portfolio managers and quants to freak
out. Thus one can think of prediction intervals as ‘freakout intervals’. Suppose you
observe Sharpe ratio of ζ̂1 based on n = 1250day of returns of a strategy. Assume
there are 252 trading days per year.

1. Compute approximate 98% prediction intervals for the Sharpe ratio of a further
21day of returns if ζ̂1 = 1yr−1/2.

2. Write a function that computes approximate lower 1% prediction bounds for the
Sharpe ratio for 21day of future returns, and plot this for values of ζ̂1 ranging
from 0 to 2yr−1/2

3. You observed ζ̂1 = 1.5yr−1/2 based on n = 1250day of returns in backtests.
In the first 15 days of trading live, the strategy has achieved a Sharpe ratio of
ζ̂2 = −2.0yr−1/2. Do you freak out and pull the plug?

* 4. Suppose you observe the past returns of 200 strategies with independent returns
over a period of n = 1250day, and pick the one with the maximal Sharpe ratio
over that period. It achieved a Sharpe ratio of ζ̂1 = 1.75yr−1/2. Write a function
that computes approximate lower 1% prediction bounds for the Sharpe ratio of
this strategy for 21day of future returns.

Ex. 3.32 Prediction intervals on the Market Download the daily returns
of the Market factor, as described in Example 1.2.1. Using the daily data from January
01, 1930 through November 31, 1930, construct a 0.90 prediction interval for the Sharpe
ratio for the period December 01, 1930 through December 31, 1930. Compute the
actual Sharpe ratio for that period and record whether it was within the 0.90 prediction
interval. Repeat this for each year from 1930 through 2020. What proportion of
December Sharpes fell within the prediction interval?

* Ex. 3.33 Prediction intervals, attribution model Repeat Exam-
ple 3.5.14, but compute prediction intervals on the ex-factor Sharpe ratio of
the UMD factor attributed against the returns of the Market, SMB and HML.
Perform computations on daily returns, and find the empirical coverage.

Ex. 3.34 LRT Consider the likelihood ratio test of H0 : ζ = 0.8 yr−1/2 against
the unrestricted alternative. Suppose, given 1000 days of Gaussian log returns, you
observe ζ̂ = 1.4 yr−1/2.

1. Compute the MLE, ζMLE.
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2. Compute the LRT statistic, D.

3. Interpret D as a chi-square random variable with 1 degree of freedom. Would
you reject H0 at the α = 0.01 level?

Ex. 3.35 LRT II Consider the likelihood ratio test of H0 : ζ = 0.5 yr−1/2 ver-
sus H1 : ζ = 0.8 yr−1/2 for a Sharpe ratio observed on 2000 days of Gaussian log
returns. What is the cutoff Λc needed to achieve a type I rate of α = 0.01? What is
the smallest Sharpe ratio for which this test rejects H0?

Ex. 3.36 Likelihood intervals An α likelihood interval for ζ is defined as a
set ζ

∣∣∣∣∣∣
LSR

(
ζ
∣∣∣ζ̂, n)

LSR
(
ζMLE

∣∣∣ζ̂, n) ≥ α


It is said that a 14.7% likelihood interval will be equivalent to the 95% confidence
interval in certain cases. Continue Example 3.7.4 by finding the 14.7% likelihood
interval for the signal-noise ratio, given ζ̂ = 0.1772mo.−1/2 for n = 1128 months of
observations.

Ex. 3.37 Boring Bayesian computations Assume a prior of ζ0 =
0.2mo.−1/2, n0 = 24mo., σ0 = 1.5%mo.−1/2, m0 = 72mo.

1. Suppose you observe n = 60mo. of returns with ζ̂ = 0.31mo.−1/2 and σ̂ =
2%mo.−1/2. Compute the posterior hyperparameters.

2. Construct 95% credible intervals on ζ based on that posterior.

3. Compute approximate 99% posterior prediction intervals on ζ̂2 drawn from a
future n2 = 12mo. of returns.

Ex. 3.38 Approximate conjugate prior for signal-noise ratio Using the
normal approximation for Sharpe ratio given in Equation 3.24, construct a approx-
imate conjugate prior for signal-noise ratio. The prior and posterior densities should
be normal. That is, the prior should take the form

ζ ∝ N
(
ζ0, γ

2
0

)
, (3.65)

where ζ0 and γ2
0 are the prior hyperparameters.

1. Assuming normal likelihood for ζ given an observed ζ̂ on n observations, what
is the posterior belief?

2. What settings of the prior hyperparameters correspond to a non-informative
prior?

3. Continue Example 3.7.4 by finding the 95% credible interval on the Market
returns under this approximate posterior, using a non-informative prior.

4. Continue Example 3.7.6 by finding the 95% posterior prediction interval for ζ̂2
over n2 = 12mo., assuming a non-informative prior. (An ‘informative’ prior
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was used in that example, so one does not expect the results to match exactly,
unless the data overwhelm the prior.)

Ex. 3.39 Bayesian inference on sum of signal-noise ratios In Sec-
tion 3.5.3, a Frequentist test is quoted for the null hypothesis

H0 :
∑
i

aiζi = b versus H1 :
∑
i

aiζi > b,

given ni independent draws from Gaussian returns from k assets with signal-noise
ratios ζi, and fixed a1, a2, . . . , ak, b. Construct a conjugate Bayesian prior and posterior
for the sum

∑
i aiζi.

Ex. 3.40 Bayesian inference on sum of ex-factor signal-noise ratios In
Section 3.5.5, a Frequentist test is quoted for the null hypothesis

H0 :
∑
i

βi
>vi
σi

= c versus H1 :
∑
i

βi
>vi
σi

> c,

given ni independent draws from factor models with Gaussian errors on k assets, and
fixed v1,v2, . . . ,vk, c. Construct a conjugate Bayesian prior and posterior for the sum∑
i βi
>vi/σi.

Ex. 3.41 Market Winter/Summer Consider the hypothesis that the signal-
noise ratio of the Market is higher in the summer than the winter. Define the summer
as the returns of the months of May through August, inclusive, and the winter as
November through February. Use the monthly returns of the Fama-French factor data
from aqfb.data, using code as given in Example 1.2.1.

1. Compute the Sharpe ratio of the Market for the Summer and Winter, along
with confidence intervals.

2. Perform the frequentist hypothesis test for equality of signal-noise ratio of the
two periods.

Ex. 3.42 Market takes a weekend Consider the hypothesis that the signal-
noise ratio of the Market is higher from Friday close to Monday close than from
Wednesday close to Thursday close. Use the daily returns of the Fama-French factor
data from aqfb.data.

1. Compute the Sharpe ratio of the Market for EOD Mondays and EOD Thurs-
days, along with confidence intervals.

2. Perform the frequentist hypothesis test for equality of signal-noise ratio of the
two periods.

* Ex. 3.43 Test for bounded non-stationarity One objection to estimating
the signal-noise ratio using long returns histories is that “returns are not stationary.”
(Indeed, this seems to be the lesson of Example 3.5.13, wherein prediction intervals
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failed to achieve nominal coverage for returns of the Market.) One response would be
to give up and embrace your own mortality and powerlessness.
An optimist, however, might allow for a small amount of non-stationarity in returns.
Suppose you measure returns over k years. Let the signal-noise ratio in the ith year
be denoted by ζi. Suppose for a given V, ε > 0, you wanted to test the null hypothesis

H0 : ζk = V, |ζi+1 − ζi| ≤ ε, for i = 1, 2, . . . , k − 1.

1. Using the normal approximation for Sharpe ratio, how would you test for this
null hypothesis?

2. How would you construct confidence intervals for ζk under the assumption that
|ζi+1 − ζi| ≤ ε for i = 1, 2, . . . , k − 1?

3. Taking ε = 0.05yr−1/2, construct 95% confidence intervals for the most recent
year’s signal-noise ratio of the Market.

Ex. 3.44 Prediction intervals, volatility reweighted Market Perform
the analysis of Example 3.5.13, but rescaling Market returns by an inverse volatility,
as outlined in Section 2.4.2 and Equation 2.14. Compute the rolling twelve month
mean absolute return of the Market, delay it by one month, invert it, then normalize
to mean 1. You can perform this in R as follows:

library(aqfb.data)

data(mff4)

rollsum <- function(x, window = 1) {
cx <- cumsum(x)

cx - lag(as.numeric(cx), window)

}
mff4$vol_like <- rollsum(abs(mff4$Mkt), 12)

mff4$quietude <- 1/mff4$vol_like

mff4$quietude <- mff4$quietude/mean(mff4$quietude,

na.rm = TRUE)

Based on the entire sample available to you, compute the 95% prediction interval on
the Sharpe ratio of inverse volatility weighted returns for a further n2 = 12mo. of
out-of-sample data.
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4. The Sharpe ratio in a rotten world

It’s such a fine line between
stupid, and uh ... clever.

(David St. Hubbins, This is
Spinal Tap)

That’s Romper-room stuff.

(Arlen Jividen, Algebra Class)

In the previous chapter, we considered the distribution of the Sharpe ratio for the case
where returns are 1. independent, 2. identically distributed, 3. drawn from a normal
distribution 4. independently of previously observable state variables. In fact, probably
each of these conditions are violated by real returns series. In this chapter, we will
consider the effect of these assumptions, and try to correct1 for them where necessary.
For the most part we will find that the Sharpe ratio is robust to these assumptions,
and Mertens’ formula for the standard error does a reasonable job of correcting for
non-normality of returns.

Here we are tempted to catalog the tests for detecting deviances from assumptions,
but for a few issues:

1. For some of these tests, it is almost a foregone conclusion that they will reject
the null of i.i.d. Gaussian on real returns. For example, normality tests, dozens
of which exist each of varying power under different alternatives, often will reject
the null for large samples from ostensibly very good Gaussian pseudo-random
number generators!

2. Some of these tests provide little indication of the effect size, thus the magnitude
of the problem (and whether it matters for inference on the signal-noise ratio) is
hard to determine.

3. There is a huge body of literature on each of these topics, far too large for us to
summarize.

Instead, we illustrate a few deviances for one dataset, the returns of the Market.

Example 4.0.1 (Is the Market i.i.d. normal?). Consider the monthly relative re-
turns of the Market, introduced in Example 1.2.1. First, we apply the R function,
shapiro.test to the monthly returns. As expected, the test rejects, reporting a p-
value of 5.2186× 10−24.

1It should be noted that while much of the research focus on ‘fixing’ the Sharpe ratio has been on
assumption of normality, likely this assumption has a small effect in the real world for long time
horizons, likely smaller than the problem of omitted variable bias, which is difficult to model.
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Figure 4.1.: Autocorrelation plots of the raw and absolute monthly relative returns of
the Market over the period from Jan 1927 to Dec 2020 are shown.

We calculate the autocorrelation of raw monthly returns, and the autocorrelation of
the absolute value of monthly returns. These are plotted for up to 36 lags in Figure 4.1.
The first autocorrelation of the raw returns is computed to be approximately 0.1, which
seems rather high. One suspects that such a high autocorrelation would have been
‘arb’ed’ out by market participants. While ‘bid-ask bounce’ (cf. Exercise 2.25) would
contribute to an apparent negative autocorrelation of returns, it is unlikely to have
much of any effect at this time scale. Rather, it turns out that the trade to capture this
autocorrelation effect has a very small implied signal-noise ratio. cf. Exercise 2.24.

The first autocorrelation of absolute returns is computed to be 0.22. This indi-
cates autoregressive conditional heteroskedasticity (‘ARCH’). An interesting question
is whether periods of higher volatility are paired with a concomitant increase in mean
return, as one theory of heteroskedasticity is that it is caused by a difference in ‘market
time’ and ‘wallclock time’. (cf. Section 2.4.2.) Under this theory, price discovery oc-
curs faster during periods of higher volatility, thus one should see mean return scale as
the square of volatility2. This does not appear to occur for the Market. In Figure 4.2,
the mean of daily log returns is plotted against the standard deviation of daily log
returns for years from 1926 through 2020. The slope of the regression line is negative,
and statistically significantly so at the 0.05 level, but there are many caveats with such
a statement: one suspects that significance result is highly sensitive to a few ‘outliers3,’
that the results might have been different if one had considered quarterly aggregation
instead of annual, that one ought to regress against the log of volatility, and so on.

2Another way of viewing this is that the signal-noise ratio should be ‘reannualized’ to match market
time, and thus should increase as the square root of volatility.

3It seems a shame to call them outliers, since they correspond to huge macroeconomic shifts e.g., in
the years 1931, 2008 and so on.
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Figure 4.2.: The mean of daily log returns of the Market are plotted versus the standard
deviation of daily log returns, for each year from 1926 through 2020.

Nevertheless, there is hardly much evidence for a positive relationship between return
and volatility in the Market, and one strongly suspects there is some relation between
the two. a

4.1. The Sharpe ratio for (non-i.i.d.) Elliptical returns

We now consider the distribution of the Sharpe ratio for the case of general Elliptical
returns, relaxing assumptions of independence and identically distributed. That is,
consider the returns x1, x2, . . . , xn as an n-vector, x drawn from an Elliptical distri-
bution with mean µ, covariance Σ, and kurtosis factor κ (cf. Section 1.3.2.). We are
subsuming the Gaussian case, which is simply κ = 1.

“Independence” corresponds to a diagonal Σ, while “identically distributed” corre-
sponds to µ equal to some constant times 1, and Σ equal to some constant times I.
The sample Sharpe ratio has the form

ζ̂ =

√
n− 1

n

1
n1>x− r0√

x>x
n −

(
1
n1>x

)2 =

√
n− 1

n
f (v) ,
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where v is the 2-vector defined as

v =df

[
1
n1>x

x>x
n − (1>x)

2

n2

]
,

and f (v) =df (v1 − r0) /
√
v2.

We can easily find the expected value of v:

E [v] =

[
1
n1>µ

tr(Σ+µµ>)
n − 1>(Σ+µµ>)1

n2

]
,

=
1

n

[
1>µ

tr (Σc) + µc
>µc

]
,

(4.1)

where we define

µc =df µ−
11>

n
µ,

Σc =df Σ− 11>

n
Σ.

(4.2)

We can view µc and Σc as the (column) centered mean and covariance, respectively,
where the mean values of each column have been subtracted out. (See Exercise 4.3.)
Via Isserlis’ theorem (and a lot of computation, cf. Exercise 4.4) the covariance matrix
of v is [74]

Var (v) =
1

n2

[
1>Σ1 2µc

>Σ1

2µc
>Σ1 (κ− 1) tr (Σc) tr (Σc) + 4µc

>Σµc + 2κ tr
(
Σc

2
) ] . (4.3)

By Taylor’s theorem,

ζ̂ ≈
√
n− 1

n

[
f (E [v]) +

(
∇vf (v)|E[v]

)>
(v − E [v]) + . . .

]
Taking expectations, we have

E
[
ζ̂
]
≈
√
n− 1

n
f (E [v]) ,

Var
(
ζ̂
)
≈ n− 1

n

(
∇vf (v)|E[v]

)>
Var (v)

(
∇vf (v)|E[v]

)
.

(4.4)

For now, we leave underdefined exactly in what sense the approximations hold4. The
approximate expected Sharpe ratio can be expressed compactly as

E
[
ζ̂
]
≈
√
n− 1

n

1
n1>µ− r0√

(tr (Σc) + µc
>µc) /n

. (4.5)

4After all, we have not defined how µ and Σ might change as n→∞, rendering a discussion of the
asymptotics premature.
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For the variance, compute the gradient of f (·) as

∇vf (v) =

[
1√
v2

− f(v)
2v2

]
. (4.6)

The approximate variance of the Sharpe ratio is thus

Var
(
ζ̂
)
≈ n− 1

n2

1>Σ1

(tr (Σc) + µc
>µc)

[
1− 2

(
1>µ− nr0

tr (Σc) + µc
>µc

)
1>Σµc
1>Σ1

+

(
1>µ− nr0

tr (Σc) + µc
>µc

)2 κ−1
4 (tr (Σc))

2
+ µc

>Σµc + κ
2 tr

(
Σc

2
)

1>Σ1

]
. (4.7)

To get any meaningful simplification of this expression, we must assume some form
for µ and Σ, and approach the problem on a case by case basis. Moreover, the model
given here is completely unfalsifiable by data since it posits n (n+ 3) /2 unknown
parameters (plus κ) for n observations. We must assume some form for µ and Σ to
keep ourselves honest. Also if µ and Σ can be completely arbitrary, it is not clear why
one would want to perform inference on them, since they would potentially have no
relation to future returns.

Keep it normal Despite our enthusiasm for elliptical distributions, one observes odd
behavior from them when used to model returns over time of a single asset, instead
of correlated contemporaneous returns of multiple assets. For example, consider a
multivariate t-distribution with zero mean and covariance Σ = σ2I. The marginals
have zero correlation, but are not independent. If you compute the sample standard
deviation over the elements, the standard error does not go to 0 as the number of
elements increases. See Exercise 4.6. Perhaps real asset returns display this behavior,
but it implies a dependence between returns at arbitrary time scales. So for the most
part we will consider Equation 4.7 for the case of multivariate Gaussian only, with
κ = 1.

4.1.1. Independent Gaussian returns

Let us simplify the model somewhat to assume independence of returns, which corre-
sponds to a diagonal Σ matrix, say Σ = Diag

(
σ2
)
. (n.b., here σ2 is a vector of length

n whose elements are variances, not volatilities.) Under this assumption, some further
simplification is possible. Note that Σ1 = σ2, and thus 1>Σ1 = 1>σ2. Then

tr (Σc) =
n− 1

n
1>σ2,

tr
(
Σ2
c

)
=
n− 1

n
σ2>σ2 +

(
1>σ2

n

)2

.
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Then, asymptotically, Equation 4.5 simplifies to

E
[
ζ̂
]
≈

1
n1>µ− r0√(

1>σ2 + µc
>µc

)
/n
. (4.8)

We can simply define

ζi =df

1
n1>µ− r0√

1>σ2/n
, (4.9)

as the population quantity we wish to estimate5, as it is the mean expected return
divided by the square root of the mean variance, and thus represents a kind of ‘long
term average’ signal-noise ratio. (In fact, however, the variance is inflated by variation
in µ, via the µc

>µc term.) Define the geometric bias as

b =df

(
1 + µc

>µc/1
>σ2

)−1/2
. (4.10)

We have 0 < b ≤ 1, with equality only when µ = µ1 for some µ. We can then express

Equation 4.8 compactly as E
[
ζ̂
]
≈ bζi.

Equation 4.7 becomes, asymptotically,

Var
(
ζ̂
)
≈ b2

n

1− 2ζib
2
√
n

σ2>µc(
1>σ2

)3/2 +
n

2
b4ζ2

i

2µc
> (σ2 � µc

)
+ σ2>σ2 +

(
1>σ2

n

)2

(
1>σ2

)2
 .

(4.11)
See Exercise 4.5.

4.1.2. Homoskedastic i.i.d. Gaussian returns

First, we check the computation for the i.i.d. case where µ = µ1 and Σ = σ2I, mostly
to check our work, since the answer is given to us already by Equation 3.24. In this
case, because µ is constant, we have µc = 0, simplifying the asymptotic expansion,
and removing the geometric bias, i.e., b = 1. Without geometric bias, the approximate
expected value of the signal-noise ratio, from Equation 4.8, becomes

E
[
ζ̂
]
≈ µ− r0

σ
= ζ. (4.12)

Eliminating the bias term and terms involving µc from Equation 4.11, and using
ζi = ζ, we have

Var
(
ζ̂
)
≈ 1

n

1 +
n

2
ζ2
σ2>σ2 +

(
1>σ2

n

)2

(
1>σ2

)2
 ,

=
1

n

[
1 +

n

2
ζ2nσ

4 + σ4

n2σ4

]
.

(4.13)

5Though it is arguable that this is really the quantity of interest. In some cases, it is clearly of
interest, in others the case is not as clear.
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Asymptotically in n, this is the approximate standard error of Johnson and Welch, as
given in Equation 3.24. [99, 77].

4.1.3. Heteroskedastic independent Gaussian returns

Now relax the homoskedastic independent case considered previously by assuming that
the observed x are homoskedastic i.i.d. Gaussian returns ‘polluted’ by some variable
l. Such a returns stream could arise in a number of ways:

1. As introduced in Section 2.4.2, one model of market heteroskedasticity is that
price discovery unfolds along a ‘market clock’ instead of wall clock time. In
this (somewhat optimistic) model, if the underlying returns stream has constant
signal-noise ratio when measured in market time, the observed returns will have
mean and variance equally scaled by l, the ‘speed’ of price discovery. (Though
this is not often supported by data, cf. Example 2.4.3 and Example 4.0.1.)
Under this model the expected value and variance vary from their long term
mean values in lockstep. It must be noted that this is a somewhat optimistic
model of market heteroskedasticity; the pessimistic alternative is that expected
returns are unaffected (or even adversely impacted) by the variable l, which only
scales variance.

2. Similarly, if returns of the asset were homoskedastic i.i.d., but were measured over
irregular time points, say weekly returns jumbled together with daily returns,
similar population dynamics would arise.

The optimistic and pessimistic model mentioned above can be couched in a more
general model where the expected return is scaled by lλ for some constant λ. The op-
timistic model is captured by λ = 1, while λ = 0 corresponds to the pessimistic model.
One could also consider, say, λ = 1

2 as a compromise value. If underlying returns were
homoskedastic i.i.d., but one observed levered returns, with leverage chosen e.g., by a
fund manager, then expected return and volatility would scale together, resulting in
λ = 1

2 .
So assume the existence of a vector l with strictly positive elements. Define Mk as

the empirical raw kth moment of l:

Mk =df
1

n

∑
1≤i≤n

li
k. (4.14)

Without loss of generality, we can assume that l has been rescaled such that M1 = 1.
Now suppose λ is given, and l scales variance directly, and expectation via λ, i.e.,

Σ = σ2 Diag (l), and µ = µlλ, where here a vector to a power is interpreted as the
Hadamard (elementwise) power. Since we are assuming independence of returns, we
can rely on the simplified form of expectation and standard error. Note that

µc = µlλ − µMλ1, and σ2 = σ2l.

Then Equation 4.9 becomes

ζi =
µMλ − r0

σ
, (4.15)
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and the geometric bias term of the sample Sharpe ratio is

b =

(
1 +

µ2
(
M2λ −M2

λ

)
σ2

)−1/2

. (4.16)

Note that when λ = 0, then M2λ −M2
λ = 0, and there is no bias: b = 1. When

λ = 1, the term
(
M2λ −M2

λ

)
is effectively the squared coefficient of variation of l. It

balances that of the underlying returns in the geometric bias term. Again, it is not
unambiguously the case that ζi is the population quantity of interest, since variation
within µ should probably be counted as volatility of returns, especially in the case
where l is stochastic, rather than the case of jumbled periodicities. Ignoring this
point, we can proceed as previously.

To compute the standard error of the Sharpe ratio, we have to compute a few more
terms. We have

1>σ2 = nσ2M1+λ,

σ2>µc = nµσ2 (M1+λ −M1Mλ) = nµσ2 (M1+λ −Mλ) ,

σ2>σ2 = nσ4M2,

µc
> (σ2 � µc

)
= nµ2σ2M1+2λ.

(4.17)

Plugging these into Equation 4.11 gives the approximate variance of the Sharpe ratio
as

Var
(
ζ̂
)
≈ b2

n

[
1− 2ζib

2µ (M1+λ −Mλ)

σM
3/2
1+λ

+
b4

2
ζ2
i

2µ
2

σ2M1+2λ +M2 +O
(
n−1

)
M2

1+λ

]
.

(4.18)
Further simplification is possible for various values of λ. Note, however, that in some

situations it appears to be the case that ζ (and even the debiased version, viz.
√
bζ)

has a lower standard error than in the homoskedastic i.i.d. case (cf. Equation 4.13).
This can occur if the errors in estimating the mean return and volatility are positively

correlated. (Equivalently, σ2>µc > 0 and sufficiently large.) Thus estimation error in
the two components of the Sharpe ratio counteract each other, resulting in a (ever so
slightly) decreased standard error. In practice this will have very little effect.

Sweeping out small terms (for most cases µ2/σ2 will be tiny), for a few special cases
of λ we have

(λ = 0) Var
(
ζ̂
)
≈ b2

n

[
1 +

b4

2
ζ2
i

M2

M2
1

]
=

1

n

[
1 +

1

2
ζ2
i

M2

M2
1

]
,

(λ = 1/2) Var
(
ζ̂
)
≈ b2

n

1− 2ζib
2µ
(
M3/2 −M1/2

)
σM

3/2
3/2

+
b4

2
ζ2
i

M
−1/2
2

M2
3/2

 ,
(λ = 1) Var

(
ζ̂
)
≈ b2

n

[
1− 2ζib

2µ (M2 − 1)

σM
3/2
2

+
b4

2
ζ2
iM

−1
2

]
.

(4.19)
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It turns out that when variation in l is modest and the signal-noise ratio is realistic,
the geometric bias introduced into the Sharpe ratio by heteroskedasticity has little
effect. Moreover the standard error of the Sharpe ratio is not much changed either,
and can even be slightly decreased. These findings are illustrated in the following
examples which use the (rescaled) VIX index as l. In summary,

Heteroskedasticity and Sharpe ratio

Modest heteroskedasticity causes only mild bias in the Sharpe ratio and very
little effect on standard error.

Example 4.1.1 (VIX and heteroskedastic bias). Consider the (rescaled to unit mean)
VIX index introduced in Example 1.2.4, with data from 1990-01-02 through 2020-12-31.
For values of k between 0 and 2, empirical estimates of Mk range (non-monotonically)
from around 0.98 to 1.2.

Consider the case where µ = 0.0007day−1, and σ = 0.013day−1/2. For values of λ
tested between 0 and 2, the geometric bias term, b, ranged from around 0.9976 to 1,
with b monotonically decreasing in λ. a

Example 4.1.2 (VIX and Sharpe ratio standard error). Continuing Example 4.1.1,
consider the (rescaled) VIX index of Example 1.2.4, with data from 1990-01-02 through

2020-12-31. Suppose µ = 0.0007day−1, and σ = 0.013day−1/2. Take r0 = 0day−1, and
suppose n is large.

For values of λ tested between 0 and 2, n/b2 times the approximate variance from
Equation 4.18 was computed, and found to range from around 0.9993 to 1.002, mono-
tonically decreasing in λ.

The equivalent value for the homoskedastic i.i.d. case, via Equation 4.13, is around
1.0014. For values of λ greater than around 0.22, the heteroskedastic case has a
(slightly) lower standard error. a

Example 4.1.3 (Weekly and daily returns). Suppose you have observed 260 weeks of
hypothetical weekly returns and 260 days of daily returns for a strategy, with the
returns independent. Suppose the returns are Gaussian with µ = 0.001day−1, and
σ = 0.018day−1/2. Because of how expectation and variance scale, we have λ = 1. To
get M1 = 1, we define l to be 260 values of 5/3 and 260 values of 1/3. This means that
if we compute the Sharpe ratio näıvely, jumbling together daily and weekly returns,
we are effectively estimating µ and σ (and thus ζi) at the scale of 3 day.

For these values of µ and σ, the geometric bias is quite modest: b ≈ 0.9979. The
standard error of the (biased) Sharpe ratio is around 0.0437. This is the standard
error around estimation of signal-noise ratio at the 3 day scale. If we convert the
3 day Sharpe ratio to daily scale, the standard error of the (still slightly biased) daily

Sharpe ratio is 0.0252day−1/2. If we had, instead, observed 1560 day of daily returns,
the standard error, via Equation 4.13, is approximately 0.0253day−1/2, effectively the
same. We have lost little, if anything, in terms of bias or variance by pooling weekly
and daily returns together.
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To check these results, we perform 10000 Monte Carlo simulations of this situation.
The mean Sharpe ratio over these realizations is 0.0554day−1/2, while the popula-
tion value is 0.0556day−1/2. The standard deviation of the Sharpe ratio over these
10000 realizations is around 0.0251day−1/2, which is consistent with the approximate
theoretical value of 0.0252day−1/2. See also Exercise 4.11. a

Example 4.1.4 (Daily and Quarterly returns, the Market). We consider the Market
returns, introduced in Example 1.2.1. We observe 172 quarterly returns from the
period Mar 1927 to Dec 1969, and 12361 daily returns from 1970-01-02 to 2018-12-
31. Observing only these, we wish to compute the Sharpe ratio. As this is a ‘jumbled
periodicity’ problem, we have λ = 1. We assume 252 days per year. To To get M1 = 1,
we define l to be 172 values of 63/1.8509 and then 12361 values of 1/1.8509. If we
compute the Sharpe ratio näıvely on the quarterly and daily returns, we are effectively
estimating µ and σ (and thus ζi) at the scale of 1.8509 day. Recast in annual units we
compute the Sharpe ratio as 0.5219yr−1/2. In Example 3.3.4, we estimated the Sharpe
ratio to be 0.5278yr−1/2 based on quarterly values.

Plugging in the long term sample values for µ and σ, the geometric bias is b ≈ 0.9788.
Dividing the Sharpe ratio by this bias gives us a geometrically nearly unbiased Sharpe
ratio of 0.5332yr−1/2. The standard error of the (biased) Sharpe ratio is around 0.0087,
at the 1.8509 day scale. Annualized the standard error is 0.1387yr−1/2. a

See also Exercise 4.9 through Exercise 4.12.

Remark (Weighted estimation?). For the case where the l are known (e.g., jumbled
weekly and daily returns) or can be roughly estimated, one is tempted to perform
some kind of weighted estimation to correct for the heteroskedasticity. It is not clear,
however, that by so doing, one reduces the standard error of the Sharpe ratio. Indeed,
in some cases the approximate standard error in the heteroskedastic case seems lower
than that in the homoskedastic case. Perhaps a better approach would be to correct
for the approximate geometric bias, though this should be very close to 1 for most
applications. On the other hand, arguably the apparent reduction in standard error is
due to our insistence that the population parameter of interest does not count variation
in µ towards volatility of returns.

4.1.4. Homoskedastic autocorrelated Gaussian returns

Now consider the case of constant mean and errors drawn from an AR(1) process with
autocorrelation ρ. [24] Thus we have again µ = µ1, and Σi,j = σ2ρ|i−j|. We will
assume that |ρ| is bounded away from one, say smaller than one half. Because µ is
constant, we have µc = 0, and 1>µ = nµ. We will need to compute the quantity
1>Σ1. For large n this is approximately

1>Σ1 ≈ nσ2

(
1 + ρ

1− ρ
+

1

n

2ρ

(1− ρ)
2

)
= nσ2

(
1 + ρ

1− ρ
+O

(
n−1

))
, (4.20)
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cf. Exercise 4.7. Similarly,

tr (Σc) = nσ2 − 1>Σ1

n
≈ nσ2

(
1−O

(
n−1

))
,

tr
(
Σ2
c

)
≈ nσ4

(
1 + ρ2

1− ρ2
−O

(
n−1

))
.

The approximation of Equation 4.5 becomes

E
[
ζ̂
]
≈
√
n− 1

n

µ− r0√
σ2 (1−O (n−1))

→ µ− r0

σ
. (4.21)

Thus the Sharpe ratio is asymptotically unbiased in n. The standard error, however,
is somewhat affected by the autocorrelation. Picking up from Equation 4.7,

Var
(
ζ̂
)
≈ n− 1

n2

1>Σ1

tr (Σc)

[
1 +

(
1>µ− nr0

tr (Σc)

)2 1
2 tr

(
Σc

2
)

1>Σ1

]
,

≈ 1

n

1

nσ2

(
nσ2 1 + ρ

1− ρ
+

1

2

(
µ− r0

σ2

)2

nσ4

(
1 + ρ2

1− ρ2
+O

(
n−1

)))
,

≈ 1

n

(
1 + ρ

1− ρ
+

1

2

(
µ− r0

σ

)2(
1 + ρ2

1− ρ2
+O

(
n−1

)))
,

≈ 1

n

1 + ρ

1− ρ

(
1 +

1 + ρ2

(1 + ρ)
2

1

2

(
µ− r0

σ

)2
)
.

(4.22)

Compare this with the standard error for the homoskedastic case (Equation 4.13,
equivalently Equation 3.24). For small signal-noise ratio and small ρ, the standard
error of the Sharpe ratio is approximately n−1/2

√
(1 + ρ) / (1− ρ). This corresponds

to the standard error of the t statistic for AR(1) variates under the null µ = 0 as de-
scribed by van Belle. [162, sec. 8.7] The ‘small angle’ approximation for this correction
is 1 + 2ρ, which is reasonably accurate for |ρ| < 0.1. In summary:

Autocorrelation and Sharpe ratio

A small autocorrelation of ρ inflates the standard error of the Sharpe ratio by
about 200ρ%.

Since we expect ρ to be very small for real world returns6, autocorrelation should
have little to no effect on the bias or standard error of the Sharpe ratio.

Example 4.1.5 (AR(1) returns and Sharpe ratio standard error). A Monte Carlo study
confirms the standard error of the Sharpe ratio given in Equation 4.22. For values of

6While persistent significant autocorrelation should be ‘arb’ed out’ by market participants, signifi-
cant autocorrelation at long time scales may be observed in real markets, cf. Example 4.0.1.
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Figure 4.3.: The empirical standard deviation of the t-statistic (i.e., the rescaled
Sharpe ratio) is plotted versus the autocorrelation, ρ. Each point rep-
resents 8,000 replications of approximately 3 years of daily data, with
each series generated by an AR(1) process with normal innovations and
µ = 0. The line is y =

√
(1 + ρ)/(1− ρ), as given by Equation 4.22, not

a fit of the data.

ρ ranging from −0.2 to 0.2, 8000 realizations of approximately 4 years of daily data
generated by an AR(1) process with µ = 0 were generated. The Sharpe ratio of each
was computed, and the empirical standard deviation over realizations was computed.
This is multiplied by

√
n and then plotted versus ρ in Figure 4.3. The fit value of√

(1 + ρ)/(1− ρ) is also shown. See also Exercise 2.29. a
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Example 4.1.6 (Autocorrelated Market returns and Sharpe ratio standard error). Con-
sider the returns of the Market, introduced in Example 1.2.1. Based on 1128 monthly
returns from Jan 1927 to Dec 2020, we estimate the autocorrelation of returns to be
0.1001. Feeding the sample estimates of ρ, µ and σ into Equation 4.22, we estimate
the standard error of the Sharpe ratio to be 0.0174yr−1/2. If the autocorrelation is as-
sumed to be zero, we would estimate the standard error as 0.0143yr−1/2. The inflation
caused by autocorrelation is approximately 22%, which is close to twice the estimated
autocorrelation. a
Caution (Returns are autocorrelated). By the way that they are constructed, returns
of an asset are typically slightly negatively autocorrelated. That is, since returns are
defined as xt+1 = log pt+1/pt, where pt are the mark prices, if there is any amount of
‘error’ in the marks, it will create negatively autocorrelated returns. This is discussed
in the context of the ‘bounce effect’, cf. Exercise 2.25. In general, if the ‘true’ returns
are i.i.d. with variance σ2

m, and the log mark prices have a noise term with variance
σ2
b , then the autocorrelation of observed returns is

ρ =
−σ2

b

2σ2
b + σ2

m

Given that σ2
b/σ

2
m is likely to be on the order of 0.01 or smaller, the bias introduced

by this bounce effect should be very small indeed.

4.2. Asymptotic Distribution of Sharpe ratio

Here we derive the asymptotic distribution of Sharpe ratio, following Jobson and Ko-
rkie inter alia. [76, 99, 111, 89, 96, 174] Consider the case of p possibly correlated
returns streams, with each observation denoted by the p-vector x. Let µ be the
p-vector of population means, and let α2 be the p-vector of the uncentered second
moments. Let ζ be the vector of signal-noise ratio of the assets. Let r0 be the ‘risk
free rate’. We have

ζi =
µi − r0√
α2,i − µ2

i

.

Consider the 2p vector of x, ‘stacked’ with x squared elementwise,
[
x>,x2>

]>
.

The expected value of this vector is
[
µ>,α2

>]>; let Ω be the variance of this vector,
assuming it exists.

Given n observations of x, consider the simple sample estimate[
µ̂>, α̂2

>
]>

=df
1

n

n∑
i

[
x>,x2>

]>
.

Under the multivariate central limit theorem [166]

√
n

([
µ̂>, α̂2

>
]>
−
[
µ>,α2

>]>) N (0,Ω) . (4.23)
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Let ζ̂ be the sample Sharpe ratio computed from the estimates µ̂ and α̂2: ζ̂i =

(µ̂i − r0) /
√
α̂2,i − µ̂2

i . By the multivariate delta method,

√
n
(
ζ̂ − ζ

)
 N

0,

(
dζ

d[µ>,α2
>]
>

)
Ω

(
dζ

d[µ>,α2
>]
>

)> . (4.24)

Here the derivative takes the form of two p× p diagonal matrices pasted together side
by side:

dζ

d[µ>,α2
>]
> =

[
Diag

(
α2−µr0

(α2−µ2)3/2

)
Diag

(
r0−µ

2(α2−µ2)3/2

) ]
,

=
[

Diag
(
σ+µζ
σ2

)
Diag

(
−ζ
2σ2

) ]
.

(4.25)

where Diag (z) is the matrix with vector z on its diagonal, and where the vector
operations above are all performed elementwise, where we define the vector σ =df(
α2 − µ2

)1/2
, with powers taken elementwise.

In practice, the population values, µ, α2, Ω are all unknown, and so the asymptotic
variance has to be estimated, using the sample. Letting Ω̂ be some sample estimate
of Ω, taken from estimating the covariance of the samples of x and x2 stacked, using
Equation 4.25 we have the approximation

ζ̂ ≈ N

ζ, 1

n

[
Diag

(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

) ]
Ω̂

 Diag
(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

)  , (4.26)

where we have plugged in sample estimates. [99, 111]

Example 4.2.1 (Elliptically distributed returns). Consider the case where x is drawn
from an elliptical distribution with mean µ, covariance Σ, and kurtosis factor κ. When
returns are Gaussian, κ = 1. Then we have

Ω =

[
Σ 2Σ Diag (µ)

2 Diag (µ) Σ (κ− 1) diag (Σ) (diag (Σ))
>

+ 2κΣ� Σ + 4 Diag (µ) Σ Diag (µ)

]
.

(4.27)
cf. Exercise 4.2.

Let R be the correlation matrix of the returns, defined as

R =df Diag
(
σ−1

)
Σ Diag

(
σ−1

)
, (4.28)

where σ is the (positive) square root of the diagonal of Σ. Then Equation 4.26 becomes

ζ̂ ≈ N
(
ζ,

1

n

(
R +

κ− 1

4
ζζ> +

κ

2
Diag (ζ) (R� R) Diag (ζ)

))
. (4.29)

cf. Exercise 4.36, and Exercise 4.37. Note how in the case of scalar Gaussian returns,
this reduces to Equation 3.25.

a
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4.2.1. Frequentist analysis

Equation 4.26 can be used to perform hypothesis tests and construct confidence inter-
vals with approximately nominal coverage. To be explicit, we outline those procedures
here.

test of single contrast on multiple signal-noise ratios Suppose v is a fixed p-vector,
and c a fixed scalar. Then to test the null hypothesis:

H0 : v>ζ = c versus H1 : v>ζ ≤ c,

we first compute ζ̂, then estimate Ω̂, either by the empirical covariance of the stacked
vector of samples of x and x2, or some other method. Then reject the null if the
statistic

z =
v>ζ̂ − c√√√√√nv>

[ Diag
(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

) ]
Ω̂

 Diag
(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

) v
is less than zα, the α quantile of the standard normal distribution. Alternatively, if
one assumes returns are drawn from an elliptical distribution, instead use the statistic

z =
v>ζ̂ − c√

nv>
(

R̂ + κ̂−1
4 ζ̂ζ̂

>
+ κ̂

2 Diag
(
ζ̂
)(

R̂� R̂
)

Diag
(
ζ̂
))
v,

where κ̂ and R̂ are sample estimates of the kurtosis factor and correlation matrix
respectively.

test of multiple signal-noise ratios Suppose ζ0 is some fixed p-vector. Then to test
the null hypothesis:

H0 : ζ = ζ0 versus H1 : ζ 6= ζ0,

we first compute ζ̂, then estimate Ω̂ as described above. Then reject the null if the
statistic

c2 = n
(
ζ̂ − ζ0

)>[ Diag
(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

) ]
Ω̂

 Diag
(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

) −1 (
ζ̂ − ζ0

)
(4.30)
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is greater than χ2
1−α (p), the 1 − α quantile of the chi-square distribution with p

degrees of freedom. Alternatively, if one assumes returns are drawn from an elliptical
distribution, instead use the statistic

c2 = n
(
ζ̂ − ζ0

)>(
R̂ +

κ̂− 1

4
ζ̂ζ̂
>

+
κ̂

2
Diag

(
ζ̂
)(

R̂� R̂
)

Diag
(
ζ̂
))−1 (

ζ̂ − ζ0

)
,

(4.31)
where κ̂ and R̂ are sample estimates of the kurtosis factor and correlation matrix
respectively.

Similarly to construct 1− α confidence ellipsoids on ζ, one takesζ0

∣∣∣∣∣∣∣
(
ζ̂ − ζ0

)>
 Diag

(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

) >Ω̂

 Diag
(
σ̂+µ̂ζ̂
σ̂2

)
Diag

(
−ζ̂
2σ̂2

) 

−1 (

ζ̂ − ζ0

)
≤
χ2

1−α (p)

n

 .

Example 4.2.2 (Asymptotic Sharpe ratio of SMB and HML). Consider the returns of
two of the Fama French factors, SMB and HML, introduced in Example 1.2.1. Based
on monthly returns from Jan 1927 to Dec 2020, we compute

[
µ>,α2

>]> =


0.21
0.32
10.19
12.40

 , 1

n
Ω̂ =


0.01 0.00 0.06 0.03
0.00 0.01 0.03 0.09
0.06 0.03 1.95 0.82
0.03 0.09 0.82 2.87

 .
Here the units of µ are in %mo.−1, and those of α2 are %2mo.−1. We plug in the
sample estimates to get the estimate of the derivative:

dζ̂

d
[
µ̂>, α̂2

>
]> ≈ [0.315 0.000 −0.003 0.000

0.000 0.288 0.000 −0.004

]
.

The Sharpe ratios are computed as[
SMB HML
0.065 0.092

]
mo.−1/2.

The estimated standard-error variance-covariance of the Sharpe ratio of the two
returns is  SMB HML

SMB 0.00080 0.00006
HML 0.00006 0.00076

 .
Thus, for example, taking the SMB marginal, we suppose the observed Sharpe ratio
is nearly normally distributed around the true value with standard deviation approx-
imately 0.0283.

To test the null hypothesis that +1SMB − 1HML = 0.01 versus the alternative
+1SMB− 1HML ≤ 0.01, we estimate the test statistic as z = −0.9648, which is just
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a bit bigger than the critical value of z0.05 = −1.6449, and we fail to reject the null
hypothesis.

To test the null hypothesis that both Sharpe ratios are equal to zero, we compute
the test statistic c2 = 15.43 which is bigger than χ2

0.95 (2) = 5.99, and we reject the
null hypothesis. To instead test the null hypothesis that both Sharpe ratios are equal
to 0.1mo.−1/2, we compute c2 = 1.55, and fail to reject at the 0.05 level.

One is tempted to plot confidence ellipsoids around for the signal-noise ratios. How-
ever, in this case the estimated standard errors of the two factors are nearly the same,
and their estimated correlation is low. Thus the confidence ellipsoids strongly resemble
a circle centered at (0.0653, 0.0919). We leave it as an exercise for the reader to draw
such a circle. a
Example 4.2.3 (Correlation of errors, Sharpe ratio of Fama-French factors). The
Sharpe ratio of all four Fama French factors monthly returns from Example 1.2.1
were computed, using monthly returns from Jan 1927 to Dec 2020. The estimated
standard error variance-covariance matrix of the computed Sharpe ratios, converted
to a correlation matrix is computed as:

Mkt SMB HML UMD
1.0000 0.3054 0.1510 −0.2429
0.3054 1.0000 0.0756 −0.1639
0.1510 0.0756 1.0000 −0.3506
−0.2429 −0.1639 −0.3506 1.0000

 .
cf. Exercise 4.13. a

We defer a Bayesian analysis to the more general case of functions of signal-noise
ratios, given in Section 4.3.2.

4.2.2. Scalar case

For the p = 1 case, Ω takes the form

Ω =

[
α2 − µ2 α3 − µα2

α3 − µα2 α4 − α2
2

]
,

=

[
σ2 µ3 + 2µσ2

µ3 + 2µσ2 µ4 + 4µ3µ+ 4σ2µ2 − σ4

]
,

=

[
σ2 σ2 (σγ1 + 2µ)

σ2 (σγ1 + 2µ) σ4
(
µ4

σ4 − 3 + 2
)

+ 4σ3µµ3

σ3 + 4σ2µ2

]
,

= σ2

[
1 σγ1 + 2µ

σγ1 + 2µ σ2 (γ2 + 2) + 4σµγ1 + 4µ2

]
.

(4.32)

where αi is the uncentered ith moment of x, µi is the centered ith moment of x, γ1 is
the skew, and γ2 is the excess kurtosis of x. In this case the derivative of the scalar
signal-noise ratio with respect to the first and second moments is

dζ

d[µ, α2]
> =

[
σ+µζ
σ2 − ζ

2σ2

]
. (4.33)
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After much algebraic simplification (Exercise 4.26), the asymptotic variance of
Sharpe ratio is given by Mertens’ formula, Equation 3.28:

ζ̂ ≈ N
(
ζ,

1

n

(
1− ζγ1 +

γ2 + 2

4
ζ2

))
. (4.34)

Note that Mertens’ equation applies even though our definition of Sharpe ratio includes
a risk-free rate, r0. It should be stressed that the signal-noise ratio, skew and excess
kurtosis appearing in Equation 4.34 are population values, which are unknown in
practice. Typically the standard error is estimated using the plug-in method where
sample estimates of these quantities are used in their place. Estimation error in those
sample estimates has an unknown affect on the standard error computation, but it is
likely to be very small. (See Section 4.6.) Note also that the skew and excess kurtosis
are zero for the normal distribution, in which case Mertens’ formula reduces to the
‘usual’ standard error estimate given by Johnson and Welch, Equation 3.24.

Example 4.2.4 (Mertens versus vanilla standard error). Consider the returns of the
Market, introduced in Example 1.2.1. Based on monthly returns from Jan 1927 to
Dec 2020, the Sharpe ratio is computed as 0.61 yr−1/2. The standard error under the
classical vanilla approximation, Equation 3.24, is estimated to be 0.104 yr−1/2, while
under Equation 3.28, using the sample skew and excess kurtosis, it is estimated as
0.106 yr−1/2. There is no appreciable difference in these standard error estimates.

a

4.2.3. Asymptotic Bias and Variance of the Sharpe ratio

Equation 4.34 gives the asymptotic distribution of the scalar Sharpe ratio. In particu-
lar, it claims that the Sharpe ratio is asymptotically unbiased. For small n, however,
this approximation may be too coarse. One can derive approximations of the bias of
the Sharpe ratio involving the (typically unknown) higher order moments of returns.

While the sample mean is unbiased, the presence of the inverse square root of the
sample variance in the Sharpe ratio introduces some bias. Consider the Taylor expan-
sion of x−1/2:

1√
x+ ε

≈ 1√
x
− 1

2

1

x3/2
ε+

3

8

1

x5/2
ε2 + . . .

Now let σ̂2 = σ2 (1 + z) for some random variable z. Then

1√
σ̂2

=
1

σ
√

1 + z
≈ 1

σ

(
1− 1

2
z +

3

8
z2 + . . .

)
.

Letting α̂i be the sample ith moment, e.g., α̂2 = 1
n

∑
1≤i≤n xi

2, we can express z as

z =
n
(
α̂2 − µ̂2

)
σ2 (n− 1)

− 1.

Then

ζ̂ =
µ̂

σ̂
≈ µ̂

σ

1− 1

2

n
(
α̂2 − µ̂2

)
σ2 (n− 1)

+
1

2
+

3

8

(
n
(
α̂2 − µ̂2

)
σ2 (n− 1)

− 1

)2

+ . . .
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Taking expectations, and omitting higher order terms for simplicity, we have

E
[
ζ̂
]

= ζ + E

[
−1

2

µ̂n
(
α̂2 − µ̂2

)
σ3 (n− 1)

+
µ̂

2σ
+ . . .

]

Using facts about expectations of products of raw sample moments (cf. Exercise 4.33),
the bias of the Sharpe ratio can be expressed as

E
[
ζ̂
]
− ζ = − 1

2σ3

n

n− 1

(
n− 1

n2
µ3 +

n− 1

n
µσ2

)
+

1

2
ζ + . . . ,

= −1

2

(
1

n

µ3

σ3
+ ζ

)
+

1

2
ζ + . . . ,

= −1

2

γ1

n
+ . . . ,

(4.35)

where γ1 = µ3/σ
3 is the skew.

Higher order formulæ, due to Bao, can be found by taking more terms in the Taylor
expansion. [12] These are

E
[
ζ̂
]
− ζ ≈ − γ1

2n
+

3ζ

8n
(2 + γ2) , (4.36)

E
[
ζ̂
]
− ζ ≈ − γ1

2n
+

3ζ

8n
(2 + γ2) +

3

8n2

(
γ3 − γ1 −

5

2
γ1γ2

)
(4.37)

+
ζ

32n2

(
49− 10γ4 − 15γ2 − 40γ1

2 +
105γ2

2

4

)
,

where γi are the standardized higher order cumulants. In particular, γ1 is the skew
and γ2 is the excess kurtosis of returns. The formulægiven here involve the population
cumulants, which typically are not be known. Rather when the bias is estimated,
sample estimates of the mean, variance, and higher order cumulants are used instead.

Example 4.2.5 (Higher order bias, Market). Consider the returns of the Market, in-
troduced in Example 1.2.1. Based on monthly returns from Jan 1927 to Dec 2020, the
Sharpe ratio is computed as 0.61 yr−1/2. Using sample estimates for the cumulants,
we estimate the bias of the Sharpe ratio to be 0.0019 yr−1/2 via Equation 4.36; and
0.0019 yr−1/2 via Equation 4.37, which are both very small. For example, the lat-
ter is around 0.307% of the computed Sharpe ratio, and around 1.81% of the vanilla
standard error estimate.

If we restrict our attention to the period of 96 months from Jan 2013 to Dec 2020,
then we compute a Sharpe ratio of 1.1 yr−1/2, and compute a higher order estimate
of the bias of 0.0198 yr−1/2, which is around 1.8% of the computed Sharpe ratio, and
around 5.45% of the standard error. a
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The same approach was used to find a higher order formula for the standard error,

Var
(
ζ̂
)

=
1

n

(
1 +

2 + γ2

4
ζ2 − γ1ζ

)
+

ζ2

32n2

(
76 + 12γ2 − 12γ4 − 48γ1

2 + 39γ2
2
)

+
5ζ

4n2
(γ3 − 3γ2γ1) +

1

4n2

(
8 + 7γ1

2
)

+ . . .

(4.38)

The n−1 term is Mertens’ approximation of the variance. Again, the formula involves
typically unknown population cumulants which have to be estimated in practice. It
is not clear under which conditions using Equation 4.38 should be preferred to using
Merten’s standard error, as the higher order cumulants (γ4 is the sixth standardized
cumulant) must be estimated from the data. Moreover, since the additional terms
are multiplied by n−2, they should only make a difference when n is relatively small,
which is exactly when estimating higher order cumulants would be difficult.

Example 4.2.6 (Bao, Mertens, vanilla standard errors). Continuing Example 4.2.4,
we look at monthly returns of the Market factor from Jan 1927 to Dec 2020. As
above, the standard error under Equation 3.24, is around 0.1039 yr−1/2, while by
Merten’s approximation, it is estimated as 0.1057 yr−1/2. Via the higher order formula,
Equation 4.38, it is estimated as 0.106 yr−1/2. Again, there is no appreciable difference
in the standard error estimates.

If we restrict our attention to the period of 96 months from Jan 2013 to Dec 2020,
then the vanilla standard error is estimated as 0.362 yr−1/2; Merten’s formula gives
0.391 yr−1/2; Bao’s formula gives 0.398 yr−1/2.

a

Confidence and Prediction Intervals Via any of the variance formulations, Bao,
Mertens or vanilla (respectively, Equation 4.38, Equation 3.28, and Equation 3.24),
one can estimate the standard error of the Sharpe ratio. These require one to plug in
estimates of the signal-noise ratio, and perhaps higher order moments. As outlined in
Section 3.5.9, a confidence interval can be inflated to a prediction interval via a simple
formula, namely the factor given in Equation 3.40.

4.3. Asymptotic distribution of functions of multiple
Sharpe ratios

Now let g be some vector valued function of the vector ζ. Applying the delta method,

√
n
(
g
(
ζ̂
)
− g (ζ)

)
 N

0,

(
dg

dζ

dζ

d[µ>,α2
>]
>

)
Ω

(
dg

dζ

dζ

d[µ>,α2
>]
>

)> (4.39)

For example, if one wanted to test the hypothesis that the signal-noise ratios of the
p assets are equal, one would let g (·) be the function which constructs the p − 1
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differences:
g (ζ) =

[
ζ1 − ζ2, . . . , ζp−1 − ζp

]>
. (4.40)

We will, however, consider the case of general g (·).

4.3.1. Frequentist analysis

We assume g (·) is defined such that it equals zero under the null. Asymptotically,
under the null hypothesis that g (ζ) = 0,

ng
(
ζ̂
)>(dg

dζ

dζ

d[µ>,α2
>]
>

)
Ω

(
dg

dζ

dζ

d[µ>,α2
>]
>

)>−1

g
(
ζ̂
)
∼ χ2 (ν) , (4.41)

where ν is the rank of the matrix dg
dζ at ζ.

To test the null hypothesis:

H0 : g (ζ) = 0 versus H1 : g (ζ) 6= 0,

first compute the test statistic

x2 = ng
(
ζ̂
)>(dg

dζ

dζ

d[µ>,α2
>]
>

)
Ω̂

(
dg

dζ

dζ

d[µ>,α2
>]
>

)>−1

g
(
ζ̂
)
. (4.42)

Then reject if x2 ≥ χ2
1−α (ν) the 1 − α quantile of the chi-square distribution with

degrees of freedom ν equal to the rank of the matrix dg
dζ at ζ.

This test was proposed by Wright et al. [174] The same test statistic was proposed
by Leung and Wong for the g (·) given in Equation 4.40. [96] However, Leung and
Wong propose that one reject if

(n− p+ 1)

(n− 1) (p− 1)
x2 ≥ f1−α (p− 1, n− 1) , (4.43)

where f1−α (p− 1, n− 1) is the 1−α quantile of the F distribution with p−1 and n−1
degrees of freedom. Write et al. find that the chi-square test gives closer to nominal
coverage under the null than the F-test when returns are fat-tailed, even for large n.
See also Exercise 4.15.

Again we compute the estimated covariance Ω̂ as described in Section 4.2, either by
assuming elliptical returns and using Equation 4.27, or by computing the sample covari-

ance of the vector of returns ‘stacked’ with elementwise squared returns,
[
x>,x2>

]>
.

Ledoit and Wolf propose computing Ω̂ using HAC estimators or bootstrapping on the

sample of stacked vectors
[
x>,x2>

]>
. [89]
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For the case of scalar-valued g (e.g., for comparing p = 2 assets), one can construct
a two-sided test via an asymptotic t-approximation:

√
ng
(
ζ̂
)(dg

dζ

dζ

d[µ>,α2
>]
>

)
Ω

(
dg

dζ

dζ

d[µ>,α2
>]
>

)>− 1
2

∼ t (n− 1) . (4.44)

In all the above, one can construct asymptotic approximations of the test statistics
under the alternative, allowing power analysis or computation of confidence regions on
g (ζ).

Following the rejection of the null of equal signal-noise ratios, one may be interested
in testing which of the assets have different signal-noise ratios. This is via a post hoc
test, cf. Section 5.2.1.

Example 4.3.1 (Equality of signal-noise ratios Fama-French factors). Consider the four
Fama French factors from Example 1.2.1. Based on monthly returns from Jan 1927 to
Dec 2020, the Sharpe ratios were computed as

ζ̂ =

[
Mkt SMB HML UMD

0.1773 0.0653 0.0919 0.1377

]
mo.−1/2,

and thus the differences in Sharpe ratios were computed as

g
(
ζ̂
)

=
[
0.1120 −0.0266 −0.0458

]
mo.−1/2.

The covariance matrix of the error was estimated as

Σ̂1/2 =df

(
dg

dζ

dζ

d[µ>,α2
>]
>

)
Ω̂

(
dg

dζ

dζ

d[µ>,α2
>]
>

)>∣∣∣∣∣∣
µ=µ̂,α2=α̂2

,

≈

 1.3570 −0.6802 0.1928
−0.6802 1.6200 −0.9948
0.1928 −0.9948 3.2058

mo.−1.

The test statistic is then computed as 11.9. Under the null hypothesis of equal
signal-noise ratios, this is asymptotically distributed as a χ2 (3). This corresponds to
a p-value of 0.0076, and a Frequentist might narrowly reject the null hypothesis of
equal signal-noise ratios.

Using the F-test, the test statistic is essentially divided by 3, resulting in a putative
F (3, 1125) statistic under the null. The test statistic is computed as 3.97, with a
p-value of 0.0079, little substantive difference.

Using the HAC estimator of covariance, the chi-squared test statistic is computed
as 9.02, corresponding to a p-value under the null of 0.029. A Frequentist would then
narrowly fail to reject the null of equal signal-noise ratios. See also Example 5.2.2.

a
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Example 4.3.2 (Equality of signal-noise ratios, HML and SMB). Continuing Exam-
ple 4.2.2, consider the returns of the Fama French factors, SMB and HML. Based on
monthly returns from Jan 1927 to Dec 2020, we compute the difference in Sharpe ratios
of SMB and HML as −0.027mo.−1/2. Under the null hypothesis of equal signal-noise
ratios, the asymptotically t statistic of Equation 4.44 is computed as −0.7, which is
distributed as a t (1127) under the null, corresponding to a p-value of 0.76. There is
little evidence to suggest either of SMB or HML has a higher signal-noise ratio than
the other. a
Example 4.3.3 (Equality of two signal-noise ratios, Normally distributed returns). Con-
sider the case where of two assets where x takes a bivariate normal distribution. Let
ρ be the correlation between the two returns. Suppose the signal-noise ratios of the
two assets are, respectively, ζ (1 + ε) and ζ. Suppose we are testing for equality of
signal-noise ratio, so let g be the difference function. As noted in Example 4.2.1,
ζ̂ ≈ N

(
ζ, 1

n

(
R + 1

2 Diag (ζ) (R� R) Diag (ζ)
))
. Then Equation 4.39 becomes[

ζ̂1 − ζ̂2
]
 N

(
εζ,

2

n
(1− ρ) +

ζ2

2n

(
1 + (1 + ε)

2 − 2ρ2 (1 + ε)
))

. (4.45)

So for high correlation, the differences in Sharpe ratios will be very small. See also
Exercise 4.28.

Figure 4.4.: The empirical standard deviation for the difference of Sharpe ratios of two
correlated normally distributed returns is shown for different values of the
correlation, ρ. Each point represents 10,000 simulations of 252 days of
normally distributed returns. The signal-noise ratios of the two strategies
are ζ = 1yr−1/2 and ζ (1 + ε) with ε = 0.02, assuming 252 days per year.
The plotted line is the theoretical value from Equation 4.45, not a fit of
the data.
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To confirm the findings of Equation 4.45, for different values of ρ, 10000 simulations
of 252 days of correlated returns were generated, with ζ = 1yr−1/2 and ε = 0.02,
assuming 252 days per year. The standard deviation of the differences in Sharpe
ratios was computed for each value of ρ, and plotted versus ρ in Figure 4.4. The
relationship of Equation 4.45 is given as a line, and fits the experimental data rather
well.

a
Caution. The test for equality of signal-noise ratios, as described by Leung and Wong,
and Wright et al. is designed to deal with correlation of returns. However, as demon-
strated in Example 4.3.3 it can exhibit very high power when the returns series are
highly positively correlated, deeming very small differences in Sharpe ratios as ‘signifi-
cant.’ While a statistical test with high power sounds like a practitioner’s dream, it is
likely to be completely confounded by omitted variable bias. Unless you are sure that
your returns are not affected by an omitted variable (and are you really?), take great
care in interpreting the results of this test when returns are highly correlated.

4.3.2. Bayesian analysis

The approximation of Equation 4.39 can be used in a Bayesian framework as well. [56,
114] To stay within the usual Gaussian framework, consider the asymptotic distribution

of g
(
ζ̂
)

as being approximately multivariate normal. That is, if one observes the

sample statistic ζ̂ (either for the in-sample observations, or some future observations,
say), based on a sample of size n, then simply take the following as true, even though
it is only an approximation:

g
(
ζ̂
)
∼ N

(
g (ζ) ,

1

n
B

)
. (4.46)

The parameter g (ζ) is of primary interest, and B is a nuisance. Let us suppose there
are some prior beliefs on g (ζ) and B. We start with a Normal-Inverse Wishart model,

B ∝ IW (B0,m0) ,

g (ζ) |B ∝ N
(
a0,

1

l0
B

)
.

(4.47)

By ‘IW (B0,m0)’, we mean an inverse Wishart distribution with matrix parameter B0

and degrees of freedom m0. Thus B ∝ IW (B0,m0) means that the prior probability
on B is proportional to

p (B) ∝ |B|−(m0+p+1)/2
exp

(
−1

2
tr
(
B0B−1

))
, (4.48)

where p is the number of elements in the vector g (ζ). Another way of stating this is
that X ∝ IW (Ψ,m) means that X−1 takes a Wishart distribution with scale matrix
Ψ−1 and m degrees of freedom. (See Section 1.3.4.)
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Via Equation 1.14, the prior marginal distribution of g (ζ) is that of a multivariate
t, written as

g (ζ) ∼ T
(
m0 − d+ 1,

B0

l0 (m0 − d+ 1)
,a0

)
.

(See Section 1.3.5.)
The normal prior on g (ζ) means that

p (g (ζ)) |B ∝
∣∣∣∣Bl0
∣∣∣∣−1/2

exp

(
−1

2
(g (ζ)− a0)

>
(B/l0)

−1
(g (ζ)− a0)

)
. (4.49)

Having observed n observations, and computing µ̂, α̂2, and thus ζ̂, as well as esti-
mating the overall covariance Ω̂, consider the approximation of Equation 4.39 as being
exact, and furthermore suppose that the estimated covariance from that equation takes
a Wishart distribution with n degrees of freedom. Letting

Σ̂1/2 =df

(
dg

dζ

dζ

d[µ>,α2
>]
>

)
Ω̂

(
dg

dζ

dζ

d[µ>,α2
>]
>

)>∣∣∣∣∣∣
µ=µ̂,α2=α̂2

, (4.50)

we are assuming that nΣ̂1/2 is Wishart with parameter B and n degrees of freedom.

Thus the joint likelihood of g
(
ζ̂
)

and Σ̂1/2 is

p
(
g
(
ζ̂
)
, Σ̂1/2

)
∝

∣∣∣Σ̂1/2

∣∣∣n−p−2
2

|B|n/2
exp

(
−1

2
tr
(
nΣ̂1/2B−1

))
×

exp

(
−1

2

(
g (ζ)− g

(
ζ̂
))>(B

n

)−1 (
g (ζ)− g

(
ζ̂
)))

.

(4.51)

The posterior distribution is then (cf. Exercise 4.30)

B ∝ IW (B1,m1) ,

g (ζ) |B ∝ N
(
a1,

1

l1
B

)
,

(4.52)

where

l1 = l0 + n,

a1 =
l0a0 + ng

(
ζ̂
)

l1
,

m1 = m0 + n,

B1 = B0 + nΣ̂1/2 +
l0n

l1

(
g
(
ζ̂
)
− a0

)(
g
(
ζ̂
)
− a0

)>
.

(4.53)
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The posterior marginal distribution of g (ζ) is that of a multivariate t, written as

g (ζ) ∼ T
(
m1 − d+ 1,

B1

l1 (m1 − d+ 1)
,a1

)
.

Example 4.3.4 (Difference of signal-noise ratios Fama-French factors, Bayesian anal-
ysis). We continue the analysis of Example 4.3.1, but as a Bayesian. We analyze
the difference of signal-noise ratios, Market minus SMB, SMB minus HML, and HML
minus UMD respectively. We take the Bayesian prior to be

l0 = 60mo.,

a0 = [0, 0, 0]
>

mo.−1/2,

m0 = 20,

B0 =

20.00 0.00 0.00
0.00 20.00 0.00
0.00 0.00 20.00

 .
(4.54)

Having observed the Fama French monthly returns data from from Jan 1927 to Dec
2020, we estimate, as in Example 4.3.1,

g
(
ζ̂
)

= [0.112,−0.0266,−0.0458]
>

mo.−1/2,

Σ̂1/2 =

 1.3570 −0.6802 0.1928
−0.6802 1.6200 −0.9948
0.1928 −0.9948 3.2058

mo.−1.

Combining this with the prior above, we have the posterior parameters

l1 = 1188mo.,

a1 = [0.1063,−0.0252,−0.0435]
>

mo.−1/2,

m1 = 1148,

B1 =

1551.37 −767.43 217.17
−767.43 1847.43 −1122.11
217.17 −1122.11 3636.31

 .
(4.55)

For sufficiently large m1, the belief in B is highly concentrated around the mean
value of the inverse Wishart, in this case B1/ (m1 − 3− 1). We compute this to be

1

m1 − 3− 1
B1 =

 1.3561 −0.6708 0.1898
−0.6708 1.6149 −0.9809
0.1898 −0.9809 3.1786

mo.−1.

As expected, this is not substantively different from Σ̂1/2, as the number of pseudo-
observations in the prior is small compared to the number of actual observations.
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To explore the implications of this posterior, consider the Market minus SMB ele-
ment. Our posterior belief is that the difference in signal-noise ratios of Market minus
SMB is approximately normally distributed with mean 0.1063mo.−1/2 and standard
deviation around 0.0338mo.−1/2. In Example 4.3.1, we estimated the difference to be
0.112mo.−1/2, with estimated standard error around 0.0347mo.−1/2. We draw 1000
draws from the posterior, finding the minimal value of the difference in signal-noise
ratios drawn is 0.0183mo.−1/2.

a

4.4. † The ex-factor Sharpe ratio for (non-i.i.d.)
Gaussian and Elliptical returns

We will now consider the sensitivity of the ex-factor Sharpe ratio of Equation 2.10 to
i.i.d. assumptions, but still assuming Gaussian returns. This is rather more compli-
cated than the vanilla Sharpe ratio. Here we abuse the ‘augmented form’ of vectors,
which we will use later to analyze the distribution of portfolios. [121]

Recall the setup leading to Equation 2.10: we have a scalar return xi, which is
aligned with a l-vector, f i, which typically contains one element that is a constant 1.
We will consider f to be random, which matches typical usage. Define

x̃i =df

[
xi,f i

>
]>
. (4.56)

Define the uncentered second moment of x̃ as

Θ =df E
[
x̃x̃>

]
. (4.57)

Given a sample of size n of returns and corresponding factors, we can define X̃ as
the n × 1 + l matrix whose rows are x̃1, x̃2, . . . , x̃n. The vanilla sample estimate7 of
Θ is

Θ̂ =df
1

n

∑
i

x̃ix̃i
> =

1

n
X̃>X̃. (4.58)

With some work we can extract the ex-factor Sharpe ratio from some transformations
of Θ̂. Note that since Θ̂ is a simple average, it is unbiased.

Now note that

Θ =

[
σ2 + β>Γfβ β>Γf

Γfβ Γf

]
, (4.59)

where Γf =df E
[
ff>

]
. Simple matrix multiplication (Exercise 4.21) confirms that

the inverse of Θ is

Θ−1 =

[
σ−2 −β>σ−2

−βσ−2 Γf
−1 + σ−2ββ>

]
, (4.60)

7i.e., the one with n in the denominator, instead of, say n− l. Typical estimators of the regression
coefficient may use a differrent denominator, an immaterial difference for sufficiently large n.
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and the Cholesky factor of that inverse is

Θ−1/2 =

[
σ−1 0

−βσ−1 Γf
−1/2

]
. (4.61)

The ex-factor signal-noise ratio (cf. Equation 2.10) can thus be expressed as

ζg =
β>v − r0

σ
= − tr

(
e1

[
r0,v

>]Θ−1/2
)
. (4.62)

The sample ex-factor Sharpe ratio takes the same form in the sample analogue:

− tr
(
e1

[
r0,v

>] Θ̂−1/2
)
→ ζ̂g.

For fixed r0, v, define the function g (·) by

g
(

Θ̂
)

=df − tr
(
e1

[
r0,v

>] Θ̂−1/2
)
. (4.63)

Example 4.4.1 (ex-factor Sharpe ratio on Fama-French factors). Consider the four
Fama French factors from Example 1.2.1. We will model UMD as a linear combination
of Market, SMB, HML and an intercept term. Given the 1128 months of data from
Jan 1927 to Dec 2020, we compute

Θ̂ =


UMD Mkt SMB HML intercept
22.54 −8.00 −2.24 −6.61 0.65
−8.00 29.54 5.71 4.80 0.95
−2.24 5.71 10.19 1.50 0.21
−6.61 4.80 1.50 12.40 0.32
0.65 0.95 0.21 0.32 1.00

 bps mo.1

The Cholesky factor of the inverse is

Θ̂−1/2 =


UMD Mkt SMB HML intercept
0.24 0.00 0.00 0.00 0.00
0.05 0.20 0.00 0.00 0.00
0.01 −0.10 0.32 0.00 0.00
0.11 −0.06 −0.04 0.29 0.00
−0.25 −0.15 −0.05 −0.09 1.00

%−1 mo.1/2

Now consider the idiosyncratic return of UMD. That is, we isolate the intercept
portion of the attribution by taking v = [0, 0, 0, 1]

>
%, and we assume r0 = 0%. Via

Equation 4.62 we compute,
ζg = 0.2467mo.−1/2

Via the sample estimate of Ω, and using the delta method, we estimate the standard
error of this to be 0.0331mo.−1/2. In Example 3.5.9 under the assumption that the fac-
tor returns were deterministic, we computed a slightly smaller estimate of the standard
error, 0.0306mo.−1/2.

a
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Now we will consider the effect of the distribution of ζ̂g on assumptions of indepen-
dence, homoskedasticity, etc., but keeping normality of returns. To tame the compu-
tations, some simplifying assumptions are made. We assume that

X̃ ∼ N (M,Σf ⊗ H) , (4.64)

for some n×1 + l matrix M, symmetric positive definite n×n matrix H and symmetric
positive semidefinite8 (1 + l)× (1 + l) matrix Σf . Recall (Section ??) that this means

vec
(

X̃
)
∼ N (vec (M) ,Σf ⊗ H) .

For this characterization to be comparable to the vanilla case, we require M>1n =
nµ and tr (H) = n. Note that the homoskedastic i.i.d. case corresponds to M = 1nµ

>

and H = I.
From these we can compute the expected value and covariance of Θ̂. This will

require heavy use of Isserlis’ theorem. [74] Tedious computation (Exercise 4.20) yields

E
[
Θ̂
]

=
1

n

(
M>M + tr (H) Σf

)
,

Var
(

vec
(

Θ̂
))

=
1

n2
(I + K)

{
M>HM⊗ Σf + Σf ⊗M>HM

+ tr
(
H2
)

Σf ⊗ Σf

}
.

(4.65)

cf. Lemma 9 of Magnus and Neudecker. [105] We will again insist, perhaps pighead-
edly, that the sample estimate only be unbiased in the absence of variation of the mean
value. That is, we take Θ to be the expected value of the expected second moment
under uniform sampling of the x̃i, or

Θ = Ei

[
E
[
x̃ix̃i

>
]]
,

where we sample the x̃i uniformly. This implies that

Θ = Σf + µµ>, (4.66)

and thus Θ̂ is only unbiased when M = 1nµ
>, cf. Exercise 4.22.

Now we proceed as previously, using Taylor’s theorem to claim the following ap-
proximations:

E
[
ζ̂g

]
≈ g

(
E
[
Θ̂
])
,

Var
(
ζ̂g

)
≈

(
dg (Θ)

d vech (Θ)

∣∣∣∣
Θ=E[Θ̂]

)
Var

(
vech

(
Θ̂
))( dg (Θ)

d vech (Θ)

∣∣∣∣
Θ=E[Θ̂]

)>
,

(4.67)

8We can allow elements of f to be deterministic by taking corresponding rows and columns of Σf

to be all zeros.
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where, via Lemma 1.4.6, the derivative can be computed as

dg (Θ)

d vech (Θ)
=
(
K vec

(
e1

[
r0,v

>]))>(L (I + K)

(((
Θ−1/2

)>)−1

⊗Θ

)
L>

)−1

,

(4.68)
where K is the commutation matrix of Definition 1.1.3.

Before proceeding, we check analytically whether this formulation reduces to Equa-
tion 4.13 for the trivial case.

Example 4.4.2 (Homoskedastic, independent returns and Sharpe ratio standard error).
Consider the case where returns are homoskedastic and independent (and thus M =
1µ> and H = I), and where there is a single ‘factor’ identically equal to one. In this
case

Θ =

[
σ2 + µ2 µ

µ 1

]
, and Θ−1/2 =

[
σ−1 0
−ζ 1

]
.

The variance of Θ̂ from Equation 4.65 becomes

Var
(

vech
(

Θ̂
))

=
1

n

 σ4
(
4ζ2 + 2

)
2σ3ζ 0

2σ3ζ σ2 0
0 0 0

 .
The derivative of Equation 4.68 becomes

dg (Θ)

d vech (Θ)
=
[
− ζ

2σ2
1
σ

(
1 + ζ2

)
− ζ

3

2 − ζ
]
.

The approximate variance of Equation 4.67 becomes

Var
(
ζ̂g

)
≈ 1

n

(
1 +

ζ2

2

)
,

i.e., the ‘classical’ approximate standard error of Equation 3.24. Note that this com-
putation is unchanged in the case where r0 6= 0 as long as one defines ζ = (µ− r0) /σ.

This computation is presented as a sympy notebook in Example B.0.1. a

Independent Elliptical Returns We now derive similar results but instead of assum-
ing normal returns, as in Equation 4.64, we assume returns follow an Elliptical distri-
bution. As noted in Section 4.1, we should avoid assuming returns follow an elliptical
distribution across time, as this can cause even uncorrelated returns to be dependent
at arbitrary time separation, and can lead to statistics which do not converge to the
population values.

However, it is attractive to be able to describe the vector x̃i as following an El-
liptical distribution (or distributions), with parameters varying over time. So assume
that x̃i follows an Elliptical distribution with kurtosis factor κi, mean vector µi and
covariance matrix Σi. Note that in the cases where x̃i contains a deterministic 1, the
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corresponding row and column of Σi will be all zero. Define Θi = µiµi
> + Σi. Then

Equation 4.65 is replaced by[121]

E
[
Θ̂
]

=
1

n

∑
i

Θi,

Var
(

vec
(

Θ̂
))

=
1

n2

∑
i

{
(κi − 1)

[
vec (Σi) vec (Σi)

>
+ (I + K) Σi ⊗ Σi

]
+ (I + K)

[
Θi ⊗Θi − µiµi> ⊗ µiµi>

]}
.

(4.69)

4.4.1. Market term, constant expectation

The most general form of the expectation and variance-covariance for the ex-factor
Sharpe ratio presented above yields no simple closed form solution. As a simplifying
assumption, in this section we assume that the factor returns consist of a constant one
and the returns of a ‘Market’, which has mean and volatility of µm and σm respectively.
Define ζm = µm/σm. Suppose that the asset has non-zero beta against the market,
and define ζg as the idiosyncratic mean return divided by the residual volatility. We
further require that M be constant over time, as otherwise the variance-covariance is
too complicated.

M = 1nµ
>,

µ> = [µ+ βµm, 1, µm] ,

Σf =

 β2σ2
m + σ2 0 βσ2

m

0 0 0
βσ2

m 0 σ2
m

 ,
ζm =df

µm
σm

, and ζg =df
µ− r0

σ
.

With Θ = Σf + µµ>, we have

Θ−1/2 =


1
σ 0 0

−ζg
√
ζ2
m + 1 0

−βσ − ζm

σm
√
ζ2m+1

1

σm
√
ζ2m+1

 .
Without variation in M over time, Θ̂ is unbiased for Θ. Via Equation 4.67, ζ̂g is
approximately unbiased for ζg.

Via Equation 4.67, and a lot of algebra, the variance of ζ̂g is

Var
(
ζ̂g

)
≈ 1

n

[
tr
(
H2
)

n

(
ζ2
g

2
+ ζ2

m

)
+

1>H1

n

]
. (4.70)
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4.4.2. Homoskedastic i.i.d. Elliptical returns

For the completely ‘vanilla’ case of homoskedastic, i.i.d. Elliptically distributed re-
turns, plugging the covariance of Equation 4.69 into Equation 4.67 one arrives at the
following equation:

Var
(
ζ̂g

)
≈ 1

n

[
3 (κ− 1)

4
ζ2
g +

ζ2
g

2
+ κζ2

m + 1

]
. (4.71)

Note that 3 (κ− 1) is the excess kurtosis of the marginal returns. One can derive this
equation in the Gaussian case (κ = 1) by taking H in Equation 4.70 to be the identity
matrix. See Example B.0.2.

This nicely generalizes the approximate standard error of Equation 3.24 in the Gaus-
sian case, and Equation 3.28 for unskewed returns. Note that one expects that ζ2

m is
very small or nearly zero9, so the addition of the Market term and the regression
against it does little to increase the variance in estimated Sharpe ratio.

Example 4.4.3 (Standard error of ex-factor Sharpe ratio with Market). To verify Equa-
tion 4.71 in the Gaussian case, for selected values of ζm ranging from 0yr−1/2 to
5yr−1/2, 20,000 simulations were performed. In each simulation, 1260 days of daily
returns of an asset with fixed ex-factor signal-noise ratio of 0.79yr−1/2 and ‘beta’ of 1
against the Market term were drawn; the ex-factor Sharpe ratio was computed, and
the standard deviation over the 20000 simulations was computed. The experiment was
repeated for returns drawn from an Elliptical distribution, a multivariate t distribution
with 6 degrees of freedom, corresponding to κ = 2. The empirical standard errors are
plotted versus ζm in Figure 4.5, along with the theoretical value from Equation 4.71.

See also Exercise 4.25.
a

4.4.3. Homoskedastic autocorrelated Gaussian returns

The homoskedastic, simple autoregressive case of Section 4.1.4 corresponds to Hi,j =
ρ|i−j|. Again, the ex-factor Sharpe ratio is approximately unbiased. The variance of
ζ̂g becomes

Var
(
ζ̂g

)
≈ 1

n

[(
1 + 2

n− 1

n
ρ2 + . . .

)(
ζ2
g

2
+ ζ2

m

)
+

(
1 + 2

n− 1

n
ρ+ . . .

)]
,

≈ 1

n

[(
ζ2
g

2
+ ζ2

m

)
+

1 + ρ

1− ρ

]
,

(4.72)

where we assume that ρ is small enough that ρn is negligible. The variance here is
equivalent to Equation 4.22 for the case of the unattributed model under the small ρ
case, and we see again that the Market term introduces a ζ2

m/n term to the variance.
Again, we see, as in the unattributed case, that a small autocorrelation of ρ inflates
the standard error of the Sharpe ratio by about 200ρ%.

9If ζ2m were large, presumably investors would merely invest in the Market instrument instead.
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Figure 4.5.: The empirical standard error of the ex-factor Sharpe ratio is plotted ver-
sus the Market signal-noise ratio for the case of an asset with a beta of 1
against the Market, and a ex-factor signal-noise ratio of 0.79yr−1/2. Stan-
dard error estimated from 20,000 simulations. Returns are drawn from a
normal distribution, and from a multivariate t distribution with 6 degrees
of freedom. The theoretical values from Equation 4.71 are plotted as a
line for each value of κ.

Example 4.4.4 (Standard error of ex-factor Sharpe ratio with Market, with autocorre-
lation). To verify Equation 4.72, for selected values of ρ ranging from −0.15 to 0.15,
50000 simulations were performed. In each simulation, 1260 days of daily returns of
an asset with fixed ex-factor signal-noise ratio of 0.79yr−1/2 and ‘beta’ of 1 against
the Market term were drawn, where the Market had signal-noise ratio of 1yr−1/2. The
ex-factor Sharpe ratio was computed, and the standard deviation was computed and
plotted in Figure 4.6. We see good agreement of theoretical and empirical standard
errors.

a

4.5. † Asymptotic Distribution of ex-factor Sharpe ratio

Continuing on the work from the previous section, here we consider the asymptotic
distribution of the ex-factor Sharpe ratio, independent of assumptions on the type of
distribution the returns take.

Note that since Θ̂ is a simple average, under mild conditions we can rely on the
central limit theorem to claim that

√
n
(

vech
(

Θ̂
)
− vech (Θ)

)
 N (0,Ω) , (4.73)
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Figure 4.6.: The empirical standard error of the ex-factor Sharpe ratio is plotted versus
ρ, the autocorrelation of errors. The asset has a beta of 1 against the
Market, and a ex-factor signal-noise ratio of 0.79yr−1/2. The Market has a
signal-noise ratio of 1yr−1/2. Empirical standard errors are estimated over
50,000 simulations. The theoretical value from Equation 4.72 is plotted
as a line.

where

Ω = Var
(

vech
(

Θ̂
))

.

In general this variance-covariance matrix, Ω, is unknown, but can be consistently
estimated from the data. As described in Section 4.2, Ω can be estimated via the

sample covariance of vech
(
x̃ix̃i

>
)

; or Ω̂ can be constructed using Equation 4.69 and

sample estimates of µ, Σ and κ.

By the multivariate delta method, we now claim

√
n
(
g
(

Θ̂
)
− g (Θ)

)
 

N

0,

(
dg (Θ)

d vech (Θ)

∣∣∣∣
Θ=E[Θ̂]

)
Ω

(
dg (Θ)

d vech (Θ)

∣∣∣∣
Θ=E[Θ̂]

)> , (4.74)

where the derivative is as given in Equation 4.68.
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4.5.1. Testing the ex-factor Sharpe ratio

From the variance computation, we can compute a Wald statistic to perform hypothesis
testing. To be concrete, for scalar-valued function g (·), to test the hypothesis

H0 : g (Θ) = g0 versus H1 : g (Θ) 6= g0,

one computes the Wald statistic

W =

√
n
(
g
(

Θ̂
)
− g0

)
√(

dg(Θ)
d vech(Θ)

∣∣∣
Θ=E[Θ̂]

)
Ω̂

(
dg(Θ)

d vech(Θ)

∣∣∣
Θ=E[Θ̂]

)> ,

where Ω̂ is some estimate of Var
(

vech
(

Θ̂
))

, and rejects at the α level when W is

greater than z1−α, the 1-α quantile of the standard normal distribution.

Example 4.5.1 (ex-factor Sharpe ratio on Fama-French factors (continued)). Contin-
uing Example 4.4.1, Consider the four Fama French factors from Example 1.2.1. We
model UMD as a linear combination of Market, SMB, HML and an intercept term.
Now consider the idiosyncratic return of UMD. That is, we isolate the intercept por-
tion of the attribution by taking v = [0, 0, 0, 1]

>
%, and we assume r0 = 0%. Via

Equation 4.62 we compute,
ζg = 0.2467mo.−1/2

Via the sample estimate of Ω, and using the delta method, we estimate the standard
error of this to be 0.0331mo.−1/2. The resulting Wald statistic is then W = 7.4469, and
one would reject the null hypothesis that the idiosyncratic part is zero (or negative).

a
Example 4.5.2 (Technology ex-factor signal-noise ratio (continued)). Consider the ex-
factor signal-noise ratio of monthly Technology industry returns against the Market,
as described in Example 3.5.7. Taking v = [0, 1]

>
% and r0 = 0%, we compute, via

Equation 4.62
ζg = 0.0327mo.−1/2

First we estimate Ω by the sample estimate of the covariance of stacked vectors[
x̃>, x̃2>

]>
. With this estimate, using the delta method, we estimated the standard

error of ζg to be 0.0304mo.−1/2. The resulting Wald statistic is then W = 1.0745, and
we fail to reject the null hypothesis that the idiosyncratic part is zero (or negative).

If instead we use Equation 4.69 and sample estimates of µ, Σ, with κ = 1 (assuming
Gaussian returns), the results change very little. We estimate the standard error of
ζg to be 0.0306mo.−1/2, and the Wald statistic to be W = 1.0705. If we feed in κ =
2.8969, which is the average kurtosis of Technology and Market, divided by three, then
the standard error estimate becomes 0.0314mo.−1/2, and the Wald statistic 1.0415.
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Using the delta method with Equation 4.69 should give the same results as using
Equation 4.71 directly. Plugging n = 1104, ζg = 0.0327mo.−1/2, ζm = 0.1727mo.−1/2,
and κ = 2.8969 into Equation 4.71, we get a standard error estimate of 0.0314mo.−1/2,
which is indeed the same.

Recall that in Example 3.5.10, we estimated the standard error of ζg to be
0.0301mo.−1/2. In that exercise we assumed that errors were Gaussian, that the re-
turns of the Market were deterministic, and then adapted the approximate standard
error of the t-distribution. This is nearly the same as the values we compute here via
the delta method using three different estimators of Ω. In this case the extra compu-
tation has not changed our conclusions. For smaller n, however, one might see greater
difference between the estimated standard errors. a

4.5.2. ex-factor Sharpe ratio Prediction Intervals

As in Section 3.5.9, we can construct approximate prediction intervals on functions of
Θ̂. So suppose that for i = 1, 2, Θ̂i is computed on ni independent observations drawn
from the same population. Starting from Equation 4.73, we claim that(

vech
(

Θ̂1

)
− vech

(
Θ̂2

))
 N

(
0,

(
1

n1
+

1

n2

)
Ω

)
, (4.75)

where convergence is jointly in n1 and n2.
Then by the multivariate delta method, we now have(

1

n1
+

1

n2

)− 1
2 (
g
(

Θ̂1

)
− g

(
Θ̂2

))
 

N

0,

(
dg (Θ)

d vech (Θ)

∣∣∣∣
Θ=E[Θ̂]

)
Ω

(
dg (Θ)

d vech (Θ)

∣∣∣∣
Θ=E[Θ̂]

)> , (4.76)

where the derivative is as given in Equation 4.68. This is the same inflation factor
given by Equation 3.40.

4.6. Sharpe ratio and Non-normality, an empirical study

The results of this chapter largely exonerate the sample Sharpe ratio under non-
normality: moderate autocorrelation and heteroskedasticity do not seem to cause great
bias in the Sharpe ratio, nor do they greatly inflate its standard error. The formula
for the standard error of ζ which applies under normality, Equation 3.24, is commonly
used for real world returns, even though Mertens’ formula, Equation 3.28, is more
accurate. However, Mertens’ formula relies on higher order moments which must be
estimated, and thus might be less accurate because of this additional estimation bur-
den. Leaving behind the theoretical findings of the rest of this chapter, I present an
empirical study. Roughly, the goals of this study are to compare these two estimates
of the standard error and present practical guidelines and limitations for their use.
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In this study, I spawn returns according to one of a number of distributions, of a
given sample size and signal-noise ratio, then I use each of three different methods to
construct one-sided lower confidence intervals of a given nominal type I rate, α. I then
record whether the signal-noise ratio falls within the computed confidence interval. If
the test maintains nominal coverage we should see the signal-noise ratio fall outside
the confidence interval at the type I rate, that is, the empirical type I rate should
match the nominal. For each distribution, sample size, and signal-noise ratio, I repeat
this process 106 times, recording the empirical average type I rate. Each simulated
returns series is tested with each combination of method and α.

The probability distributions used are given in Table 4.1, along with their population
skews and excess kurtoses. The distributions are:

1. The normal distribution, with zero skew and excess kurtosis.
2. Student’s t distribution, considered twice, with degrees of freedom ν = 10 and
ν = 4. These are both unskewed. The ν = 10 distribution has moderate kurtosis,
while in the ν = 4 case the kurtosis is infinite.

3. The daily returns of the S & P 500 from 1970-01-05 through 2015-12-31, shifted
and rescaled to be zero mean and unit standard deviation. As shown in Table 4.1,
this distribution has mild negative skew and modest kurtosis. I also sample from
a ‘symmetrized’ S & P 500 distribution, where the absolute value of the daily S
& P returns are given a random sign, which removes the skew, but leaves most
of the kurtosis. When sampling from these distributions, all autocorrelation is
removed.

4. Tukey’s h-distribution, a special case of the ‘g and h distribution’ when g = 0,
for varying values of h. If z is a standard unit normal, then y = µ + zehz

2/2

takes a Tukey h distribution. I consider the cases h ∈ {0.1, 0.2, 0.3}, which yield
unskewed, but progressively more kurtotic distributions.

5. ‘Trio,’ a discrete distribution with three values, a low probability, high-value
payout of v which occurs with probability p, and equally probable payouts of l
and h, each with probability (1− p)/2. Given p and v (with v2 ≤ (1− p)/p), the
values of l and h are chosen so the process has zero mean and unit variance. The
distribution is then shifted and scaled to achieve the target signal-noise ratio and
variance.

6. Draws from the ‘Lambert W × Gaussian’ distribution, with different values of
the skew parameter, δ. [58, 57, 59] If z takes a standard zero mean, unit variance
normal distribution, then y = µ+ zeδz takes a Lambert W × Gaussian distribu-
tion with parameter δ. I consider the cases δ ∈ {0.4, 0.2,−0.2,−0.4,−0.6} with
progressively more negative skews, and with kurtosis monotonic in |δ|.

Again, during the simulations the returns distributions are shifted and rescaled to
have a fixed signal-noise ratio. The signal-noise ratio in the simulations varies from
0yr−1/2 through 2yr−1/2. We simulate the case of observing between 1 through 48
months of daily returns, where a month always consists of exactly 21 days of returns.

I consider three methods of computing confidence intervals:
1. Approximating the standard error by ‘plugging in’ to the form of Equation 3.24,

and assuming approximate normality of the Sharpe ratio. I refer to this as
‘vanilla’ for the vanilla standard error, Equation 3.24
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nickname family param skew kurtosis

normal Gaussian 0 0

t10 Student’s t ν = 10 0 1
t4 Student’s t ν = 4 0 ∞
sp500 SP500 −1.01 25.4
symsp500 Symmetric SP500 0 25.3

trio2 Trio p = 0.02, v = 2.5 0.179 −1.43
trio1 Trio p = 0.01, v = 5 1.14 3.83
trio05 Trio p = 0.005, v = 10 4.92 47.3

tukey1 Tukey’s h h = 0.1 0 5.51
tukey2 Tukey’s h h = 0.2 0 36.2
tukey3 Tukey’s h h = 0.3 0 ∞
lambertp4 Lambert × Gaussian δ = 0.4 2.74 17.8
lambertp2 Lambert × Gaussian δ = 0.2 1.24 5.69
lambertn2 Lambert × Gaussian δ = −0.2 −1.24 5.69
lambertn4 Lambert × Gaussian δ = −0.4 −2.74 17.8
lambertn6 Lambert × Gaussian δ = −0.6 −4.9 58.1

Table 4.1.: The distributions used in the empirical are listed, with theoretical skew
and excess kurtosis of each. The S&P daily returns are sampled from
1970-01-05 through 2015-12-31.

2. Doing the same, but using Mertens’ correction, Equation 3.28, called ‘mertens’.
3. Assuming returns are drawn from a normal and using the quantile function of

the non-central t-distribution to compute confidence intervals. This is referred
to as the ‘t’ method.

In all, I considered 5 values of signal-noise ratio, 7 values of the number of months,
and 16 different returns distributions. This translates into 560 sets of simulations,
each of which consist of 106 replications of generating the returns stream and then
computing confidence intervals for 4 different values of the type I rate for each of the 3
methods considered. The result is a collection of 6720 empirical type I rejection rates.

It is not immediately clear how to evaluate and compare different methods of con-
structing confidence intervals. I compute the ‘conservatism’ of each set of simulations,
defined as the nominal type I rate divided by the empirical rate. This should be
exactly equal to one; larger values indicate the confidence intervals are conservative;
values smaller than 1 indicate the test is anti-conservative. Having computed the con-
servatism, I boxplot them in Figure 4.7 versus distribution skew, with facets for the
number of months observed. In Figure 4.8 the conservatism is boxplotted against the
population excess kurtosis.

One clear trend visible in Figure 4.7 is that all three methods seem to be anti-
conservative for negative skew, and conservative for large positive skew. This is con-
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sistent with what we know of the true standard error of the Sharpe ratio via Equa-
tion 3.28, i.e., that it is smaller when the population skew and the signal-noise ratio
have the same size, and thus the we see a lower type I rate in practice. This is ‘solved’
to some degree by using the Mertens’ method for estimating standard errors, which
sees near-nominal coverage for large absolute skew. Conversely, when the true skew
is near or exactly zero, and thus Equation 3.24 gives the standard error of the Sharpe
ratio to a good approximation, Mertens’ method suffers from its ability to mis-estimate
the skew.

A similar pattern is seen in Figure 4.8, with Mertens’ method giving better coverage
for large excess kurtosis, though not universally, and perhaps worse coverage when the
true population excess kurtosis is zero. Again, this is based on the observation that if
what you assume away when simplifying Mertens’ form to the vanilla form happens to
be true, you come out ahead, otherwise you lose control of your type I rate. Note that
the skew of the S&P 500 returns is apparently sufficiently close enough to zero that
Mertens’ method has worse coverage for small sample sizes and perhaps no better for
large sample sizes.

Mertens Correction

Mertens correction is appropriate when population skew or kurtosis are known
to be large, otherwise the usual standard error is acceptable.

Note that this ‘rule’ is merely a realization of the fact that if you can assume away
something true (e.g., that the population skew is truly zero), you gain inferential
power, and, conversely, if what you assume is false you lose power. We will witness
this rule again.
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Figure 4.7.: The geometric conservatism for each confidence interval is plotted versus
the skew of the returns distribution. Conservatism is defined as the nom-
inal type I rate divided by the empirical rate. Each box is over multiple
values of signal-noise ratio, type I rate, and possibly returns distributions.
Facets represent the number of months of daily returns simulated. The
x axis is not to scale. The boxes are plotted, from left to right, for the
methods ‘vanilla’, ‘mertens’, and ‘t.’ For non-zero skews Mertens’ method
does a better job of maintaining near nominal coverage than the other two
methods, while it seems to perform worse for zero skew.
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Figure 4.8.: The geometric conservatism for each confidence interval is plotted versus
the excess kurtosis of the returns distribution. Conservatism is defined
as the nominal type I rate divided by the empirical rate. Each box is
over multiple values of signal-noise ratio, type I rate, and possibly returns
distributions. Facets represent the number of months of daily returns
simulated. The x axis is not to scale. The boxes are plotted, from left to
right, for the methods ‘vanilla’, ‘mertens’, and ‘t.’
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Exercises
Ex. 4.1 The Market, Heteroskedasticity by quarter Repeat the analysis
of Figure 4.2, but aggregating mean and standard deviation of daily log returns over
quarters.

1. Does the negative relationship still hold? Is it statistically significant?

2. Compute the autocorrelation of quarterly aggregated volatilities.

3. Since volatility seems autocorrelated, and current quarter volatility seems to
be correlated with negative returns, look for a market timing model based on
vol. Lag the quarterly volatilities by one quarter, and scatter quarterly mean
returns against last quarter’s volatility. Is there still a negative relationship? Is
it significant?

** Ex. 4.2 Expectation of products of Elliptical Random Variables
Let x follow an Elliptical distribution with parameters µ, Σ, and kurtosis factor κ
(cf. Section 1.3.2.). In the Gaussian case, we have κ = 1.
An extension of Isserlis’ theorem to Elliptical distributions gives us

E [(xi − µi) (xj − µj) (xk − µk)] = 0,

E [(xi − µi) (xj − µj) (xk − µk) (xl − µl)] = κ (Σi,jΣk,l + Σi,kΣj,l + Σi,lΣj,k) ,

where there may be replication in the indices i, j, k, l. [163]

1. Show that

E [xixjxk] = µiµjµk + µiΣj,k + µjΣi,k + µkΣi,j .

2. Show that

E [xixjxkxl] = κ (Σi,jΣk,l + Σi,kΣj,l + Σi,lΣj,k)

+ µiµjΣk,l + µiµkΣj,l + µiµlΣj,k

+ µjµkΣi,l + µjµlΣi,k + µkµlΣi,j

+ µiµjµkµl

3. Show that

E
[(
x>x

)]
= µ>µ+ tr (Σ) = tr

(
µµ> + Σ

)
.

4. Show that

E
[
x>xx>1

]
= µ>µµ>1 + 2µ>Σ1 + tr (Σ)µ>1.

5. Show that

E
[(
x>1

)3]
=
(
µ>1

)3
+ 3µ>11>Σ1.
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6. Show that
Cov

(
xi, xj

2
)

= 2µjΣi,j .

7. Show that

Cov (xixj , xjxk) = (κ− 1) Σi,jΣk,l + κ (Σi,kΣj,l + Σi,lΣj,k)

+ µiµkΣj,l + µiµlΣj,k + µjµkΣi,l + µjµlΣi,k.

Use this to prove that

Cov
(
xi

2, xj
2
)

= (κ− 1) Σi,iΣj,j + 2κΣi,jΣi,j + 4µiµjΣi,j .

8. Let y = vec
(
xx>

)
. Show that

E [y] = µ⊗ µ+ vec (Σ) .

Show that

Var (y) = (κ− 1)
[
vec (Σ) vec (Σ)

>
+ (I + K) Σ⊗ Σ

]
+ (I + K)

((
µµ> + Σ

)
⊗
(
µµ> + Σ

)
−
(
µµ>

)
⊗
(
µµ>

))
,

where K is the commutation matrix of Definition 1.1.3.

9. Prove Equation 4.27: let y =
[
x>,x2>

]>
, and let Ω be the covariance matrix

of y. Show that Ω equals[
Σ 2Σ Diag (µ)

2 Diag (µ) Σ (κ− 1) diag (Σ) (diag (Σ))
>

+ 2κ (Σ� Σ) + 4 Diag (µ) Σ Diag (µ)

]
.

where Diag (µ) is the matrix with vector µ on its diagonal, and diag (Σ) is the
column vector of the diagonal of Σ.

Ex. 4.3 Sweeping column means Let A be a matrix with n rows (or a col-

umn vector of length n). Show that 11>

n A is the row vector of means of each column

of A. Show that each column of A− 11>

n A is zero-mean.

** Ex. 4.4 More moments of products of Elliptical Random Variables
Let x follow an Elliptical distribution with parameters µ, Σ, and kurtosis factor κ.
Use results from Exercise 4.2 to prove the relationhip in Equation 4.3.

1. Show that

E
[(
x>1

)4]
=
(
µ>1

)4
+ 3κ

(
1>Σ1

)2
+ 6

(
µ>1

)2
1>Σ1.

Use this to prove that

Var
((
x>1

)2)
= (3κ− 1)

(
1>Σ1

)2
+ 4

(
µ>1

)2
1>Σ1.
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2. Show that

E
[(
x>x

)2]
=
(
µ>µ

)2
+ κ (tr (Σ))

2
+ 2κ tr (ΣΣ) + 2µ>µ tr (Σ) + 4µ>Σµ.

Use this to prove that

Var
((
x>x

))
= (κ− 1) (tr (Σ))

2
+ 2κ tr (ΣΣ) + 4µ>Σµ.

3. Show that

E
[(
x>1

)2
x>x

]
=
(
κ1>Σ1 + µ>µ

)
tr (Σ) + 2κ1>Σ21

+
(
µ>µ+ tr (Σ)

) (
µ>1

)2
+ 4

(
µ>1

)
µ>Σ1.

Use this to prove that

Cov
(
x>x,

(
x>1

)2)
= (κ− 1) 1>Σ1 tr (Σ) + 2κ1>Σ21 + 4

(
µ>1

)
µ>Σ1.

** 4. Use the results of the previous three questions to show that

Var

(
x>x−

(
x>1

)2
n

)
= (κ− 1) tr (Σc) tr (Σc)+2κ tr (ΣcΣc)+4 tr

(
µcµc

>Σ
)
,

where µc =df µ− 11>

n µ and Σc =df Σ− 11>

n Σ are the column centered mean
and covariance. This is the bottom corner of Equation 4.3.

Ex. 4.5 Proofs

1. Derive Equation 4.11 from Equation 4.7 assuming κ = 1.

* 2. Derive Equation 4.11 from Equation 4.7 for the case of general κ.

Ex. 4.6 Elliptical marginals over time Let x be an n-vector which follows
an Elliptical distribution with mean zero and covariance parameter Σ = σ2I, and
kurtosis factor κ. Let s2 = x>x/n

1. Show that E
[
s2
]

= σ2.

2. Show that Var
(
s2
)

= σ4
(
κ− 1 + 2κ

n

)
.

3. Confirm that the standard error of s2 does not go to zero as n→∞ by way of
Monte Carlo simulations using draws from a multivariate t distribution with 5
degrees of freedom.

Ex. 4.7 Autocorrelation matrix computations Let Σ be the n × n corre-
lation matrix associated with simple autocorrelation, from Section 4.1.4. That is,
Σi,j = σ2ρ|i−j|.
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1. Show that 1>Σ1 ≈ σ2
(
n 1+ρ

1−ρ + 2ρ
(1−ρ)2

)
for large n. (Hint: write 1>Σ1/σ2 =

n + 2 (n− 1) ρ1 + 2 (n− 2) ρ2 + . . . + 2ρn−1. Then derive approximations for
n
∑
i ρ
i and

∑
i iρ

i−1. For the latter, use calculus.)

2. Show that tr
(
Σ2
)
≈ σ4

(
n 1+ρ2

1−ρ2 + 2ρ2

(1−ρ2)2

)
for large n. (Hint: Use the previous

approximation.)

Ex. 4.8 Autocorrelation and standard error A positive (negative) auto-
correlation inflates (deflates) the standard error of the Sharpe ratio. Can you give
an intuitive explanation for why this is so? How should an investor buy a strongly
mean reverting asset? A strongly trend-following asset?

* Ex. 4.9 Bounds on heteroskedasticity bias Suppose you observe other-
wise homoskedastic returns levered by a fund manager (i.e., the λ = 1 case). The fund
manager can choose leverage l between 1

2 and 2. What is the largest possible value
of the squared coefficient of variation of l? (Note: this corresponds to normalizing to
unit mean, and then computing M2.) Suppose the underlying homoskedastic returns

have signal-noise ratio between 0 and 0.15day−1/2.

1. What is the smallest possible value of the geometric bias, b?

2. What is the largest possible value of the (approximate) variance of the Sharpe
ratio, given in Equation 4.19?

Ex. 4.10 Homoskedastic varying mean returns In Section 4.1.3, we con-
sidered the case where µ and σ2 vary together. Here consider the homoskedastic case,
i.e., where Σ = σ2I, with varying mean: µ = µl, where 1

n1>l = 1. Again, M2 is the
squared coefficient of variation of l.

1. Assuming 0 ≤ µ/σ ≤ 0.2, what is the smallest possible value of b, expressed in
terms of M2?

2. Simplify Equation 4.11 for this case. Express the variance in terms of µ, σ, b
and M2. Is it much different than in the i.i.d. homoskedastic case?

Ex. 4.11 Returns at different frequencies Repeat the exercise of Exam-
ple 4.1.3, but under different situations:

1. Assume you have 10 years of monthly data and 2 years of daily data (at a rate of

253 days per year). Assume r0 = 0, µ = 0.0012day−1, σ = 0.02day−1/2. What
is the bias in the Sharpe ratio? Converting the Sharpe ratio back to daily units,
what is the approximate standard error? If, instead, one had observed 12 years
of daily data, what would the standard error be? Perform 1000 Monte Carlo
simulations to test your work.

2. Assume you have 100 years of yearly data and 20 years of monthly data on
normal returns. Assume r0 = 0, µ = 0.014mo.−1, σ = 0.05mo.−1/2. What
is the bias in the Sharpe ratio? Converting the Sharpe ratio back to monthly
units, what is the approximate standard error? If, instead, one had observed
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120 years of monthly data, what would the standard error be? Perform 1000
Monte Carlo simulations to test your work.

Ex. 4.12 Any unskewed distribution Suppose returns are drawn i.i.d. from
the product of a normal and an independent positive random variable. That is, let

xi = zili + µ,

where zi are i.i.d. standard normal random variables independent of li which are i.i.d.
and positive. Let Mk be the raw kth population moment of li:

Mk =df E
[
lk
]
.

Under these assumptions, the analysis of Section 4.1.3 is relevant with λ = 0, except
here we are using Mk to be the population moments whereas we had previously defined
Mk to be the empirical moment for a given sample. For large n, the empirical moments
will approach the population moments.

1. Find the mean and variance of x. What is the signal-noise ratio of x?

2. Find the skew and kurtosis of x, in terms of the Mk.

3. Using Equation 4.16, what is the expected geometric bias of ζ̂?

4. Using Equation 4.19, write the approximate standard error of ζ̂.

5. Draw n = 104 realizations of a log normal li with M1 = 1 and M2 = e1.
Multiply these by independent normals zi and add µ = 0.001 to get xi, and
compute the signal-noise ratio of the x series. Repeat this 100 times. Confirm
the theoretical bias and standard errors of ζ̂.

* 6. Compute the centered moments of x with respect to Mk. Is it the case that
any unskewed probability distribution admits a representation as the product
of a normal and an independent positive random variable? (The point here is
that the results of Section 4.1.3 are not universally applicable to all unskewed
returns distributions.)

Ex. 4.13 Correlation of Fama-French Sharpe ratio, elliptical returns
Repeat the analysis of Example 4.2.3, but assume the Fama French returns follow an
elliptical distribution, and use Equation 4.29 to compute the variance-covariance of ζ̂.
Take the four Fama French factors monthly returns from Jan 1927 to Dec 2020.

1. Using those returns, estimate the correlation matrix R via the usual sample
estimator.

2. Using those returns, estimate the kurtosis of each series separately. Take the
median value and divide by three to get an estimate of κ.

3. Use Equation 4.29 to compute the variance-covariance of ζ̂.

4. Turn that variance-covariance estimate into a correlation estimate and compare
to the results of Example 4.2.3.
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5. Is elliptical distribution a good assumption for the Fama French returns? Check
by computing the skewness of the ‘HML’ returns, and bootstrapping for signif-
icance. Elliptical distributions have zero skewness.

Ex. 4.14 Equality of Industry signal-noise ratios Use the Leung-Wong
test (Equation 4.41) on the Fama French 5 Industry returns data to test the hypothesis
that the 5 industries have equal signal-noise ratios.

Ex. 4.15 Comparing tests of equality of signal-noise ratios Wright et
al. find that the chi-square test (Inequality 4.42) has closer to nominal coverage
than the F-test (Inequality 4.43) for fat-tailed distributions. Replicate their work.
Set n = 2000, and let p = 5, 10, 20. Draw returns from multivariate normal, and
from the Elliptical multivariate t distribution with 4, 6, and 8 degrees of freedom.
Let the returns have zero mean. Test the hypothesis that all assets have the same
signal-noise ratio at the α = 0.05 level. Use Equation 4.27 to compute Ω̂, assuming
normally distributed returns. Compare these with table I of Wright et al., who find,
for example, that for t (4) returns and p = 20, the F test has an empirical rejection
rate of around 74.7%, while the chi-square test has a rejection rate of around 17.3%.
[174]

1. Repeat the experiment using the chi-square statistic, but use Equation 4.27
assuming the true value of κ is known to compute Ω̂.

2. Repeat the experiment using the chi-square statistic, but use HAC estimators

on the sample of stacked vectors
[
x>,x2>

]>
to compute Ω̂, as in Ledoit &

Wolf. [89]

Ex. 4.16 Testing equality of signal-noise ratios, unpaired samples
The method outlined for testing multiple signal-noise ratios outlined in Section 4.3
and Equation 4.41 apply to the case of a paired sample, i.e., contemporaneous returns
with possible correlation among them.

1. Formulate the test for equality of 2 signal-noise ratios with an unpaired sample
by abusing Equation 4.41. (Simply compute Ω as a diagonal matrix.) Your test
should be capable of testing against a one-sided alternative.

2. Use your test on the returns of the Market, dividing the sample into two periods
using the cutoff date of 1970-01-01. cf. Exercise 3.9, where the same test is
performed assuming Gaussian returns.

3. Formulate the test for equality of multiple signal-noise ratios with an unpaired
sample.

Ex. 4.17 Testing equality of signal-noise ratios, mixed samples
Suppose you observe two returns streams with some period of overlap. So for
example, suppose you observe returns xi for i = 1, . . . , n1 and returns yi for
i = m,m+ 1, . . . ,m+ n2 − 1 with 1 < m ≤ n1 < m+ n2 − 1. Formulate the test for
equality of 2 signal-noise ratios in this case.
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Ex. 4.18 Overlapping Returns Suppose you observe overlapping returns.
That is, xi correspond to returns over a time period of length q, measured in years,
observed at a rate of 1/r per year, evenly spaced through the year, with q ≥ r. For
example, suppose you observe rolling quarterly returns every month, in which case
q = 1

4 and r = 1
12 . cf. Valkanov and Britten-Jones and Neuberger. [161, 23, 19]

1. Show that the autocorrelation of returns is ρ = 1− r
q .

2. Using Equation 4.22, show that the standard error of the Sharpe ratio is inflated
by a factor of approximately

√
2 qr − 1.

3. Confirm the inflated standard error empirically by computing 5 years of rolling
quarterly returns observed monthly of a zero mean random variable, and com-
puting the Sharpe ratio, repeating the experiment thousands of times.

* Ex. 4.19 Augmented form moments, Normal returns Let X̃ be an nor-

mally distributed n× l matrix, i.e., vec
(

X̃
)

is normal with mean vec (M), covariance

Σf ⊗ H. As in Equation 4.58, define

Θ̂ =df
1

n
X̃>X̃.

Using results from Exercise 4.2, confirm Equation 4.65:

1. Show that

E
[
Θ̂
]

=
1

n

(
M>M + tr (H) Σf

)
.

2. Show that

Var
(

vec
(

Θ̂
))

=
1

n2
(I + K)

{
M>HM⊗ Σf + Σf ⊗M>HM

+ tr
(
H2
)

Σf ⊗ Σf

}
.

* Ex. 4.20 Augmented form moments, Elliptical returns Establish the
variance equation of Equation 4.69. [121] Let x̃ take an Elliptical distribution with
kurtosis factor κ, mean vector µ and covariance matrix Σ.

1. Using results from Exercise 4.2, prove

Var
(

vec
(
x̃x̃>

))
=
{

(κi − 1)
[
vec (Σi) vec (Σi)

>
+ (I + K) Σi ⊗ Σi

]
+ (I + K)

[
Θi ⊗Θi − µiµi> ⊗ µiµi>

]}
.

Ex. 4.21 The ex-factor Sharpe ratio distribution

1. Confirm that Equation 4.60 gives the inverse of the matrix Θ from Equa-
tion 4.59.
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2. Confirm that the matrix in Equation 4.61 is the Cholesky factor of the matrix
from Equation 4.60.

3. Confirm the identity of Equation 4.62.

Ex. 4.22 Moments under general returns
Suppose

E
[
X̃
]

= M,

Var
(

vec
(

X̃
))

= Σf ⊗ H,

1. Let the ith row of X̃ be x̃i
>. Show that

E
[
x̃ix̃i

>
]

= Mi,
>Mi, + Hi,iΣf ,

where Mi, is the ith row of M.

2. From 1n
>M = nµ, tr (H) = n, confirm Equation 4.66, i.e.,

Θ = Σf + µµ>.

3. Show that Θ̂ is an unbiased estimator of Θ only when M = 1µ>.

Ex. 4.23 The ex-factor Sharpe ratio variance, Market returns

1. What happens to the variance of Equation 4.71 as the returns of the Market
factor approach a non-zero constant (over time) value?

2. Justify why that should happen to the variance.

Ex. 4.24 ex-factor Sharpe ratio standard error, Market term Prove
Equation 4.70.

Ex. 4.25 The ex-factor Sharpe ratio variance, multiple attribution
Consider what happens to the standard error of the ex-factor Sharpe ratio expressed
in Equation 4.71 as multiple market instruments are added to the attribution model.
Assume κ = 1. The math is probably too complicated to find an analytical solution,
so explore it empirically. Repeat the empirical experiments of Example 4.4.3, but
expand the number of ‘Market’ terms against which one performs attribution. Look at
1, 2, 4, 8, 16, and 32 terms in a factor model. For each choice of number of factors keep
the sum of squared signal-noise ratios constant at a value of, say, 1.0yr−1. Fix the
beta of the asset at 1 against each Market term, and keep the ex-factor signal-noise
ratio and volatility as in Example 4.4.3. The Market terms should have independent
returns. Plot the empirical standard error versus the number of factors.

1. Repeat the experiment, but make the Market returns highly positively corre-
lated. How does the standard error change?
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Ex. 4.26 Mertens correction Show that Merten’s correction of Equation 4.34
follows from the Delta method form of Equation 4.26.

Ex. 4.27 Mertens contradiction It appears that if the skew of the returns
distribution is sufficiently large and positive, the standard error of the Sharpe ratio
under Mertens’ formula, Equation 4.34, can become negative.

1. Show that this is not the case.

2. Let ζ = 0.1day−1/2. What is the smallest value that
(
1− ζγ1 + γ2+2

4 ζ2
)

can
attain for skew γ1 and excess kurtosis γ2? Do you know of a distribution that
achieves this value?

Ex. 4.28 Test of equality of Sharpe ratios, correlated returns
Replicate the Monte Carlo simulations of Example 4.3.3.

1. Confirm that the empirical mean of the difference in Sharpe ratios is consistent
with the value suggested by Equation 4.45.

2. Generalize Equation 4.45 to the case of bivariate Elliptical returns. (cf. Exam-
ple 4.2.1.)

3. The form of the standard deviation of the difference in Sharpe ratios given in
Equation 4.45 is predicated on bivariate Gaussian returns. Modify your simula-
tion so that returns marginally follow a scaled, shifted t (4) distribution. Does
the empirical standard deviation still follow the form given by Equation 4.45?
Is it more accurately described by the formula you found for Elliptical returns?

Ex. 4.29 Asymptotic prediction intervals on Sharpe ratio In Sec-
tion 3.5.9, Frequentist prediction intervals on the Sharpe ratio for the case of i.i.d.
Gaussian returns. Here consider i.i.d. returns without an assumption of normality.
That is, suppose you observe ζ̂1 on n1 observations of i.i.d. returns, then observe ζ̂2
on n2 observations from the same returns stream.

1. Find some interval that is a function of ζ̂1, n1, n2 such that with probability
1− α, ζ̂2 falls within the interval, where the probability is under replication of
the entire experiment. Start from Equation 4.39.

* 2. Now assume that the returns are Gaussian, but follow an AR(1) process (see
Exercise 2.29), with autocorrelation ρ. Assume, however, that the two samples,

of size n1 and n2, are independent. Construct a prediction interval on ζ̂2.

Ex. 4.30 Bayesian update Multiply the prior probabilities of Equation 4.49
and Equation 4.48 by the joint likelihood of Equation 4.51 to arrive at the posterior
updating rules of Equation 4.53.

Ex. 4.31 Bayesian analysis, difference of signal-noise ratios Perform
the analysis of Example 4.3.4, but use an uninformative prior.

Ex. 4.32 Functional Sharpe ratio Suppose one has backtested the returns
of a number of different trading strategies, say k of them. For each strategy one
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observes some vector of ‘features’ about the strategy, call it f i, for i = 1, 2, . . . , k. For
example, one feature might be the length of a sliding window over which to perform
some machine learning mumbo jumbo to construct a portfolio, or whether a certain
signal is used in constructing the portfolio, etc.
Let ζi be the signal-noise ratio of the ith strategy. A simple linear model posits that
ζi = f i

>β. Suppose you compute the Sharpe ratio of the backtested returns, along
with the estimated variance-covariance of the same, call it Ω̂.

1. How would you estimate β?

2. How would you estimate the asymptotic variance-covariance of your estimate?

* Ex. 4.33 Expectations of Sums Suppose that x are i.i.d. draws from some
distribution whose ith (uncentered) moment is αi. Let α̂i be the ith sample moment,
α̂i =df

1
n

∑
1≤j≤n xj

i. (Note that µ = α1 and µ̂ = α̂1.) By definition E [α̂i] = αi, but
consider the expectation of products of these sample sums:

1. Show that

E
[
α̂2

1

]
=

1

n
α2 +

n− 1

n
α1

2.

(Hint: express
∑
i xi
∑
j xj as

∑
i xi

2 +
∑
i 6=j xixj , then use independence of

the xi.)
Using this result, show that

E
[
α̂2 − α̂2

1

]
=
n− 1

n
α2 −

n− 1

n
α1

2,

and thus E
[
σ̂2
]

= σ2.

2. Show that

E [α̂2α̂1] =
1

n
α3 +

n− 1

n
α1α2.

3. Assume that n ≥ 2. Show that

E
[
α̂3

1

]
=

1

n2
α3 + 3

n− 1

n2
α2α1 +

(n− 1) (n− 2)

n2
α1

3.

4. Assume that n ≥ 2. Using the previous two results show that

E
[
α̂2α̂1 − α̂3

1

]
=
n− 1

n2

(
α3 − 3α2α1 + α1

3
)

+
n− 1

n

(
α2α1 − α3

3
)
,

=
n− 1

n2
µ3 +

n− 1

n
µσ2,

(4.77)

where µ3 = E
[
(x− µ)

3
]
. (Hint: expand the centered µ3 in terms of the raw

moments αi.)

Ex. 4.34 Bias and Variance of Sharpe ratio for Gaussian Returns
Consider the case of Gaussian returns:
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1. Use Equation 4.37 to show that the geometric bias of the Sharpe ratio for
Gaussian returns is approximately 1 + 3

4n + 49
32n2 . (cf. Approximation 3.14.)

2. Use Equation 4.38 to derive an expression for the standard error of the Sharpe
ratio for Gaussian returns.

** Ex. 4.35 Nearly Unbiased Estimation of signal-noise ratio? Try to
build a ‘better’ estimator of the signal-noise ratio. Consider an estimator of the form

a0 +
a1 + (1 + a2)µ̂+ a3µ̂

2

σ̂
,

for constants ai to be determined. Note that the usual Sharpe ratio corresponds to
a0 = a1 = a2 = a3 = 0.

1. Use the Taylor’s expansion (1 + x)
−1/2 ≈ 1− x

2 to approximate this estimator
in terms of the uncentered sample moments α̂i.

2. From this approximation, derive the approximate expected value and variance
of this estimator in terms of the moments and cumulants of the returns distri-
bution, and the coefficients ai.

3. Compute the expected squared error of the estimator, again as a function of
the moments and cumulants, and ai.

4. Take the partial derivative of the mean squared error with respect to each ai
and show that the squared error is minimized for a0 = a1 = a2 = a3 = 0, i.e.,
the vanilla estimator.

Ex. 4.36 Asymptotic distribution of Sharpe ratio, Elliptical returns

1. From Equation 4.27 and Equation 4.26, derive Equation 4.29.

Ex. 4.37 Correlation of Sharpe ratios, Uncorrelated returns
We claim in Equation 4.29 that the Sharpe ratios of uncorrelated elliptical returns
streams can be correlated for κ 6= 1.

1. Confirm this numerically, for two assets whose returns follow a multivariate t
distribution.

2. How can uncorrelated returns have correlated Sharpe ratios?

Ex. 4.38 Markets Following U.S. Elections It has been noted that, since
World War II, the U.S. stock market has experienced higher returns following midterm
elections than following presidential elections. Consider this hypothesis: that the
signal-noise ratio of the Market is higher post-midterms than post-presidential elec-
tions. For the purposes of this exercise, define ‘post-midterm‘ as the 12 month period
starting in November of even years which are not divisible by four (e.g., 2018), and
define ‘post-presidential elections‘ as the 12 month period starting in November of
even years which are divisible by four (e.g., 2016).
Use the monthly returns of the Fama-French factor data from aqfb.data, using code
as given in Example 1.2.1.
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1. Compute the Sharpe ratio of the Market for the two periods, along with confi-
dence intervals using Mertens’ correction.

2. Perform the frequentist hypothesis test for equality of signal-noise ratio of the
two periods.

3. Perform a paired test on the difference in signal-noise ratio of the two periods,
pairing midterm periods with the following presidential periods. Do you results
change if you pair midterm periods with the preceding presidential periods?

* Ex. 4.39 Research Problem: Omitted Variable Bias §
Omitted variable bias is like the weather: everyone talks about it, but nobody does
anything about it. For this open research problem, prove that omitted variable bias
is not too large, subject to some reasonable conditions on the omitted variable. For
example, one might reasonably assume that the ommitted variable is only slowly vary-
ing over time (has a low autocorrelation); based on this and the autocorrelation of
observed returns, one should be able to bound the size of the omitted variable bias.

** Ex. 4.40 Research Problem: Concentration Inequalities §
In this chapter we have attempted to show that the standard error of the Sharpe ratio
is fairly robust to violations of the assumptions of i.i.d. normal returns. However, it
is not clear that stable standard errors are sufficient for inference beyond the α = 0.05
level.
For this open research problem, prove some kind of concentration inequality for the
Sharpe ratio: assume that returns are drawn from some distribution with bounded
kurtosis, say, then find a nice bound on the probability that the Sharpe ratio exceeds
some large value.

159





5. Overoptimism

The first principle is that you
must not fool yourself and you
are the easiest person to fool.

(Richard Feynman)

Everybody dies
Frustrated and sad
And that is beautiful

(They Might Be Giants, Don’t
Let’s Start)

Suppose you will enter a coin-flipping contest: whoever flips the most Heads wins. You
have at your disposal a chest full of seemingly identical coins of unknown provenance.
To prepare you select one coin, flip it some number of times, noting the proportion
of Heads. You repeat the process with another and another, finally selecting, through
some procedure, one “lucky coin” to take to the contest. You näıvely estimate the
probability of landing Heads by the in-sample proportion.

The difference between the estimated quality of the lucky coin based on historical
data and the actual probability of landing Heads is the “overfit bias” of this experiment.
If all the coins in the box are identical and fair, unbeknownst to you, the overfit bias is
likely to be very large, i.e., you have seriously overestimated the probability of landing
Heads. If, on the other hand, there is a large variation in the coins, perhaps some of
them almost always land Heads, say, then the overfit bias is probably smaller.

Constructing and testing trading strategies is, perhaps uncharitably, analagous to
selecting lucky coins, but with the following differences:

1. While you could flip a given coin more times to collect more data, often a quan-
titative strategist is stuck with a fixed amount of historical data, and can only
collect more data at a rate of one day per day.

2. Presumably tests of different coins have errors independent of each other, while
the quant is usually observing historical returns of multiple strategies which are
dependent on each other at some (backtested) point in time.

3. Coins are just coins. They lack parameters. Often a quant is refining a model
with free parameters, either by an optimization procedure, brute force, or sequen-
tial knob twiddling. Thus the simulated historical returns of the strategies are
not only dependent, they are dependent in a way driven by these parameters.
Moreover, the model can be too complex for the data, which can deterioriate
actual performance.
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4. In our thought experiment, the coins appear identical and are selected at random.
Often trading strategies are passed along by word of mouth, or are discovered
via the media (an article, book, white-paper, blog, etc.), and the quant does
not know how much overfitting was involved in the original ‘discovery’ of the
strategy, and there is likely to be very little historical ‘out of sample’ data.

5. A coin can be physically inspected for bias, while quantitative strategies often
leak very little information that can be tested independently of returns.

6. Coin flips have an unambiguous outcome. Quantitative strategies are often back-
tested, and so are subject to the biases and imprecision of simulated fill prices,
market impact, and market reaction. The ‘ground truth’ of backtested strategies
is often uncertain.

Some of these issues can be approached statistically, and we will attempt to address
them here, while others are beyond the scope of this text.

Remark (Overoptimism and Overfit). Though the definitions are a little nebulous, we
will use overoptimism to refer to the case where one has a (positively) biased estimate of
the “performance” of some model caused by selection among many competing models
or fitting of parameters. For example, if one selects among many trading strategies
based on the observed Sharpe ratios, then the Sharpe ratio of the best strategy will be
biased upwards by this selection, and may not be a good estimate of its signal-noise
ratio.

We will use the term overfitting to describe the case where by selecting a too complex
model one causes a decrease in the performance. In this case there is still a bias in the
estimated performance, as otherwise one presumably would pick a better model. An
example might be using more and more factors to forecast the returns of some asset.
The Sharpe ratio will increase with more factors, though likely the signal-noise ratio
is decreasing.

We illustrate these with Figure 5.1, where we plot overoptimism and overfit as the
signal-noise ratio, the Sharpe ratio, and the bias between them versus some undefined
“effort,” which could be number of strategies tested, or amount of complexity added
to the trading strategy, etc.

In this chapter we will consider overoptimism, and will consider overfitting in the
sequel.

162



Short Sharpe Course, version v0.2.999;

Figure 5.1.: Overoptimism and overfitting are illustrated as the signal-noise ratio,
Sharpe ratio and their difference versus some “effort”. In the case of
overfitting, the signal-noise ratio peaks and increased effort contributes
to declining out-of-sample performance. In the case of overoptimism, the
signal-noise ratio continues to grow with increased effort, albeit slowly.
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5.1. Overoptimism by selection

Here we consider perhaps the simplest model of strategy development, which we call
overoptimism by selection. Suppose you observe returns from k different assets (or
“strategies”) each over n independent periods. The returns among assets may be cor-
related, but in the simplest realization we assume they are independent. We compute
the Sharpe ratios of each asset then select the one with the highest Sharpe ratio,
which presumably we will trade out-of-sample. The gap between the Sharpe ratio and
signal-noise ratio of the chosen asset is the overoptimism.

Aronson presents a very accessible description of essentially this problem, calling
our overoptimism, “data-mining bias.” [7, chapter 6] He cites five factors affecting
overoptimism, namely

1. the number of strategies tested, k,
2. the length of backtests, n,
3. the correlation of returns among strategies,
4. the presence of ‘outliers’,
5. the spread in the population expected returns.

All five factors are relevant in the context considered by Aronson, where strategies are
apparently selected by maximum sample mean return. However, by using the Sharpe
ratio to measure quality of a strategy we are somewhat unaffected by outliers, though
they might be a sign of backtest biases. Also we have put a fair amount of work in
the preceeding chapters to understand the error of the Sharpe ratio with respect to n,
and can adjust for sample size as needed. The correlation of returns and the spread in
population signal-noise ratios are the two relevant, unobservable factors that we must
consider in our analyses.

Example 5.1.1 (Overoptimism by selection). We create a population of k strategies,
with normally distributed signal-noise ratios:

ζi ∼ N
(
0, 0.4032yr−1

)
.

Then for each strategy we sample 504 days (2 years) of normally distributed returns
with the given signal-noise ratio. The strategies’ returns are generated independently.
We compute the k Sharpe ratios, then select the strategy with the highest. We record
its Sharpe ratio and signal-noise ratio. We also record the highest signal-noise ratio
in the population. We let k vary from 1 to 10000. We repeat this experiment 20000
times, and compute empirical averages.

In Figure 5.2, we plot the Sharpe ratio, signal-noise ratio and overoptimism as a
function of k. We see that the signal-noise ratio of the selected strategy appears to be
growing in k, albeit very weakly. Thus the extra effort associated with testing more
strategies appears to pay off in this case. In Figure 5.3, we again plot the signal-
noise ratio of the selected strategy, but also the maximum signal-noise ratio of all k
strategies. The difference between them is a kind of “regret”, which we also plot.
Note that the regret grows with k, which seems to be an inescapable curse of decision
making with limited information. For k = 10000 the expected signal-noise ratio of
the selected strategy is around 2.6 standard deviations above the mean, while the
population maximum is around 3.8 standard deviations.
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Figure 5.2.: The maximum Sharpe ratio and the associated signal-noise ratio of the
selected strategy is plotted versus k for the case of overoptimism by se-
lection with normally distributed signal-noise ratio. The x axis is in log
scale.

a

Does fitting work? Aronson claims, citing White, that the selection procedure out-
lined here “works” in the sense that as n → ∞, it selects the optimal model almost
surely. [7, 167] This intuitively makes sense since the error of the Sharpe ratio around
the signal-noise ratio goes to zero in large n. Under the (admittedly unrealistic)
assumption of independent returns and non-zero spread in signal-noise ratios, the
procedure also works in the other asymptotic direction. That is, as k increases the
signal-noise ratio of the strategy selected for having maximal Sharpe ratio is increasing,
albeit potentially very slowly in k.

Example 5.1.2 (Overoptimism by selection (again)). Continuing Example 5.1.1, since

ζ̂i is approximately normally distributed around ζi, we can make the approximation[
ζi
ζ̂i

]
∼ N

([
0
0

]
,

[
σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2

])
,

where σ2
1 is the variance in the generation of ζi, and σ2

2 is approximated as n−1 via

Equation 3.24. Then conditional on observing ζ̂i we have

ζi

∣∣∣ ζ̂i ∼ N (ρ2ζ̂i,
(
1− ρ2

)
σ2

1

)
,
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Figure 5.3.: The signal-noise ratio of the selected strategy and the population maxi-
mum signal-noise ratio, and their difference are plotted versus k for the
case of overoptimism by selection. The x axis is in log scale. The right
side expresses the signal-noise ratio in standard deviations above the mean,
based on a standard devation of 0.04day−1/2.

where ρ = σ1/
√
σ2

1 + σ2
2 . That is, we expect the signal-noise ratio associated with the

asset with maximal Sharpe ratio to be ρ2 times that maximum Sharpe ratio. [168] If

ρ2ζ̂i

σ1

√
1− ρ2

=
ρζ̂i
σ2
� 2,

then we expect that ζi is likely to be bigger than zero. The ratio ρ/σ2 is something
like a ‘signal-noise ratio of signal-noise ratios’ in this example.

In our example we have σ2
1 = 0.4032yr−1, and σ2

2 ≈ 1
n = 0.5yr−1, and therefore

ρ = 0.6681. In this case we have ρ/σ2 ≈ 0.9449yr1/2, and we are unlikely to select

a strategy with negative signal-noise ratio if ζ̂i � 2. We plot the empirical expected
value of the ζ associated with the strategy with maximal Sharpe ratio in Figure 5.4,
along with ρ2 times the empirical expected maximum Sharpe ratio. We find these lines
to be in good agreement.

We note that in real use the spread of the ζi, which we have called σ1, is unknown.
However, one could estimate it from the sample. That is, observing many ζ̂i, one could
compute their sample variance, then subtract σ2

2 to get an estimate for σ2
1 . It is not

clear what one should do in the case this estimate is negative, however.
a
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Figure 5.4.: The signal-noise ratio of the selected strategy, and its approximate ex-
pected value are plotted against k for the case of overoptimism by selection
on normally distributed signal-noise ratio.

5.1.1. Multiple Hypothesis Testing

The most basic approach to overoptimism is to appeal to traditional corrections for
multiple hypothesis testing, or MHT. [22, 167, 66, 100] So suppose we have observed

Sharpe ratios ζ̂1, ζ̂2, . . . , ζ̂k. Consider the reindexing of the assets in order of their
observed Sharpe ratio. That is, consider the permutation of 1, 2, . . . , k, denoted
(1), (2), . . . , (k) such that

ζ̂(1) ≤ ζ̂(2) ≤ . . . ζ̂(k−1) ≤ ζ̂(k).

We will use the same indexing on the signal-noise ratios, thus ζ(k) will refer to the
signal-noise ratio associated with the strategy that has maximum Sharpe ratio, and
not the maximum of the ζi.

To test the null hypothesis

H0 : ζ(k) = ζ0 versus H1 : ζ(k) > ζ0,

one can instead perform a Union Intersection Test. In contrast to a Intersection Union
test (cf. Section 3.5.4), here the null hypothesis is the intersection of hypotheses, and
the alternative hypothesis (and the critical region, where one rejects) is a union. That
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is, to test the hypothesis above, one instead tests

H0 : ∀i ζi = ζ0 versus H1 : ∃i : ζi > ζ0. (5.1)

To test this hypothesis via the Bonferroni correction at the α level, perform the k
separate hypothesis tests for ζi = ζ0, but at the α/k level, and reject H0 if any of these
reject. [166, 66, 22]

The Bonferroni correction is equivalent to the observation that one can attribute at
most α/k probability of a type I error to each of the separate tests and arrive at a total
type I rate of no more than α. A slightly more powerful correction is possible under
the (generally suspect) assumption that returns of the strategies are independent. In

this case, the ζ̂i are then also independent, as are the outcomes of the k separate
hypothesis tests. In this case, one can use the Šidák correction, where one tests ζi = ζ0
at the 1 − (1− α)

1/k
level, rejecting the intersection H0 if you reject for any ζi. The

Šidák correction is equivalent to finding the probability that we commit a type I error
for none of the separate sub-tests, and setting it to 1− α, then using independence.

Note that in our case the null hypothesis posits the same value for each ζi. Moreover,
because we observe n returns for each strategy, the distribution of each ζ̂i is identical
under the null. Thus to use the Bonferroni or Šidák corrections we need not test
every ζi, rather we need only test ζ(k). Thus to test the null hypothesis above using

the Bonferroni correction, reject if ζ̂(k) > SR1−α/k (ζ0, n), where SRp (ζ, n) is the pth

quantile of the Sharpe ratio distribution with signal-noise ratio ζ on n samples; under
the Šidák correction reject if ζ̂(k) > SR(1−α)1/k (ζ0, n).

Another way to arrive at the Šidák correction is via the beta distribution: if
p1, p2, . . . , pk are independent random variables each uniform on [0, 1], then the jth

largest of them, call it p(j) follows a beta distribution:

p(j) ∼ B (j, k + 1− j) .

In particular, the smallest is distributed as B (1, k). Thus to test the intersection null
hypothesis ∀i ζi = ζ0 at the α level under the assumption of independence, one should
compute the p-values of each of the hypotheses ζi = ζ0, then compare the smallest to
the α quantile of the beta distribution B (1, k). The smallest p-value will correspond

to the largest Sharpe ratio, and the α quantile is βα (1, k) = 1− (1− α)
1/k

, which is
the Šidák correction.

In practice the nominal gain in power from using the Šidák correction is negligible,
as illustrated in Example 5.1.3. For large k, the Šidák correction offers little addi-
tional power for the assumption of independence and one typically sees the Bonferroni
correction used instead.

Example 5.1.3 (Sharpe ratio, Bonferroni and Šidák). In Table 5.1, we display cutoffs
computed by the Bonferroni and Šidák corrections for the case of testing the null
hypothesis at the 0.05 level that all signal-noise ratios are equal to zero, for the case
of n = 504day. The cutoffs are in annualized terms and are quantiles of the Sharpe
ratio distribution. Note how little difference there is between the two corrections.
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k Bonferroni cutoff Sidak cutoff

1 1.165 1.165
10 1.828 1.823

100 2.341 2.335
1000 2.773 2.769

10000 3.156 3.152
100000 3.502 3.499

Table 5.1.: The Bonferroni and Šidák corrected cutoff values are presented for increas-
ing k for the case of testing the hypothesis that all strategies have zero
signal-noise ratio. The cutoffs are for α = 0.05 and n = 504, and have
units yr−1/2.

a

5.1.2. Multiple Hypothesis Testing, Correlated Returns

A glaring problem with the simple corrections for multiple hypothesis testing are that
they do not take into account possible correlation of strategies’ returns. The Bonferroni
correction maintains an upper bound on the type I error, but is too conservative in
the case where returns are mostly positively correlated. (And it is impossible to have
many mutually negatively correlated returns, cf. Exercise 5.3.)

We illustrate this problem in Example 5.1.4, where we empirically estimate the
mean Sharpe ratio of mutually correlated returns. In the presence of large positive
mutual correlation of returns, the type I rate will be much lower than the nominal
rate. Equivalently, the Bonferroni correction will have low power, since a large signal-
noise ratio will have to overcome the ‘penalty’ paid by the correlation. Effectively, the
correlation structure has reduced the number of independent hypothesis tests being
performed.

Example 5.1.4 (Overoptimism by selection, correlated returns). We draw k-variate
daily returns from a normal distribution with zero mean and covariance

(1− ρ) I + ρ
(
11>

)
Returns are drawn independently for each of 504 days. We compute the Sharpe ratio
of each of the k columns and then compute the maximum. We repeat this 10000 times,
and compute the empirical 0.95 quantile of the Sharpe ratios. We let k vary from 1 to
100. We repeat for several values of ρ.

In Figure 5.5, we plot the empirical quantiles of the maximum Sharpe ratio versus
k. The line for ρ = 0 should correspond approximately to the Šidák column from
Table 5.1, which is the cutoff for the null hypothesis that all strategies have signal-
noise ratio equal to zero. When ρ is large, the maximum Sharpe ratio is very far
from the 0.95 cutoff, meaning the rate of type I errors is much smaller than 0.05. cf.
Exercise 5.4.
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Figure 5.5.: The empirical 0.95 quantile of the maximum Sharpe ratio of k strategies
is plotted versus k for returns drawn from a normal distribution with zero
mean and covariance (1− ρ) I + ρ

(
11>

)
. Quantiles are computed over

10,000 simulations of 504 days of returns.

a

To deal with correlation among returns, consider the normal approximation to the
vector of Sharpe ratios,

ζ̂ ≈ N
(
ζ,

1

n
Ω

)
, (5.2)

where Ω will not, in general, be diagonal. To test the null hypothesis that ζ = ζ0,
convert the above approximation to a standard normal by an inverse square root of Ω:

√
nΩ−1/2

(
ζ̂ − ζ0

)
≈ N (0, I) . (5.3)

There are many ways we could test this hypothesis, but we are interested in a one-sided
alternative, and wish to focus on the asset which demonstrated maximal Sharpe ratio.
Thus a general chi-square test, as suggested in Section 4.2.1, seems inappropriate.
Moreover, to apply the technique to the case of very large k, we wish to avoid having
to computationally invert Ω1/2.
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If each period’s returns are elliptical with kurtosis factor κ, and R is the correlation
of returns then, recalling Equation 4.29,

Ω = R +
κ− 1

4
ζζ> +

κ

2
Diag (ζ) (R� R) Diag (ζ) .

To tame the computations, consider the simple rank one updated correlation model,
where we assume that returns have correlation

R = (1− ρ) I + ρ
(
11>

)
, (5.4)

for |ρ| < 1. For this R, under the null hypothesis that ζ = ζ01,

Ω = (1− ρ) I + ρ
(
11>

)
+
κ− 1

4
ζ2
011> +

κ

2
ζ2
0

((
1− ρ2

)
I + ρ2

(
11>

))
,

=
[
1− ρ+

κ

2
ζ2
0

(
1− ρ2

)]
I +

[
ρ+

κ− 1

4
ζ2
0 +

κ

2
ζ2
0ρ

2

] (
11>

)
,

= a0 I + a2

(
11>

)
. (5.5)

It then follows (cf. Exercise 5.6) that

Ω−1/2 = a
−1/2
0 I−

√a0 + a21
>1 −√a0√

a2
0 + a0a21

>1

(11>
)

1>1
, (5.6)

= b0 I + b2
(
11>

)
.

Note that as a transform, this Ω−1/2 is order-preserving: if yi ≤ yj and z = Ω−1/2y,
then zi ≤ zj . In particular, it preserves the identity of the maximum element. Thus

if the ith element of ζ̂ − ζ0 is the largest, then it is also the largest element of
√
nΩ−1/2

(
ζ̂ − ζ0

)
. Note also that 1/1>1 computes the mean, thus we can view

the transform of Ω−1/2 as a shrinkage to (or away) from the mean.
Thus to test the null in Hypothesis 5.1, let

a0 = 1− ρ+
κ

2
ζ2
0

(
1− ρ2

)
,

a2 = ρ+
κ− 1

4
ζ2
0 +

κ

2
ζ2
0ρ

2,

b0 = a
−1/2
0 ,

b2 =
1

k

√
a0 −

√
a0 + ka2√

a2
0 + ka0a2

,

then compute

z =
√
n

b0 (ζ̂(k) − ζ0
)

+ b2
∑

1≤i≤k

(
ζ̂i − ζ0

) , (5.7)
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and reject at the α level if z ≥ z1−α/k, the 1−α/k quantile of the normal distribution.
Of course, κ and ρ are unknown and have to be estimated from the sample. Note we
can rewrite Equation 5.7 as

z =
√
n
[
b0

(
ζ̂(k) − ζ0

)
+ b2k

(
ζ̄ − ζ0

)]
,

=
√
n
[
b0

(
ζ̂(k) − ζ̄

)
+ (b0 + b2k)

(
ζ̄ − ζ0

)]
, (5.8)

where ζ̄ is the average of the sample Sharpe ratios.
See Exercise 5.10 for a ‘direct’ approach to testing Hypothesis 5.1 that does not

require one to compute the sample mean, but which only has approximate type I rate.

Figure 5.6.: Letting Ω−1/2 = b0 I + b2
(
11>

)
for Ω = a0 I + a2

(
11>

)
, we plot b0, b2

versus ρ for k = 100.

In Figure 5.6, we plot b0, b2 versus ρ where Ω−1/2 = b0 I + b2
(
11>

)
, for the case

where k = 100, κ = 1, and ζ0 = 0. We note that when ρ ≈ 1 the values of b0 and b2 are
highly sensitive to ρ. Moreover, as ρ → 1, the procedure would appear to compute z
as a large multiple times the difference between ζ̂(k) and the mean of the ζ̂i, meaning
it would always reject for ρ sufficiently close to 1. Noting that ρ has to be estimated
from the sample, to keep the test conservative one should bound one’s estimate of ρ
away from 1. Moreover, as we shall see below, the maximum type I rate is maintained
by assuming a smaller ρ, at the expense of power.
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Example 5.1.5 (MHT Correction, Correlated Returns). We perform simulations under
the null hypothesis, ζ = 0, with R = (1− ρ) I+ρ

(
11>

)
. We set k = 100, and simulate

n = 1008 days of returns, compute the maximum Sharpe ratio, use a Bonferroni
correction to test the null hypothesis, and tabulate the empirical rejection rate at the
nominal 0.05 level over 5000 simulations. We allow the correlation correction method
to use the population ρ, rather than estimate it from the data.

In Figure 5.7, we plot the empirical rejection rate versus ρ at the nominal 0.05 type
I level. The vanilla MHT test is conservative, with near zero rejection rates for large
ρ, while the correlation correction yields nominal rejection rates.

Figure 5.7.: The empirical type I rate under the null hypothesis is plotted versus ρ
for the case where R = (1− ρ) I + ρ

(
11>

)
, for the vanilla Bonferroni cor-

rection, and Bonferroni correction with fix for common correlation. Tests
are performed with Gaussian returns, for 100 assets over 1008 days. Tests
were performed at the 0.05 level, which appears to be maintained by the
fixed Bonferroni procedure but not by the regular Bonferroni procedure.
Empirical rates are over 5,000 simulations. The y axis is in log scale.

a
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Alternative Correlation Models Inasmuch as we would like to apply the same anal-
ysis to a broader class of correlation matrices, they do not lead to an order-preserving

Ω−1/2. Thus it is hard to test z =
√
nΩ−1/2

(
ζ̂ − ζ0

)
via Bonferroni correction, as

the largest element cannot easily be identified.
However, we can use the analysis above in the case where R consists of non-negative

elements to arrive at a test with bounded type I rate. Consider multivariate normal
vectors x,y with x ∼ N (0,R) and y ∼ N

(
0, (1− ρ0) I + ρ0

(
11>

))
, Ri,j ≥ ρ0 ≥ 0 for

all i 6= j. By Slepian’s lemma, Pr {maxi xi ≥ t} ≤ Pr {maxi yi ≥ t} for all t. [153, 179]
Thus we can appeal to analysis above by assuming the correlation matrix has the

form (1− ρ0) I + ρ0

(
11>

)
and accepting a biased test, that is one with type I rate

(approximately) no greater than α. Thus to test the null in Hypothesis 5.1, supose
that Ri,j ≥ ρ0 ≥ 0 for i 6= j. Then compute z as in Equation 5.7, plugging in ρ0 in the
definitions of a0 and a2, and reject at the nominal α level if z ≥ z1−α/k, the 1 − α/k
quantile of the normal distribution. This procedure has (approximate) type I rate no
greater than α. By “approximate” here, we allude to the normal approximation of
Equation 4.29 and the approximate variance-covariance therein.

Example 5.1.6 (MHT Correction, AR(1) Correlated Returns). We perform simulations
under the null hypothesis, ζ = 0, where R takes the form of an AR (1) matrix:

Ri,j = ρ|i−j|,

for some ρ assumed known. We set k = 100, and simulate n = 1008 days of returns,
compute the maximum Sharpe ratio, use a Bonferroni correction to test the null hy-
pothesis, and tabulate the empirical rejection rate at the nominal 0.05 level over 10, 000
simulations. We allow the correlation correction method to use the population ρ, rather
than estimate it from the data.

In Figure 5.8, we plot the empirical rejection rate versus ρ at the nominal 0.05
type I level. We apply the procedure for Bonferroni correction with correlation matrix
(1− ρ0) I + ρ0

(
11>

)
where ρ0 = ρk−1. The procedure has access to ρ, and need not

estimate it. We get near-nominal coverage up until around ρ ≈ 0.75, after which the
procedure is conservative.

See also Exercise 5.11. a
The results of Example 5.1.6 indicate that when only a few non-diagonal elements

of R are bigger than zero (e.g., the AR(1) correlation matrix when ρ is not near 1),
one can still get near-nominal coverage assuming that R = I. Slepian’s lemma only
goes one way, giving us a test with type I error at most a fixed value; however, there
are known bounds on the other side. For example, Li and Shao prove the following:
[97] Suppose that x ∼ N

(
0,R0

)
and y ∼ N

(
0,R1

)
, where the diagonal elements of

R0 and R1 are all one. Then

Pr
{

max
i
xi > t

}
≤ Pr

{
max
i
yi > t

}
(5.9)

+
1

2π

∑
1≤i<j≤k

(
asinR1

i,j − asinR0
i,j

)+
exp

(
− t2

1 +max
(∣∣R0

i,j

∣∣ , ∣∣R1
i,j

∣∣)
)
.
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Figure 5.8.: The empirical type I rate under the null hypothesis is plotted versus ρ for
the case where R is an AR (1) matrix. That is, Ri,j = ρ|i−j|. The test
applies a Bonferroni correction with fix for common correlation of ρk−1.
We also plot rejection rates for the Bonferroni test with no correction for
correlation. Tests are performed with Gaussian returns, for 100 assets
over 1008 days. Tests were performed at the nominal 0.05 level, which
appears to be maintained by the bounded correlation Bonferroni procedure
for modest, but not large values of ρ. Empirical rates are over 10,000
simulations. The y axis is in log scale.

Thus if there are only 2m elements such that R1
i,j > R0

i,j we can roughly transform
this bound into

Pr
{

max
i
xi > t

}
≤ Pr

{
max
i
yi > t

}
+
m

2
e−t

2/2. (5.10)

See also Exercise 5.12.

5.1.3. One-Sided Alternatives

Another approach to the problem of overoptimism by selection is via testing against
(multivariate) one-sided alternatives. As with the Bonferroni correction, in this ap-
proach we do not test the signal-noise ratio of the asset with maximal Sharpe ratio,
i.e., ζ(k), but instead test the population as a whole. That is, we wish to test the
following hypothesis:

H0 : ∀iζi = ζ0 versus H1 : ∀iζi ≥ ζ0 and ∃jζj > ζ0. (5.11)
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There has been considerable research on testing hypotheses of this form but when the
parameter is the expected value of a multivariate normal. [151, 164, 132, 133, 158] By
appealing to the normal approximation of Equation 4.29, we can use these tests for
tackling overoptimism by selection. That is, assume

ζ̂ ≈ N
(
ζ,

1

n
Ω

)
, (5.12)

where Ω is some function of R, κ and ζ, as in Equation 4.29.
The classical procedure for testing equality of ζ = ζ0 in this case, without regard

to the form of the alternatives, is via Hotelling’s T 2 test. [5, 138] In our case since we
have assumed a normal approximation, we are essentially assuming Ω is known, and
so a χ2 test would be used instead. The most basic test against a one-sided alternative
is similar in nature, but involves projection to the positive orthant.

We first present the general solution, which is probably only of use when k is small
and when Ω can be inverted; then we will consider the large k case for the simple rank-
one model of correlation of Equation 5.4. The general case proceeds by computing

x̄2 = n

[(
ζ̂ − ζ0

)>
Ω−1

(
ζ̂ − ζ0

)
− min
x≥ζ0

(
ζ̂ − x

)>
Ω−1

(
ζ̂ − x

)]
. (5.13)

Here ζ0 = ζ01, and x ≥ ζ0 is taken to be element-wise. Compare Equation 5.13 to
Equation 4.31 for testing essentially the same null against an unrestricted alternative.

Under the null hypothesis, x̄2 will follow not a chi-square distribution, but rather a
“chi-bar-square distribution.” To test Hypothesis 5.11, reject at the α level if∑

0≤i≤k

wi (Ω)Fχ2

(
x̄2; i

)
≥ 1− α, (5.14)

where Fχ2 (x; i) is the cumulative distribution of the χ2 distribution with i degrees of
freedom, and wi (Ω) are the chi-bar-square weights.

The wi (Ω), which are a function of Ω, are tricky to describe analytically except for
some simple cases of Ω: for example, when Ω is diagonal, we have

wi (Ω) =

(
k

i

)
2−k.

For non-diagonal Ω, the recommended course of action is to estimate the wi via sim-
ulation. [151] The simulations proceed by repeating the following steps some large
number of times (say N = 104):

1. Generate z ∼ N (ζ0,Ω).

2. Find the x ≥ ζ0 that minimizes (z − x)
>Ω−1 (z − x).

3. Count the number of elements of x which are strictly greater than ζ0, call it s.

Estimate wi (Ω) as the proportion of the N simulations where the s equals i.
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Example 5.1.7 (Testing signal-noise ratios Fama-French factors). Consider the four
Fama French factors from Example 1.2.1. Based on monthly returns from Jan 1927 to
Dec 2018, the Sharpe ratios were computed as

ζ̂ =

[
Mkt SMB HML UMD

0.1728 0.0657 0.1056 0.1411

]
mo.−1/2.

First we test the null hypothesis H0 : ∀iζi = ζ0 for ζ0 = 0.12mo.−1/2, against an
unrestricted alternative. This we do via the χ2 test of Equation 4.30.

We estimate the covariance of the Sharpe ratios (up to n) as

Ω̂ ≈


1.0466 0.2912 0.1307 −0.3042
0.2912 0.8970 0.0552 −0.1814
0.1307 0.0552 0.8290 −0.3792
−0.3042 −0.1814 −0.3792 1.5811

mo.−1.

This is estimated by the procedure described in Section 4.2: namely we stack x with
x2, compute the sample mean and covariance of this vector, then apply the delta
method.

The test statistic is then computed as

x2 = n
(
ζ̂ − ζ01

)>
Ω̂−1

(
ζ̂ − ζ01

)
= 10.2.

Under the null hypothesis, this is asymptotically distributed as a χ2 (4), which corre-
sponds to a p-value of of 0.037, and a Frequentist would reject the null hypothesis.

Now we test the null H0 : ∀iζi = ζ0 = 0.12mo.−1/2 against the one-sided alternative
H1 : ∀iζi ≥ ζ0 and ∃jζj > ζ0. First we estimate the chi-bar-square weights using

100,000 simulations using the estimated Ω̂. The weights are estimated as[
w0 w1 w2 w3 w4

0.027 0.186 0.348 0.368 0.071

]
.

The projection of ζ̂ onto the alternative orthant is

ζ̂ =

[
Mkt SMB HML UMD

0.1919 0.1200 0.1200 0.1251

]
mo.−1/2.

We compute the statistic as

x̄2 = n

[(
ζ̂ − ζ01

)>
Ω−1

(
ζ̂ − ζ01

)
− min
x≥ζ01

(
ζ̂ − x

)>
Ω−1

(
ζ̂ − x

)]
= 10.2279− 3.7984 = 6.4295.

We then compute the p-value using the simulated weights as 0.0621, and we fail to
reject the null at the 0.05 level. In particular, we fail to reject the null hypothesis that
the signal-noise ratio of the Mkt is greater than 0.12mo.−1/2.

a
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The chi-bar-square test for general R will not scale well to large k, since it requires
solving a quadratic program to perform a projection. Worse, the computation of
the chi-bar-square weights requires that we solve that quadratic program thousands
of times. Here we describe a simpler form of the test under the assumption that R
follows the rank one updated correlation model of Equation 5.4, namely

R = (1− ρ) I + ρ
(
11>

)
, (5.15)

for ρ ≥ 0.
Again, we assume a normal approximation for ζ̂. Under the null hypothesis that

ζ = ζ01, we have

ζ̂ ≈ N
(
ζ,

1

n
Ω

)
, where Ω = a0 I + a2

(
11>

)
. (5.16)

As noted above (and via Exercise 5.6) the inverse square root of this Ω takes the form

Ω−1/2 = b0 I + b2
(
11>

)
.

Letting ξ̂ = Ω−1/2ζ̂ and ξ = Ω−1/2ζ, the normal approximation can be rewritten as

√
nξ̂ ≈ N

(√
nξ, I

)
.

Note that 1 is an eigenvector of Ω−1/2 with

Ω−1/21 = c1,

for c = b0 + kb2. Note that the b2 can be chosen such that c > 0. From the order-
preserving nature of Ω−1/2, the null and alternative of Hypothesis 5.11 can be expressed
as

H0 : ∀iξi = cζ0 versus H1 : ∀iξi ≥ cζ0 and ∃jξj > cζ0.

We can now appeal to the simple chi-bar square test. [151, 173] First transform the
vector of Sharpe ratios to ξ̂ via

ξ̂ = R−1/2ζ̂ = cζ̄1 + (1− ρ)
−1/2

(
ζ̂ − ζ̄1

)
, (5.17)

where ζ̄ is the average of the sample Sharpe ratios. Then compute

x̄2 = n
∑
i

(
ξ̂i − cζ0

)2

+
, (5.18)

where y+ is the positive part of y, i.e., y+ = y if y > 0 and zero otherwise. Then
compute the CDF of the corresponding chi-bar square distribution as

Q =

k∑
i=0

wiFχ2

(
x̄2; i

)
, (5.19)
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where Fχ2 (i;x) is the cumulative distribution of the χ2 distribution with i degrees of
freedom, and wi are the chi-bar square weights, which for diagonal matrix take the
value

wi =

(
k

i

)
2−k.

Reject the null hypothesis at the α level if 1−Q ≤ α.
Note that, as with the Bonferroni correction, the test statistic x̄2 is computed on

all elements of ζ̂, and thus the decision to reject the null may not be “about” ζ̂1. In
testing we will see that the one-sided test is highly susceptible to distribution of the
ζ, moreso than the Bonferroni correction.

We note that under this setup it is also easy to use Follman’s test, which is a very
simple procedure with increased power against one-sided alternatives. [48] Here we
would compute

g2 = nkc2
(
ζ̄ − ζ0

)2
+ nb20

∑
i

(
ζ̂i − ζ̄

)2

, (5.20)

and reject at the α level if both 1− Fχ2

(
g2; k

)
≤ 2α and ζ̄ > ζ0.

Example 5.1.8 (One-Sided Tests, Five Industry Portfolios). We consider the monthly
returns of five industry portfolios, as introduced in Example 1.2.3. These include 1104
months of data on five industries from Jan 1927 to Dec 2018. We compute the Sharpe
ratio of the returns of each as follows:[

Other Technology Manufacturing Consumer Healthcare
0.140 0.170 0.172 0.187 0.193

]
mo.−1/2.

We have reordered the industries in increasing Sharpe ratio. The industry port-
folio with the highest Sharpe ratio was Healthcare with a Sharpe ratio of around
0.1927 mo.−1/2 which is approximately 0.6674 yr−1/2.

The correlation of industry returns is high: the pairwise sample correlations range
from 0.7081 to 0.8906 with a median value of 0.8014. We assume R = (1− ρ) I+ρ

(
11>

)
and assume this median value as ρ. We compute the median kurtosis factor of industry
returns to be 3.5579.

We test the null H0 : ∀iζi = ζ0 = 0.15mo.−1/2 against the one-sided alternative
H1 : ∀iζi ≥ ζ0 and ∃jζj > ζ0. Under the null we compute

a0 = 0.213, a2 = 0.8415,

b0 = 2.1669, b2 = −0.3383.

From these we compute c = 0.4756. We compute the statistic from Equation 5.18 as
x̄2 = 5.4172, corresponding to a p-value of 0.1189. We fail to reject at the 0.05 level.

We compute Follman’s statistic (Equation 5.20) as g2 = 9.3448. This corresponds
to the upper 0.0961 quantile of the χ2 distribution with 5 degrees of freedom, which is
smaller than 0.10. Moreover, since ζ̄ = 0.1725mo.−1/2 ≥ 0.15mo.−1/2 = ζ0, we reject
the null hypothesis at the 0.05 level.

a
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5.1.4. Hansen’s Asymptotic Correction

One failing of many of the approaches considered above is the problem of irrelevant
alternatives. That is, instead of testing under the null of equality (Hypothesis 5.11
above) we should test the following

H0 : ∀iζi ≤ c versus H1 : ∃iζi > c.

Testing such a composite null hypothesis is typically via a non-similar test, i.e., one
which has a type I rate no greater than the nominal rate for all ζ in the null, and
which achieves that nominal rate for some ζ under the null. Such tests achieve the
nominal rate under the least favorable configuration (LFC), which in our case is the
null of equality given in Hypothesis 5.11. [151]

Hansen describes a procedure which avoids this problem. The idea is elegant, and
ultimately simple to implement. [65, 64] For the problem of overoptimism by selection,
it amounts to assuming that the null takes the form

H0 : ∀i ζi ≤ c and
∣∣∣ζi − ζ̂i∣∣∣ ≤ gn versus H1 : ∃iζi > c,

for some gn. Note this seems odd since the sample Sharpe ratio appears in the null
hypothesis to be tested. Nonetheless, Hansen describes how such a test can be per-
formed while maintaining a maximum type I rate asymptotically, and achieving higher
power.

Hansen applied this correction to the chi-bar-square statistic of Equation 5.18, and
later to a Studentized version of White’s Reality Check statistic, which is rather like the
corrected Bonferroni statistic computed in Equation 5.7. [65, 64] Applying Hansen’s
correction to our problem is simple: compute ξ̂ as in Equation 5.17. Let k̃ be the num-

ber of elements of ξ̂ greater than cζ0−
√

(2 log log n) /n, where c = (1 + (k − 1) ρ)
−1/2

.

If k̃ = 0 fail to reject. Otherwise compute the chi-bar-square statistic x̄2 as in Equa-
tion 5.18 and reject if

k̃∑
i=0

(
k̃

i

)
2−k̃Fχ2

(
x̄2; i

)
≥ 1− α.

This is the same as the chi-bar-square test considered above, but with reduced degrees
of freedom which depend on the observed.

The same correction is easily applied to the Bonferroni maximum test: again, com-
pute ξ̂ and k̃. If k̃ = 0 fail to reject. Otherwise reject at the α level if

max
i
ξ̂i − cζ0 ≥ z1−α/k̃.

This is similar in spirit to Hansen’s SPA test, except it does not use the bootstrap
procedure to estimate the standard error as described by Hansen; it is similar in every
other regard. [64]

Example 5.1.9 (One-Sided Tests with Hansen’s Correction, Five Industry Portfolios).
We return to the testing of the five industry portfolios considered in Example 5.1.8.
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There we used the chi-bar-square test to test the null H0 : ∀iζi = 0.15mo.−1/2, and
failed to reject at the 0.05 level.

We now apply Hansen’s correction to the chi-bar-square test. As above, we compute
c = 0.4756, and x̄2 = 5.4172. The cutoff for the ξ̂ is cζ0 −

√
2 log log n/n = 0.012. We

find that 4 of the elements of ξ̂ are above the cutoff. Based on this many degrees of
freedom, we compute the p-value of the chi-bar-square statistic to be 0.0813 and we
again fail to reject the null at the 0.05 level.

a

5.1.5. Conditional Inference

Taming overoptimism via testing Hypothesis 5.1 seems like overkill. One is typically
only interested in performing inference on ζ(k), the signal-noise ratio associated with
the strategy that has maximum Sharpe ratio, rather than on all the ζi. We can
do this directly via conditional inference. The idea is to perform inference on ζ(k)

conditional on having observed that ζ̂(k) is the largest Sharpe ratio. One suspects that
by directly testing the quantity of interest, one could gain statistical power over the
MHT corrections considered above.

Briefly the conditional probability of event A conditional on event B is the proba-
bility that both A and B occur, divided by the probability that B occurs:

Pr {A |B } =
Pr {A ∩B}

Pr {B}
.

First we will use conditional probability to analyze some simpler problems, before
returning to overoptimism by selection.

Recall the opportunistic strategy introduced in Section 3.5.2: you observe the Sharpe
ratio of an asset, then decide to hold it long if positive, otherwise you will hold the asset
short. You then wish to perform inference on your strategy, taking into account that
the sign depends on the sample. Previously we used symmetric confidence intervals to
approach this problem, but it is easily described as a conditional inference problem.

Adjusting the sign of returns to match whether we hold the asset long or short, we
are performing inference on ζ conditional on ζ̂ > 0. The Sharpe ratio in this case has
the (conditional) distribution function

FSR

(
ζ̂
∣∣∣ ζ̂ > 0 ; ζ, n

)
=
FSR

(
ζ̂; ζ, n

)
− FSR (0; ζ, n)

1− FSR (0; ζ, n)
.

More generally, to test the null hypothesis

H0 : ζ(k) = ζ0

∣∣∣ ζ̂ ≥ ζ1 versus H1 : ζ(k) > ζ0, (5.21)

reject at the α level if FSR

(
ζ̂
∣∣∣ ζ̂ > ζ1 ; ζ0, n

)
≥ 1−α. Equivalently, to construct an α

lower confidence bound, find ζ0 such that FSR

(
ζ̂
∣∣∣ ζ̂ > ζ1 ; ζ0, n

)
= 1− α.
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Example 5.1.10 (Confidence intervals, Conditional Inference). As in Example 3.5.3,
consider the case of 504 daily observations of some hypothetical asset’s returns, which
result in a measured Sharpe ratio of exactly 0.6yr−1/2, assuming 252 days per year.
The ‘exact’ 95% confidence interval is computed as [−0.7867, 1.9861] yr−1/2.

Assuming that we are considering holding this asset long because we observed ζ̂ ≥
0, we compute 95% conditional confidence interval on ζ as [−2.6268, 1.9538] yr−1/2.
Note this confidence interval is much wider than the nearly symmetric unconditional
confidence interval, which, as outlined in Section 3.5.2, we are justified in applying to
the opportunistic strategy.

As a consolation prize, by using conditional inference, we can compute a one-sided
conditional confidence interval to this problem. In this case, we compute the 95% one
sided conditional confidence interval on ζ as [−2.0142,∞] yr−1/2. This is still lower
than the lower bound suggested by the symmetric confidence interval.

a
At risk of overgeneralizing from this example, we often find that conditional inference

has less power than other inferential approaches. In this case, the conditional inference
procedure could not exploit the fact that had we observed ζ̂ < 0, we would have
opportunistically flipped the sign of the asset and performed another test. That is,
the conditioning event does not fully capture our testing procedure and instead assumes
that had we observed ζ̂ < 0 we would not have performed any test.

Conditional inference for overoptimism by selection To simplify the exposition, we
will suppose that, conditional on observing the vector ζ̂, one rearranges the indices in
increasing order, so that the first index refers to the asset with the smallest observed
Sharpe ratio, and the last index, k, to the asset with the largest. This is to avoid the
cumbersome notation of ζ̂(k), and we instead can just write ζ̂k. We note this maximum

condition can be written in the form Aζ̂ ≤ b for k − 1× k matrix A defined by

A =


1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1

 ,
and where b is the (k − 1)-dimensional zero vector. Also note that we are interested
in performing inference on ζk, which we can express as η>ζ for η = ek.

Since, by Equation 4.29, the vector ζ̂ is approximately normally distributed, we can
use the following theorem due to Lee et al. [90, 129] :

Theorem 5.1.11 (Lee et al., Theorem 5.2 [90]). Suppose y ∼ N (µ,Σ). Define
c = Ση/η>Ση, and z = y − cη>y. Let Φ (x) be the CDF of a standard normal, and
let Let F (x; a, b, 0, 1) be the CDF of a standard normal truncated to [a, b]:

F (x; a, b, 0, 1) =df
Φ (x)− Φ (a)

Φ (b)− Φ (a)
.
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Let F
(
x; a, b, µ, σ2

)
be the CDF of a general truncated normal, defined by

F
(
x; a, b, µ, σ2

)
= F

(
x− µ
σ

;
a− µ
σ

,
b− µ
σ

, 0, 1

)
.

Then, conditional on Ay ≤ b, the random variable

F
(
η>y;V−,V+,η>µ,η>Ση

)
is Uniform on [0, 1], where V− and V+ are given by

V− = max
j:(Ac)j<0

bj − (Az)j
(Ac)j

, V+ = min
j:(Ac)j>0

bj − (Az)j
(Ac)j

.

This theorem gives us a way to test the null hypothesis

H0 : ζ(k) = ζ0 versus H1 : ζ(k) > ζ0. (5.22)

To test this null, set y = ζ̂ and compute c, z,V−, and V+ as in the theorem; estimate
the covariance, Ω via Equation 4.29; finally, reject the null hypothesis at the α level if

F
(
ζ̂(k);V−,V+, ζ0,

1
nΩ(k),(k)

)
> 1− α.

Note that we do not have to compute the entire matrix Ω, we only need one column
of it to compute the vector c (and one element of that is Ω(k),(k)). That column is

Ω:,(k) = R:,(k) +
κ− 1

4
ζζ0 +

κ

2
Diag (ζ)

(
R:,(k) � R:,(k)

)
ζ0. (5.23)

The vector ζ is unknown; under the null one can estimate it as either ζ01 or ζ0e(k).

Example 5.1.12 (Five Industry Portfolios). We consider the monthly returns of five
industry portfolios, as introduced in Example 1.2.3. These include 1104 months of
data on five industries from Jan 1927 to Dec 2018. We compute the Sharpe ratio of
the returns of each as follows:[

Other Technology Manufacturing Consumer Healthcare
0.140 0.170 0.172 0.187 0.193

]
mo.−1/2.

We have reordered the industries in increasing Sharpe ratio. The industry port-
folio with the highest Sharpe ratio was Healthcare with a Sharpe ratio of around
0.1927 mo.−1/2 which is approximately 0.6674 yr−1/2.

We are interested in computing 95% upper confidence intervals on the signal-noise
ratio of the Healthcare portfolio. We are only considering this portfolio as it is the
one with maximum Sharpe ratio in our sample. If we had been interested in testing
Healthcare without our conditional selection, we would compute the confidence interval[
0.1427 mo.−1/2,∞

)
based on inverting the non-central t-distribution. If instead we

approximate the standard error by plugging in 0.1927 mo.−1/2 as the signal-noise ratio
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of Healthcare into Equation 4.29, we estimate the standard error of the Sharpe ratio
to be 0.0304 mo.−1/2. Based on this we can compute the näıve confidence interval of
the measured Sharpe ratio plus z0.05 = −1.6449 times the standard error. This also
gives the confidence interval

[
0.1427 mo.−1/2,∞

)
.

Using the simple Bonferroni correction, however, since we selected Healthcare only
for having the maximum Sharpe ratio, we should compute the confidence interval by
adding z0.01 = −2.3263 times the standard error. This yields the confidence interval[
0.122 mo.−1/2,∞

)
.

The correlation of industry returns is high, however. The pairwise sample corre-
lations range from 0.7081 to 0.8906 with a median value of 0.8014. Plugging this
value in as ρ, we find the value ζ0 such that the z1 from Equation 5.7 is equal to
z0.01 = −2.3263. This leads to the confidence interval

[
0.1253 mo.−1/2,∞

)
.

We use this estimate of ρ to compute the chi-bar square test. We invert the test to
find the 95% upper confidence interval

[
0.1406 mo.−1/2,∞

)
.

Finally we use the conditional estimation procedure, inverting the hypothesis test
to find the corresponding population value. We compute Ω by assuming returns are
Gaussian, so κ = 1, and plugging in the sample ζ̂ for ζ. This yields the confidence
interval

[
0.0732 mo.−1/2,∞

)
.

a
This example is consistent with our previous findings suggesting conditional esti-

mation is less powerful than an MHT correction. In the following example we will
examine this question directly via simulations under the alternative hypothesis. How-
ever, ‘the’ alternative can take many forms. One interpretation is that we condition
on ζ1 > 0, where again the indexing is such that ζ̂1 was the maximum over k assets;
then we estimate the probability of (correctly) rejecting ζ1 = 0 versus ζ1. However,
we suspect that the power, as described in this way, would depend on the distribution
of values of ζ.

We consider three forms for the alternative: one where all k elements of ζ are equal
(“all-equal”), and two where m of k elements of ζ are equal to some positive value,
and the remaining k −m are negative that value, for the case m = 1 (“one-good”),
and k = 2m, which we call “half-good”.

Note that in the all equal case, since every asset has the same signal-noise ratio,
whichever we select will have the same signal-noise ratio, and the test should have
the same power as the t-test for a single asset. The conditional estimation procedure,
however, may suffer in this case as we may condition on a ζ̂1 that is very close to being
non-optimal, resulting in a small test statistic for which we do not reject. On the other
hand, for the one-good case, as the k−1 assets may have considerably negative signal-
noise ratio, they are unlikely to exhibit the largest Sharpe ratio, and so the MHT is
merely testing a single asset, but at the α/k level instead of the α level, resulting in
lower power. The conditional estimation procedure, however, should not suffer in this
test.

Example 5.1.13 (Power of conditional inference and MHT corrections). We perform
simulations under all equal, one-good, and half-good configurations, letting the ‘good’
signal-noise ratio vary from 0 to 0.15day−1/2, which corresponds to an ‘annualized’
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signal-noise ratio of around 2.4yr−1/2. We draw Gaussian returns with diagonal co-
variance for 100 assets, with n = 1008. For each setting we perform 10000 simulations
then compute the empirical rejection rate of the test at the 0.05 level, conditional on
the signal-noise ratio of the selected asset, which is to say the one with the largest
Sharpe ratio. Note that in some simulations the largest Sharpe ratio is observed in an
asset with a negative signal-noise ratio.

In Figure 5.9, we plot the power of the MHT Bonferroni test, the chi-bar square
test, Follman’s test, Hansen’s chi-bar square and MHT (“SPA”), and the conditional
estimation procedure versus the signal-noise ratio of the selected asset. We present
facet columns for the three configurations, viz. all-equal, one-good, half-good. A
horizontal line at 0.05 gives the nominal rate under the null, which occurs as x = 0 in
these plots. As expected from the above explanation, chi-bar square has the highest
power for the all-equal alternative, followed by Follman’s test, then the MHT, then
the conditional estimation test. These relationships are reversed for the one-good case.
The chi-bar square test and Follman’s test have very low power against the one-good
alternative. All tests perform similarly in the half-good and all-equal alternatives,
with the exception of Follman’s test, which achieves a maximum power of 1/2 in the
half-good case, as is to be expected since this is the probability that ζ̄ > 0 in the
half-good case.

The power of the conditional estimation procedure for the all equal case is rather
disappointing. For the case where all assets have a signal-noise ratio of 2.4yr−1/2,
the test has a power of only around a half. The test suffers from low power because
we are conditioning on “ζ̂1 is the largest Sharpe ratio”, where we should actually be
conditioning on “the asset with the largest Sharpe ratio.”

Note the odd plot in the half-good facet: the MHT correction and one-sided tests
have greater than 0.05 rejection rate for negative signal-noise ratio. The plot is some-
what misleading in this case, however. We have performed 10000 simulations for each
setting of the ‘good’ signal-noise ratio; in some very small number of them for the
half-good case, an asset with negative signal-noise ratio exhibits the maximum Sharpe
ratio. We are plotting the rejection rate for the test in this case. But note that the
null hypothesis that MHT and the one-sided test are testing is violated in this case,
because half the assets have positive signal-noise ratio, and the alternative procedures
test the null that all assets have zero or lower signal-noise ratio. We have not shown
the probability that a ‘bad’ asset has the highest Sharpe ratio, but note that when the
‘good’ signal-noise ratio is greater than 0.05day−1/2 we do not observe this occuring
even once over the 10000 simulations performed for each setting.

We note that the one-sided test appears to have higher power than either of the
other tests for the all-equal and half-good populations, but fails to reject at all in the
one-good case, except under the null. This is to be expected, since the chi-bar square
test depends strongly on all the observed Sharpe ratios, and in this case we expect
many of them to be negative.

We note that the chi-bar-square test appears to have higher power than the other
tests for the all-equal and half-good populations, but fails to reject at all in the one-
good case, except under the null. This is to be expected, since the chi-bar-square test
depends strongly on all the observed Sharpe ratios, and in this case we expect many
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Figure 5.9.: The empirical power of the conditional estimation, MHT corrected test,
Follman’s test, the chi-bar-square test, and the chi-bar-square and MHT
tests with Hansen’s log log correction are shown versus the signal-noise
ratio of the asset with maximum Sharpe ratio under different arrangements
of the vector ζ. We jitter the points horizontally to distinguish tests with
very similar rejection rates.

of them to be negative. The log log adjustment has little effect in the all-equal and
half-good case, but greatly improves the power of the MHT and chi-bar square tests
in the one-good case. For this sample size, Hansen’s adjustment nearly maintains the
nominal type I rate under the null, though this is unlikely to hold for smaller n.

It is interesting to note that while the conditional estimation procedure generally
has lower power than the other tests (except in the one-good case), it appears to have
monotonic rejection probability with respect to the signal-noise ratio of the selected
asset. That is, in the half-good case, it has low rejection probability in the odd
simulations where a ‘bad’ asset is selected.

We doubt that the simple experiments performed here have revealed all the relevant
differences between the various tests or when one dominates the others. a
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5.1.6. Subspace Approximation

Another potential approach to the problem which may be useful in the case where
returns are highly correlated, as one expects when returns are from backtested quan-
titative trading strategies, is via a subspace approximation. First we assume that the
n× k matrix of returns, X can be approximated by a p-dimensional subspace

X ≈ YW,

where Y is a n× p matrix of ‘latent’ returns, and W is a k × k ‘loading’ matrix.
Now the column of X with maximal ζ̂ has Sharpe ratio that is smaller than

ζ̂∗ =df max
ν

µ̂>ν√
ν>Σ̂ν

,

where µ̂ is the p-vector of the (sample) means of columns of Y and Σ̂ is the sample
covariance matrix. This maximum takes value

ζ̂∗ =

√
µ̂>Σ̂−1µ̂,

which is, up to scaling, Hotelling’s T 2 statistic.
We shall see in the sequel that under the null hypothesis that the rows of Y are

independent draws from a Gaussian random variable with zero mean, then

(n− p) ζ̂2
∗

p (n− 1)

follows an F distribution with p and n− p degrees of freedom. Under the alternative
it follows a non-central F distribution. [5, 138] Via this upper bound ζ̂1 ≤ ζ̂∗, one can
then perform tests on the null hypothesis ∀iζi = 0.

However, this approach requires that one estimate p, the dimensionality of the la-
tent subspace. Moreover, the subspace approximation may not be very good. It would
seem that to get near equality of ζ̂1 and ζ̂∗, the columns of X would have to contain
both positive and negative exposure to the columns of Y. This in turn should result in
mixed correlation of asset returns, which we may not observe in practice. Finally, em-
pirical testing indicates this approach requires further development, as in the following
example.

Example 5.1.14 (Overfit of MAC Strategy). Here we analyze, via simulation, the
Sharpe ratios of Moving Average Crossover (MAC) strategies. A MAC strategy is
simple to describe: for a single asset, compute two moving averages of the price series
with different windows. When one moving average is greater than the other, hold the
asset long, otherwise hold it short. One selects the two windows by (over)fitting to
the available data.

We perform simulations of that process under the null hypothesis, where generated
returns are zero mean and independent. Any realization of a MAC strategy in these
simulations, with any choice of the windows, will have zero mean return and thus zero
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Figure 5.10.: QQ plot of the Sharpe ratio of the optimal 2-window MAC in a simulated
backtest under the null. Simulations are over 1100 days. Theoretical
quantiles are computed via the F distribution assuming k = 3.

Sharpe. We draw 1100 days of returns independently with zero mean. We turn the
returns into a price series, and then test MAC strategies with a ‘short’ window size
varying from 4 to 36 days, and the ‘long’ window size varying from 40 to 280 days.
We select the window combination with highest Sharpe ratio and record that Sharpe
ratio. We do not force the strategy to be long or short either windowed average, rather
we test both. We repeat this process 1024 times.

In Figure 5.10, we Q-Q plot the annualized Sharpe ratio of the selected MAC strategy
against the theoretical distribution based on an F distribution with 3 and 1100 − 3
degrees of freedom. Note that the choice of p is intuitive, but perhaps a different value
is more consistent with the F distribution approximation for this data. The Q-Q plot
indicates that our approximation is off by an affine shift: we observe higher Sharpe
ratios than our subspace approximation supports, or we have underestimated the p.

a
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5.2. Miscellany

5.2.1. A post hoc test on the Sharpe ratio

In Section 4.3.1, we described the test for the null hypothesis that k different assets
have the same signal-noise ratio. This is analogous to the classical ANOVA procedure,
which is for testing whether a variable has the same mean across k different groups.
In contrast to the ANOVA, we are usually performing a paired test, where returns
across the k assets are observed contemporaneously, and we need not assume common
volatility of returns.

In the classical setting, if one rejects the null in an ANOVA, a post hoc test is then
prescribed. [22] This test, also known as Tukey’s Range Test or the Honest Significant
Difference test, is based on the range of a number of independent Gaussians, divided
by a rescaled chi-square. Tukey’s test can easily be adapted to the case of testing the
signal-noise ratios of multiple assets. [130]

As in Section 5.1.2, we first consider the case of rank one updated correlation model,

R = (1− ρ) I + ρ
(
11>

)
, (5.24)

where |ρ| ≤ 1. Under this correlation structure, recalling Equation 5.3,

√
nΩ−1/2

(
ζ̂ − ζ0

)
≈ N (0, I) .

We then showed (cf. Equation 5.6 and Exercise 5.6) that

R−1/2 =
(

(1− ρ)
(

1 +
κ

2
ζ2
0 (1 + ρ)

))−1/2

I + c
(
11>

)
. (5.25)

for some constant c.
Now we consider the difference in Sharpe ratios of two assets, indexed by i and j.

Let v = ei−ej , where ei is the ith column of the identity matrix. From Equation 5.2.1
we have

v>z = v>
√
nR−1/2

(
ζ̂ − ζ0

)
,

=
√
nv>

[(
(1− ρ)

(
1 +

κ

2
ζ2
0 (1 + ρ)

)−1/2
)

I + c
(
11>

)] (
ζ̂ − ζ0

)
,

=

√
n

(1− ρ)
(
1 + κ

2 ζ
2
0 (1 + ρ)

)v>ζ̂,
≈
√

n

1− ρ
v>ζ̂.

Here we have used that v>1 = 0 and under the null hypothesis, ζ0 is some constant
times 1. The last approximation follows because ζ2

0/n is likely to be very small for
most practical work. Then

ζ̂i − ζ̂j =

√
1− ρ
n

(zi − zj) . (5.26)
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Now note that the z is distributed as a standard multivariate normal. So the range of

ζ̂, which is to say maxi,j

(
ζ̂i − ζ̂j

)
, is distributed as

√
(1− ρ) /n times the range of a

standard k-variate normal.
To quote this as a hypothesis test,

max
i,j

∣∣∣ζ̂i − ζ̂j∣∣∣ ≥ HSD = q1−α,k,∞

√
(1− ρ)

n
, (5.27)

with probability α, where the q1−α,k,l is the upper α-quantile of the Tukey distribution
with k and l degrees of freedom. In the R language, this quantile may be computed
via the qtukey function. [139, 116] With l =∞, the cutoff HSD is the rescaled upper
α quantile of the range of k independent Gaussians. That is, q1−α,k,∞ is the number
such that

1− α = k

∫ ∞
−∞

φ (x) (Φ (x+ q1−α,k,∞)− Φ (x))
k−1

dx.

The normal approximation of Equation 4.29 may be too rough of an approximation
for computation of HSD, even if the covariance is approximately correct. The distri-
butional shape of ζ̂ may be far enough from multivariate normal that we cannot use
Tukey’s distribution for a cutoff, especially when n is small and k is large. In that
case, one is tempted to compare the observed range to

HSD = q1−α,k,n−1

√
(1− ρ)

n− 1
. (5.28)

The reasoning behind this heuristic is that we are computing the range of (non-
independent) t statistics, up to scaling, which is almost the same as the Tukey distri-
bution, which is the ratio of the range of normals divided by a pooled χ variable. We
will refer to the cutoff of Equation 5.27 as “df =∞” and the cutoff of Equation 5.28 as
the “df = n−1” cutoff. While we note the df = n−1 cutoff stands on perhaps shakier
theoretical grounds, experimental evidence suggests that it maintains the nominal type
I rate much better than the df =∞ cutoff, especially for the small n case. [130]

Bonferroni Cutoff: We note that an alternative calculation provides a very similar
cutoff value. Consider two assets with correlation ρ, and with signal-noise ratios of
ζ (1 + ε) and ζ. Recalling Equation 4.45, the difference in Sharpe ratios can be shown
to be approximately normal with[

ζ̂1 − ζ̂2
]
 N

(
εζ,

2

n
(1− ρ) +

ζ2

2n

(
1 + (1 + ε)

2 − 2ρ2 (1 + ε)
))

. (5.29)

Again, assuming that ζ2/n will be very small for most practical work, one can compute
a “Bonferroni Cutoff” as

BC =

√
2 (1− ρ)

n
z1−α/(k2)

, (5.30)
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where zα is the α quantile of the standard normal distribution. This cutoff is based
on a Bonferroni correction that recognizes we are performing

(
k
2

)
pairwise comparison

tests. The cutoff BC is typically very similar to HSD (for df =∞) or slightly smaller
(and is easier to compute), cf. Exercise 5.15. We note that since BC is based on a
normal approximation, it may suffer from the same issues that the HSD cutoff does for
small samples. However, there is hope one can compute an exact small n Bonferroni
cutoff.

Compact Letter Displays: One way to summarize the results of the post hoc test
is via a compact letter display. [22, 136] Here one assigns each asset to one or more
groups, with the groups identified by a letter. The group assignment is chosen such
that two assets with Sharpe ratio greater than HSD are not assigned to the same
group. While this could be done trivially, usually an assignment with few groups is
achievable. We illustrate in Example 5.2.1.

Arbitrary correlation structure: The test outlined above is strictly only applicable
to the rank-one correlation matrix, R = (1− ρ) I + ρ

(
11>

)
. To apply the test to

assets with arbitrary correlation matrices, one would like to appeal to a stochastic
dominance result. For example, if one could adapt Slepian’s lemma to the distribution
of the range, then the above analysis could be applied where ρ is the smallest off-
diagonal correlation, to give a test with maximum type I rate of α. However, it
is not immediately clear that Slepian’s lemma can be so modified. [153, 179, 177]
The Bonferroni Cutoff, however, is easily adapted to this kind of worst-case analysis,
however.

Example 5.2.1 (Five Industry Portfolios, post hoc test). We consider the returns of the
5 industry portfolios introduced in Example 1.2.3. The data consist of 1104 months
of returns, from Jan 1927 to Dec 2018. Over this period we estimate the correlation
of returns to be

R =


Consumer Manufacturing Technology Healthcare Other

Consumer 1.00 0.87 0.81 0.78 0.88
Manufacturing 0.87 1.00 0.81 0.74 0.89
Technology 0.81 0.81 1.00 0.71 0.80
Healthcare 0.78 0.74 0.71 1.00 0.74
Other 0.88 0.89 0.80 0.74 1.00

 .

This is fairly well approximated by (1− ρ) I + ρ
(
11>

)
, with ρ = 0.8. As listed in

Example 2.2.5, the Sharpe ratios range from 0.4852yr−1/2 for Other to 0.6674yr−1/2

for Healthcare.

First we perform the hypothesis test of equality of signal-noise ratios, via the χ2

test of Equation 4.42. We compute a statistic of 12.2 which should be distributed as a
χ2 (4) under the null. This corresponds to a p-value of 0.0159, and we reject the null
of equality of all signal-noise ratios.

Using the df = n − 1 formulation and the estimated ρ, we compute HSD =
0.1796yr−1/2 for α = 0.05, and narrowly reject the equality of signal-noise ratios

191



Short Sharpe Course, version v0.2.999;

for Other and Healthcare. Based on the observed Sharpe ratios and this HSD cutoff,
a compact letter display of the five industries might look as follows:[

Healthcare Consumer Manufacturing Technology Other
a ab ab ab b

]
The assignment to groups recognizes that we found a significant difference between
Other and Healthcare, but not between any of the other pairs of assets.

a
Example 5.2.2 (Fama-French factors, post hoc test). Consider the four Fama French
factors from Example 1.2.1. In Example 4.3.1, based on monthly returns from Jan
1927 to Dec 2018, we narrowly rejected the null hypothesis of equal signal-noise ratios
among the four factors. The correlation of returns was estimated as

R =


Mkt SMB HML UMD

Mkt 1.00 0.32 0.24 −0.33
SMB 0.32 1.00 0.12 −0.14
HML 0.24 0.12 1.00 −0.41
UMD −0.33 −0.14 −0.41 1.00

 .
Given the negative correlation of UMD to the other three factors, (1− ρ) I + ρ

(
11>

)
is not a good model for R. Moreover, we cannot easily use such a correlation matrix
as a lower bound. Instead, we perform the

(
4
2

)
tests for equality of signal-noise ratio

via the χ2 test of Wright et al., as given in Equation 4.42. We perform a Bonferroni
correction on these, rejecting only if the p-value is less than α/6. Under this test, we
only reject equality of Mkt and SMB. The Sharpe ratios and compact letter display of
the four factors then might look as follows:

factor Sharpe letters
Mkt 0.60 a
UMD 0.49 ab
HML 0.37 ab
SMB 0.23 b


a

Exercises

Ex. 5.1 The Šidák correction Establish the correctness of the Šidák correc-
tion.

1. Let p1, p2, . . . , pk be independent random variables uniformly on [0, 1]. Prove
that

Pr
{

min
i
pi ≤ x

}
= 1− (1− x)

k
.

2. Find x such that 1− (1− x)
k

= α.
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Ex. 5.2 Bonferroni and Šidák The Šidák correction yields a slightly larger
critical region than the Bonferroni correction. What happens to the ratio of their
sub-test type I errors,

1− (1− α)
1/k

α/k
,

for α ≈ 0.05 as k →∞?

Ex. 5.3 Limits to anti-correlation Let R be a k × k correlation matrix.

1. Prove that R is positive semi-definite.

2. Prove that the average off-diagonal element of R is no less than −1/ (k − 1).

Ex. 5.4 Bonferroni power loss Extend Example 5.1.4 by finding the signal-
noise ratio such that the Bonferroni correction achieves the nominal 0.05 type I rate
for the k, n and ρ considered in that example.

Ex. 5.5 Rank one updated correlation

1. Show that the matrix R = (1− ρ) I + ρ
(
11>

)
is a valid correlation matrix

if and only if |ρ| ≤ 1. (A valid correlation matrix is symmetric and positive
semidefinite, has elements in [−1, 1] and unit diagonal.)

2. Let q be a k-vector whose elements are ±1. Show that the matrix R = (1− ρ) I+
ρ
(
qq>

)
is a valid correlation matrix if and only if |ρ| ≤ 1.

3. Let q be a k-vector whose elements are no greater than 1 in absolute value.
Show that

Diag (1 − q � q) + qq>

is a valid correlation matrix.

Ex. 5.6 Rank one update matrix powers Let q be a k-vector whose ele-
ments are -1, 0 or 1.

1. Show that the vectors 1 − |q| and q are othogonal to each other, and thus

Diag (1 − |q|) qq> = 0.

2. Show that Diag (1 − |q|) is idempotent:

Diag (1 − |q|) Diag (1 − |q|) = Diag (1 − |q|) .

3. Let

A = a0I + a1 Diag (1 − |q|) + a2qq
>,

B = b0I + b1 Diag (1 − |q|) + b2qq
>,
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with a0 > 0. Show that BA = I if

b0 = a−1
0 ,

b1 =
−a1

a2
0 + a0a1

,

b2 =
−a2

a2
0 + a0a2q>q

.

4. Let

A = a0I + a1 Diag (1 − |q|) + a2qq
>,

B = b0I + b1 Diag (1 − |q|) + b2qq
>,

with a0 > 0. Show that BB = A if

b0 = ±
√
a0,

b1 = −b0 ±
√
a0 + a1,

b2 =
−b0 +

√
a0 + a2q>q

q>q
.

5. Let

A = a0I + a1 Diag (1 − |q|) + a2qq
>,

B = b0I + b1 Diag (1 − |q|) + b2qq
>,

with a0 > 0. Show that BBA = I if

b0 = a
−1/2
0 ,

b1 = − 1
√
a0
±
√

1

a0 + a1
= −
√
a0 + a1 ∓

√
a0√

a2
0 + a0a1

,

b2 = − 1

q>q
√
a0
± 1

q>q

√
1

a0 + a2q>q
= − 1

q>q

√
a0 + a2q>q ∓

√
a0√

a2
0 + a0a2q>q

.

Ex. 5.7 Order Preserving Matrices Say that a square matrix A is order pre-
serving if for every y = Ax if xi ≤ xj then yi ≤ yj

1. Prove that A is order preserving if and only if all eigenvalues are non-negative
and equal, with the possible exception of the eigenvalue associated with the
eigenvector 1.

2. Prove that the matrix a0 I + a1

(
11>

)
is order preserving if and only if a0 ≥ 0.

194



Short Sharpe Course, version v0.2.999;

Ex. 5.8 Monotonicity of inference Show that when using the rank-one
model of correlation, it is conservative to keep ρ bounded away from 1. Let

a0 = 1− ρ+
κ

2
ζ2
0

(
1− ρ2

)
, a2 = ρ+

κ− 1

4
ζ2
0 +

κ

2
ζ2
0ρ

2,

b0 = a
−1/2
0 , b2 =

1

k

√
a0 −

√
a0 + ka2√

a2
0 + ka0a2

,

for ρ ≥ 0, κ ≥ 1.

1. Show that da0
dρ ≤ 0 and da2

dρ ≥ 0.

2. Show that b2 ≤ 0, and that db0
dρ ≥ 0 and db2

dρ ≤ 0.

3. Let c = b0 + kb2. Show that c > 0 and dc
dρ ≤ 0.

4. Show that

lim
ρ→1−

b0 =∞.

5. Show that the z in Equation 5.8 goes to ∞ as ρ→ 1.

6. Show that the summands of Equation 5.18 take the form

b0

(
ζ̂i − ζ̄

)
+ (b0 + b2k)

(
ζ̄ − ζ0

)
.

Show that the x̄2 of Equation 5.18 goes to ∞ as ρ→ 1.

7. Show that Follman’s statistic, the g2 of Equation 5.20, goes to ∞ as ρ→ 1.

Ex. 5.9 Follman’s test, half-good case In Example 5.1.13, we saw that Foll-
man’s test achieved maximum power of around 1/2 for the half-good case.

1. Why does this happen?

2. Suppose you expected that 1/4 of the assets’ signal-noise ratios were greater
than ζ0. How would you adapt Follman’s test to have higher power under this
alternative?

Ex. 5.10 Bonferroni Correction, Direct Estimation Suppose that y =(
b0 I + b1

(
11>

))
z, where z ∼ N (0, I) . In this exercise you will construct an ap-

proximate CDF for the maximum element y(k).

1. Show empirically that the correlation between z(k) and 1>z goes to zero for
large k.

2. Suppose that y = b0z + b1kz0, where z0 ∼ N (0, 1) is independent of z ∼
N (0, I) . Show that

Pr
{
y(k) ≤ t

}
=

∫
Φk
(
t− b1kx

b0

)
φ (x) dx
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3. Implement code to approximately compute that integral given k, b0, and b1.
Use a basic quadrature scheme like Trapezoid rule.

4. Test your code empirically: spawn such a y for large k, compute y(k), compute
the probability that you would see a value so large using your code, and repeat
a thousand times. Are your putative p-values approximately uniform?

Ex. 5.11 Bonferroni Correction, Bounded Correlation Repeat the ex-
periment of Example 5.1.6:

1. Repeat the experiment, but assume that the correlation of returns is R with

Ri,j =

{
ρ|i−j| if |i− j| ≤ 1,
ρ
2 otherwise.

2. Repeat the experiment assuming that

R = (1− ρ) I + ρ
(
qq>

)
,

where exactly half the elements of q are −1 and the other half are +1.

Ex. 5.12 Slepian Bounds Suppose that x ∼ N
(
0, (1− ρ) I + ρ

(
qq>

))
, and

y ∼ N
(
0, (1− ρ) I + ρ

(
11>

))
, for some ρ > 0, where k of the k elements of q are −1

and the rest are +1.
From the Li and Shao bound of Equation 5.9, prove that

Pr
{

max
i
xi > t

}
≤ Pr

{
max
i
yi > t

}
+
k (k − k) asin ρ

π
e−t

2/(1+ρ). (5.31)

Ex. 5.13 Conditional Confidence Interval, Opportunistic Strategy
Consider how large a Sharpe ratio you have to observe such that a lower one-sided
conditional confidence interval is exactly zero.

1. Show that [0,∞] is a conditional 1− α interval for the signal-noise ratio of the
opportunistic strategy exactly when

FSR

(
ζ̂; 0, n

)
= 1− α

2
.

2. Confirm that [0,∞] is an unconditional 1− α interval for the signal-noise ratio
of an asset exactly when

FSR

(
ζ̂; 0, n

)
= 1− α.

Ex. 5.14 Overoptimism by opportunistic selection Consider a mashup of
overoptimism by selection and the opportunistic strategy. That is, suppose you observe
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the Sharpe ratios of k strategies, then select the asset with the largest absolute Sharpe
ratio, which you will hold long or short depending on the sign of its Sharpe ratio. How
would you use Theorem 5.1.11 for inference on this problem?

Ex. 5.15 BC and HSD bounds Compare the HSD and BC cutoffs from
Equation 5.27 and Equation 5.30. Compute both for the α = 0.05 level, n = 504 day,
ρ = 0.8 and vary the number of assets, k from 4 to 200. Plot both cutoffs.

* Ex. 5.16 Research Problem: shrinkage after selection §
Hwang describes an estimator of the mean of selected populations for the case of
independent multivariate normal errors that has reduced Bayesian Risk. [73, 52] This
could easily be used to describe the problem of Bayesian inference on the signal-
noise ratio of the asset with maximal Sharpe ratio, via the normal approximation
of Equation 4.29. However, it would only apply for R = σ2I. Generalize Hwang’s
procedure to the case of the rank-one correlation matrix of Equation 5.4, R = (1− ρ) I+
ρ
(
11>

)
.

* Ex. 5.17 Research Problem: CIs on selected signal-noise ratios §
Fuentes, Casella and Wells describe a procedure for computing confidence intervals
on the means of selected populations for the case where errors are independent and
homoskedastic. [53] This could easily be used to compute confidence intervals on the
signal-noise ratios of, say, the top p assets as selected by Sharpe ratio, via the normal
approximation of Equation 4.29 for the case where R = σ2I. Generalize this procdure
to the case of the rank-one correlation matrix of Equation 5.4, R = (1− ρ) I+ρ

(
11>

)
.
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A. Glossary

Mathematics, a veritable
sorcerer in our computerized
society, while assisting the trier
of fact in the search for truth,
must not cast a spell over him.

(Supreme Court of California,
People v. Collins)

Trust but verify

(Russian Proverb)

µ The true, or population, mean return of a single asset.

σ The population standard deviation of a single asset.

ζ The population signal-to-noise ratio (SNR), defined as ζ =df µ/σ.

µ̂ The unbiased sample mean return of a single asset.

σ̂ The sample standard deviation of returns of a single asset.

ζ̂ The sample Sharpe ratio, defined as ζ̂ =df µ̂/σ̂.

n Typically the sample size, the number of observations of the return of an asset or
collection of assets.

r0 The risk-free, or disastrous rate of return.

p Typically the number of assets in the multiple asset case.

µ The population mean return vector of p assets.

Σ The population covariance matrix of p assets.

ν∗ The maximal SNR portfolio, constructed using population data: ν∗ =df Σ−1µ.

ζ∗ The SNR of ν∗.

µ̂ The Sample mean return vector of p assets.

Σ̂ The sample covariance matrix of p assets.

ν̂ A portfolio, built on sample data.
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ν̂∗ The maximal Sharpe ratio portfolio, constructed using sample data: ν̂∗ =df Σ̂−1µ̂.

ζ̂∗ The Sharpe ratio of ν̂∗.

Ft (x; v1, δ) the CDF of the non-central t distribution, with v1 degrees of freedom and
non-centrality parameter δ, evaluated at x.

tq (v1, δ) the inverse CDF, or q-quantile of the non-central t distribution, with v1

degrees of freedom and non-centrality parameter δ.

Ff (x; v1, v2) the CDF of the F distribution, with degrees of freedom v1 and v2,
evaluated at x.

Ff (x; v1, v2, δ) the CDF of the non-central F distribution, with degrees of freedom
v1 and v2 and non-centrality parameter δ, evaluated at x.

fq (v1, v2, δ) the inverse CDF, or q-quantile of the non-central F distribution, with
degrees of freedom v1 and v2 and non-centrality parameter δ.

µ3 the skew of a random variable.

µ4 the excess kurtosis of a random variable.

κ the kurtosis factor of an elliptical distribution. This is one third the (regular, not
excess) kurtosis of the marginals.

αi the ith uncentered moment of a random variable, E
[
(x)

i
]
.

α̂i the ith uncentered sample moment of a sample, typically computed as the simple
mean of the observations to the ith power.

µi the ith centered moment of a random variable, defined as E
[
(x− E [x])

i
]
.

µ̂i the ith centered sample moment of a sample.

κi the i+ 2th raw cumulant of a random variable.

γi the i + 2th standardized cumulant of a random variable, equal to the i + 2th raw
cumulant divided by σi+2.

γ1 the skew of a random variable.

γ2 the excess kurtosis of a random variable.
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B. Miscellanea

Example B.0.1 (Notebook for Homoscedastic, independent returns and Sharpe ratio
standard error). This is the sympy notebook for Example 4.4.2:

In [1]: from __future__ import division
from sympy import *
from sympy.physics.quantum import TensorProduct
from sympy.assumptions.assume import global_assumptions
init_printing()
# set up symbols
mu, zeta, r0 = symbols(’\mu \zeta r_0’)
sigma = symbols(’\sigma’,positive=True)
r0 = 0.0
mu = sigma * zeta + r0
# needed matrices
Elim = eye(4)[[0,1,3],:]
Komm = eye(4)[[0,2,1,3],:]
vmu = Matrix(2,1,[mu,1])
vsig = Matrix(2,2,[sigma**2,0,0,0])

Theta = Matrix(2,2,[sigma**2 + mu**2,mu,mu,1])
iTheta = Theta.inv()
ihTheta = iTheta.cholesky()
simplify(ihTheta)

Out[1]: [
1
σ 0
−ζ 1

]
In [2]: EThetahat = vmu * vmu.transpose() + vsig

EThetahat

Out[2]: [
σ2ζ2 + σ2 σζ

σζ 1

]
In [3]: Vpart1 = TensorProduct(vmu*vmu.transpose(),vsig) + TensorProduct(vsig,vmu*vmu.transpose()) + \

TensorProduct(vsig,vsig)
VThetahat = (eye(4) + Komm) * Vpart1
LVThetahat = Elim * VThetahat * Elim.transpose()
simplify(LVThetahat)

Out[3]: σ4
(
4ζ2 + 2

)
2σ3ζ 0

2σ3ζ σ2 0
0 0 0
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In [4]: InDeriv0 = TensorProduct(Theta,Theta) * (eye(4)+Komm) * TensorProduct(ihTheta,eye(2))
InDeriv = Elim * InDeriv0 * Elim.transpose()

e1r0v = Matrix(3,1,[r0,1,0])
DerivPart = (e1r0v).transpose() * InDeriv.inv()
simplify(DerivPart)

Out[4]: [
− ζ

2σ2
1
σ

(
ζ2 + 1

)
− ζ

3

2 − ζ
]

In [5]: vcov = DerivPart * (Elim * VThetahat * (Elim.transpose())) * DerivPart.transpose()
simplify(vcov)

Out[5]: [
ζ2

2 + 1
]

a
Example B.0.2 (Notebook for Homoscedastic, independent returns and ex-factor
Sharpe ratio standard error with a Market). This is the sympy notebook to con-
firm Equation 4.71 first in the Gaussian case via Equation 4.65, and then in the i.i.d.
Elliptical case from Equation 4.69.

In [1]: from __future__ import division
from sympy import *
from sympy.physics.quantum import TensorProduct
from sympy.assumptions.assume import global_assumptions
init_printing()
mu, zetah, mzeta, beta, mmu, rho, r0 = symbols(’\mu \zeta_h \zeta_m \\beta \mu_m \rho r_0’)
kurty = symbols(’\kappa’,positive=True)
sigma = symbols(’\sigma’,positive=True)
msigma = symbols(’\sigma_m’,positive=True)
r0 = 0.0
mu = sigma * zetah + r0
mmu = msigma * mzeta

In [2]: Elim = eye(9)[[0,1,2,4,5,8],:]
Komm = eye(9)[[0,3,6,1,4,7,2,5,8],:]
twoSimm = (eye(9) + Komm)

vmu = Matrix(3,1,[beta*mmu + mu,1,mmu])
betvec = Matrix(2,1,[mu,beta])
gammamat = Matrix(2,2,[1,mmu,mmu,mmu**2 + msigma**2])

Theta = zeros(3,3)
Theta[0,0] = Matrix([(sigma**2)]) + (betvec.transpose() * (gammamat * betvec))
Theta[1:3,0] = gammamat * betvec
Theta[0,1:3] = betvec.transpose() * gammamat
Theta[1:3,1:3] = gammamat
vsig = Theta - vmu * vmu.transpose()

iTheta = Theta.inv()
ihTheta = iTheta.cholesky()
ihTheta

# take Gamma and invert, cholesky, transpose, and invert:
Gam_icti = Matrix(2,2,[1/sqrt(1 + mzeta**2),mzeta/sqrt(1+mzeta**2),0,msigma*sqrt(1+mzeta**2)])
Theta_icti = zeros(3,3)
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Theta_icti[0,0] = sigma
Theta_icti[0,1:3] = betvec.transpose() * Gam_icti
Theta_icti[1:3,1:3] = Gam_icti
Theta_icti

# confirm we have computed Theta_icti correctly:
Foo = Theta_icti.inv().transpose()
Foo2 = Foo * Foo.transpose()
Foo3 = Foo2.inv()
Foo4 = Foo3 - Theta
simplify(Foo4)

Out[2]: 0 0 0
0 0 0
0 0 0


In [3]: EThetahat = simplify(vmu * vmu.transpose() + vsig)

EThetahat

Out[3]:

βσm (βσm (ζ2m + 1
)

+ σζhζm
)

+ σ2 + σζh (βσmζm + σζh) βσmζm + σζh σm
(
βσm

(
ζ2m + 1

)
+ σζhζm

)
βσmζm + σζh 1 σmζm

σm
(
βσm

(
ζ2m + 1

)
+ σζhζm

)
σmζm σ2

m

(
ζ2m + 1

)


In [4]: InDeriv0 = twoSimm * TensorProduct(Theta_icti,Theta)
InDeriv1 = Elim * InDeriv0 * Elim.transpose()
e1r0v = Matrix(6,1,[r0,1,0, 0,0,0])
DerivPart = (e1r0v).transpose() * InDeriv1.inv()
sdp = simplify(DerivPart)

In [5]: # Omega here comes from Gaussian Isserlis equation
Vpart1 = TensorProduct(vmu*vmu.transpose(),vsig) + TensorProduct(vsig,vmu*vmu.transpose()) + \

TensorProduct(vsig,vsig)
VThetahat = twoSimm * Vpart1
LVThetahat = simplify(Elim * VThetahat * Elim.transpose())

vcov = sdp * LVThetahat * sdp.transpose()
simplify(vcov)

Out[5]: [
ζ2h
2 + ζ2

m + 1
]

In [6]: # Omega here comes from Independent Elliptical equation
uu = vmu * vmu.transpose()
vector_sigma = Matrix(9,1,vsig)

Vpart1 = (kurty-1) * simplify(vector_sigma * vector_sigma.transpose() + twoSimm * TensorProduct(vsig,vsig))
Vpart2 = twoSimm * (simplify(TensorProduct(Theta,Theta) - TensorProduct(uu,uu)))
VThetahat = simplify(Vpart1 + Vpart2)
LVThetahat = simplify(Elim * VThetahat * Elim.transpose())

vcov = sdp * LVThetahat * sdp.transpose()
simplify(vcov)

Out[6]: [
3κ
4 ζ

2
h + κζ2

m −
ζ2h
4 + 1

]
a

203





Bibliography

Good artists borrow. Great
artists steal.

(Variously attributed)

[1] Bet 362. Privately Published, 2007. URL http://longbets.org/362/.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover
printing, tenth gpo printing edition, 1964. URL http://people.math.sfu.ca/

~cbm/aands/toc.htm.

[3] Masafumi Akahira. A higher order approximation to a percentage point of
the noncentral t-distribution. Communications in Statistics - Simulation and
Computation, 24(3):595–605, 1995. doi: 10.1080/03610919508813261. URL
http://www.tandfonline.com/doi/abs/10.1080/03610919508813261.

[4] Masafumi Akahira, Michikazu Sato, and Norio Torigoe. On the new approxi-
mation to non-central t-distributions. Journal of the Japan Statistical Society,
25(1):1–18, 1995. URL https://www.jstage.jst.go.jp/article/jjss1995/

25/1/25_1_1/_pdf.

[5] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley
Series in Probability and Statistics. Wiley, 2003. ISBN 9780471360919. URL
http://books.google.com/books?id=Cmm9QgAACAAJ.

[6] Albert Ando and G. M. Kaufman. Bayesian analysis of the independent multi-
normal process. neither mean nor precision known. Journal of the Ameri-
can Statistical Association, 60(309):pp. 347–358, 1965. ISSN 01621459. URL
http://www.jstor.org/stable/2283159.

[7] David R. Aronson. Evidence-Based Technical Analysis: Applying the Scientific
Method and Statistical Inference to Trading Signals. Wiley, Hoboken, NJ, nov
2006. URL http://www.evidencebasedta.com/.

[8] Cliff Asness. Our model goes to six and saves value from
redundancy along the way. Privately Published, Decem-
ber 2014. URL https://www.aqr.com/cliffs-perspective/

our-model-goes-to-six-and-saves-value-from-redundancy-along-the-way.

205

http://longbets.org/362/
http://people.math.sfu.ca/~cbm/aands/toc.htm
http://people.math.sfu.ca/~cbm/aands/toc.htm
http://www.tandfonline.com/doi/abs/10.1080/03610919508813261
https://www.jstage.jst.go.jp/article/jjss1995/25/1/25_1_1/_pdf
https://www.jstage.jst.go.jp/article/jjss1995/25/1/25_1_1/_pdf
http://books.google.com/books?id=Cmm9QgAACAAJ
http://www.jstor.org/stable/2283159
http://www.evidencebasedta.com/
https://www.aqr.com/cliffs-perspective/our-model-goes-to-six-and-saves-value-from-redundancy-along-the-way
https://www.aqr.com/cliffs-perspective/our-model-goes-to-six-and-saves-value-from-redundancy-along-the-way


Short Sharpe Course, version v0.2.999;

[9] Clifford S. Asness, Andrea Frazzini, and Lasse Heje Pedersen. Quality minus
junk. Privately Published, October 2013. URL http://ssrn.com/abstract=

2312432.

[10] David H. Bailey and Marcos Lopez de Prado. The Sharpe Ratio Efficient Fron-
tier. Social Science Research Network Working Paper Series, apr 2011. URL
http://ssrn.com/abstract=1821643.

[11] L. J. Bain and M. Engelhardt. Introduction to Probability and Mathematical
Statistics. Classic Series. Cengage Learning, 1992. ISBN 9780534380205. URL
http://books.google.com/books?id=MkFRIAAACAAJ.

[12] Yong Bao. Estimation risk-adjusted Sharpe ratio and fund performance ranking
under a general return distribution. Journal of Financial Econometrics, 7(2):
152–173, 2009. doi: 10.1093/jjfinec/nbn022. URL https://doi.org/10.1093/

jjfinec/nbn022.

[13] W. Baumgartner, P. Weiss, and H. Schindler. A nonparametric test for the
general two-sample problem. Biometrics, 54(3):1129–1135, 1998.

[14] Martin Becker. Exact simulation of final, minimal and maximal values of Brow-
nian motion and jump-diffusions with applications to option pricing. Computa-
tional Management Science, 7(1):1–17, 2010. URL http://www.oekonometrie.

uni-saarland.de/papers/SimBrownWP.pdf.

[15] Roger L. Berger. Likelihood ratio tests and intersection-union tests. Techni-
cal Report 2288, Department of Statistics, North Carolina State University,
September 1996. URL http://www.stat.ncsu.edu/information/library/

mimeo.archive/ISMS_1996_2288.pdf. Institute of Statistics, Mimeo Series.

[16] Fisher Black, M C Jensen, and Myron Scholes. The capital asset pricing
model: Some empirical tests. Studies in the theory of capital markets, 81(3):
79–121, 1972. URL http://papers.ssrn.com/sol3/papers.cfm?abstract_

id=908569&amp;rec=1&amp;srcabs=350100.

[17] Taras Bodnar and Yarema Okhrin. On the product of inverse Wishart and
normal distributions with applications to discriminant analysis and portfolio
theory. Scandinavian Journal of Statistics, 38(2):311–331, 2011. ISSN 1467-
9469. doi: 10.1111/j.1467-9469.2011.00729.x. URL http://dx.doi.org/10.

1111/j.1467-9469.2011.00729.x.

[18] Taras Bodnar and Wolfgang Schmid. Econometrical analysis of the sample ef-
ficient frontier. The European Journal of Finance, 15(3):317–335, 2009. doi:
10.1080/13518470802423478. URL http://www.tandfonline.com/doi/abs/

10.1080/13518470802423478.

[19] Jacob Boudoukh, Ronen Israel, and Matthew P. Richardson. Long Horizon
Predictability: A Cautionary Tale. SSRN eLibrary, 2018. doi: 10.2139/ssrn.
3142575. URL https://ssrn.com/paper=3142575.

206

http://ssrn.com/abstract=2312432
http://ssrn.com/abstract=2312432
http://ssrn.com/abstract=1821643
http://books.google.com/books?id=MkFRIAAACAAJ
https://doi.org/10.1093/jjfinec/nbn022
https://doi.org/10.1093/jjfinec/nbn022
http://www.oekonometrie.uni-saarland.de/papers/SimBrownWP.pdf
http://www.oekonometrie.uni-saarland.de/papers/SimBrownWP.pdf
http://www.stat.ncsu.edu/information/library/mimeo.archive/ISMS_1996_2288.pdf
http://www.stat.ncsu.edu/information/library/mimeo.archive/ISMS_1996_2288.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=908569&amp;rec=1&amp;srcabs=350100
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=908569&amp;rec=1&amp;srcabs=350100
http://dx.doi.org/10.1111/j.1467-9469.2011.00729.x
http://dx.doi.org/10.1111/j.1467-9469.2011.00729.x
http://www.tandfonline.com/doi/abs/10.1080/13518470802423478
http://www.tandfonline.com/doi/abs/10.1080/13518470802423478
https://ssrn.com/paper=3142575


Short Sharpe Course, version v0.2.999;

[20] Kris Boudt, Brian Peterson, and Christophe Croux. Estimation and decom-
position of downside risk for portfolios with non-normal returns, 2008. URL
http://ssrn.com/abstract=1024151.

[21] Richard P. Brent. Algorithms for Minimization without Derivatives. Prentice-
Hall, Englewood Cliffs, N.J., 1973. URL http://books.google.com/books?

id=FR_RgSsC42EC.

[22] Frank Bretz, Torsten Hothorn, and Peter Westfall. Multiple comparisons using
R. Chapman and Hall/CRC, 2016. URL http://www.ievbras.ru/ecostat/

Kiril/R/Biblio_N/R_Eng/Bretz2011.pdf.

[23] Mark Britten-Jones and Anthony Neuberger. Improved inference and
estimation in regression with overlapping observations, 2007. URL
http://www2.warwick.ac.uk/fac/soc/wbs/subjects/finance/faculty1/

anthony_neuberger/improved.pdf.

[24] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and
Forecasting. Springer, 2nd edition, mar 2002. ISBN 9780387953519. URL http:

//books.google.com/books?vid=ISBN0387953515.

[25] Warren E. Buffett. Berkshire Hathaway shareholder letter 2016. Privately Pub-
lished, February 2017. URL http://www.berkshirehathaway.com/letters/

2016ltr.pdf.

[26] Mark M Carhart. On persistence in mutual fund performance. Journal of Fi-
nance, 52(1):57, 1997. URL http://www.jstor.org/stable/2329556.

[27] CBOE. The CBOE volatility index - VIX. Privately Published, 2009. URL
http://www.cboe.com/micro/vix/vixwhite.pdf.

[28] CBOE. Vix index. Privately Published, 2014. URL http://www.quandl.com/

YAHOO/INDEX_VIX.

[29] CBOE. CBOE VIX data. Privately Published, 2017. URL http://www.

cboe.com/products/vix-index-volatility/vix-options-and-futures/

vix-index/vix-historical-data.

[30] Damien Challet. Sharper asset ranking from total drawdown durations, 2015.
URL http://arxiv.org/abs/1505.01333.

[31] R. Chattamvelli and R. Shanmugam. An enhanced algorithm for noncentral t-
distribution. Journal of Statistical Computation and Simulation, 49(1-2):77–83,
1994. doi: 10.1080/00949659408811561. URL http://www.tandfonline.com/

doi/abs/10.1080/00949659408811561.

[32] Long Chen, Robert Novy-Marx, and Lu Zhang. An alternative three-factor
model. Privately Published, April 2011. URL http://ssrn.com/abstract=

1418117.

207

http://ssrn.com/abstract=1024151
http://books.google.com/books?id=FR_RgSsC42EC
http://books.google.com/books?id=FR_RgSsC42EC
http://www.ievbras.ru/ecostat/Kiril/R/Biblio_N/R_Eng/Bretz2011.pdf
http://www.ievbras.ru/ecostat/Kiril/R/Biblio_N/R_Eng/Bretz2011.pdf
http://www2.warwick.ac.uk/fac/soc/wbs/subjects/finance/faculty1/anthony_neuberger/improved.pdf
http://www2.warwick.ac.uk/fac/soc/wbs/subjects/finance/faculty1/anthony_neuberger/improved.pdf
http://books.google.com/books?vid=ISBN0387953515
http://books.google.com/books?vid=ISBN0387953515
http://www.berkshirehathaway.com/letters/2016ltr.pdf
http://www.berkshirehathaway.com/letters/2016ltr.pdf
http://www.jstor.org/stable/2329556
http://www.cboe.com/micro/vix/vixwhite.pdf
http://www.quandl.com/YAHOO/INDEX_VIX
http://www.quandl.com/YAHOO/INDEX_VIX
http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
http://arxiv.org/abs/1505.01333
http://www.tandfonline.com/doi/abs/10.1080/00949659408811561
http://www.tandfonline.com/doi/abs/10.1080/00949659408811561
http://ssrn.com/abstract=1418117
http://ssrn.com/abstract=1418117


Short Sharpe Course, version v0.2.999;

[33] Victor Chernozhukov, Iván Fernández-Val, and Alfred Galichon. Rearranging
Edgeworth-Cornish-Fisher expansions. Privately Published, 2007. URL http:

//arxiv.org/abs/0708.1627.

[34] Gregory C. Chow. Tests of equality between sets of coefficients in two linear
regressions. Econometrica, 28(3):pp. 591–605, 1960. ISSN 00129682. URL http:

//www.jstor.org/stable/1910133.

[35] John Howland Cochrane. Asset pricing. Princeton Univ. Press, Princeton [u.a.],
2001. ISBN 0691074984. URL http://press.princeton.edu/titles/7836.

html.

[36] Rama Cont. Empirical properties of asset returns: stylized facts and sta-
tistical issues. Quantitative Finance, 1(2):223–236, 2001. doi: 10.1080/
713665670. URL http://personal.fmipa.itb.ac.id/khreshna/files/2011/

02/cont2001.pdf.

[37] James M. Dickey. Matricvariate generalizations of the multivariate t distribu-
tion and the inverted multivariate t distribution. The Annals of Mathemati-
cal Statistics, 38(2):511–518, 04 1967. doi: 10.1214/aoms/1177698967. URL
http://dx.doi.org/10.1214/aoms/1177698967.

[38] DLMF. Digital library of mathematical functions, 2011. URL http://dlmf.

nist.gov/5.11#iii. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[39] D. Duffie. Dynamic Asset Pricing Theory. Princeton Series in Finance. Princeton
University Press, 3rd edition, 2010. ISBN 9781400829200. URL https://books.

google.com/books?id=f2Wv-LDpsoUC.

[40] Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ inte-
gration. Journal of Statistical Software, 40(8):1–18, 2011. URL http://www.

jstatsoft.org/v40/i08/.

[41] Edwin J. Elton, Martin J. Gruber, and Christopher R. Blake. Fundamental
economic variables, expected returns, and bond fund performance. The Journal
of Finance, 50(4):pp. 1229–1256, 1995. ISSN 00221082. URL http://www.

jstor.org/stable/2329350.

[42] Paul L. Fackler. Notes on matrix calculus. Privately Published, 2005. URL
http://www4.ncsu.edu/~pfackler/MatCalc.pdf.

[43] Eugene F. Fama and Kenneth R. French. The cross-section of expected stock
returns. Journal of Finance, 47(2):427, 1992. URL http://www.jstor.org/

stable/2329112.

[44] Eugene F. Fama and Kenneth R. French. Dissecting Anomalies with a Five-
Factor Model. SSRN eLibrary, 2014. doi: 10.2139/ssrn.2503174. URL http:

//ssrn.com/paper=2503174.

208

http://arxiv.org/abs/0708.1627
http://arxiv.org/abs/0708.1627
http://www.jstor.org/stable/1910133
http://www.jstor.org/stable/1910133
http://press.princeton.edu/titles/7836.html
http://press.princeton.edu/titles/7836.html
http://personal.fmipa.itb.ac.id/khreshna/files/2011/02/cont2001.pdf
http://personal.fmipa.itb.ac.id/khreshna/files/2011/02/cont2001.pdf
http://dx.doi.org/10.1214/aoms/1177698967
http://dlmf.nist.gov/5.11#iii
http://dlmf.nist.gov/5.11#iii
https://books.google.com/books?id=f2Wv-LDpsoUC
https://books.google.com/books?id=f2Wv-LDpsoUC
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://www.jstor.org/stable/2329350
http://www.jstor.org/stable/2329350
http://www4.ncsu.edu/~pfackler/MatCalc.pdf
http://www.jstor.org/stable/2329112
http://www.jstor.org/stable/2329112
http://ssrn.com/paper=2503174
http://ssrn.com/paper=2503174


Short Sharpe Course, version v0.2.999;

[45] Mark Finkelstein and Edward O Thorp. Nontransitive dice with equal means.
Optimal Play: Mathematical Studies in Games and Gambling, pages 293–310,
2000. URL http://www.math.uci.edu/~mfinkels/dice9.pdf.

[46] Ronald Aylmer Fisher. The sampling error of estimated deviates, together with
other illustrations of the properties and applications of the integrals and deriva-
tives of the normal error function. In Introduction to British A.A.S. Math.
Tables, I. 1931. URL http://hdl.handle.net/2440/15209.

[47] Ronald Aylmer Fisher. Properties and applications of Hh functions, pages
xxvi–xxxv. 1931. URL http://scholar.google.com/scholar?cites=

8550436429828449531&#38;as_sdt=4005&#38;sciodt=4000&#38;hl=en.

[48] Dean Follmann. A simple multivariate test for one-sided alternatives. Journal
of the American Statistical Association, 91(434):854–861, 1996. ISSN 01621459.
URL http://www.jstor.org/stable/2291680.

[49] Andrea Frazzini, David Kabiller, and Lasse Heje Pedersen. Buffett’s alpha.
Privately Published, 2012. URL http://www.econ.yale.edu/~af227/pdf/

Buffett%27s%20Alpha%20-%20Frazzini,%20Kabiller%20and%20Pedersen.

pdf.

[50] Kenneth French. Data library. Privately Published, 2017. URL http://mba.

tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

[51] Kenneth French. 5 industry portfolios. Privately Published, 2019. URL
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_

Library/det_5_ind_port.html.

[52] Claudio Fuentes and Vik Gopal. A constrained conditional likelihood approach
for estimating the means of selected populations, 2017. URL http://arxiv.

org/abs/1702.07804. cite arxiv:1702.07804.

[53] Claudio Fuentes, George Casella, and Martin T. Wells. Confidence intervals for
the means of the selected populations. Electron. J. Statist., 12(1):58–79, 2018.
doi: 10.1214/17-EJS1374. URL https://doi.org/10.1214/17-EJS1374.

[54] M. Gardner. The Colossal Book of Mathematics: Classic Puzzles, Paradoxes,
and Problems : Number Theory, Algebra, Geometry, Probability, Topology,
Game Theory, Infinity, and Other Topics of Recreational Mathematics. Nor-
ton, 2001. ISBN 9780393020236. URL https://books.google.com/books?id=

orz0SDEakpYC.

[55] R. C. Geary. The distribution of ”Student’s” ratio for non-normal samples.
Supplement to the Journal of the Royal Statistical Society, 3(2):pp. 178–184,
1936. ISSN 14666162. URL http://www.jstor.org/stable/2983669.

209

http://www.math.uci.edu/~mfinkels/dice9.pdf
http://hdl.handle.net/2440/15209
http://scholar.google.com/scholar?cites=8550436429828449531&#38;as_sdt=4005&#38;sciodt=4000&#38;hl=en
http://scholar.google.com/scholar?cites=8550436429828449531&#38;as_sdt=4005&#38;sciodt=4000&#38;hl=en
http://www.jstor.org/stable/2291680
http://www.econ.yale.edu/~af227/pdf/Buffett%27s%20Alpha%20-%20Frazzini,%20Kabiller%20and%20Pedersen.pdf
http://www.econ.yale.edu/~af227/pdf/Buffett%27s%20Alpha%20-%20Frazzini,%20Kabiller%20and%20Pedersen.pdf
http://www.econ.yale.edu/~af227/pdf/Buffett%27s%20Alpha%20-%20Frazzini,%20Kabiller%20and%20Pedersen.pdf
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_port.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_port.html
http://arxiv.org/abs/1702.07804
http://arxiv.org/abs/1702.07804
https://doi.org/10.1214/17-EJS1374
https://books.google.com/books?id=orz0SDEakpYC
https://books.google.com/books?id=orz0SDEakpYC
http://www.jstor.org/stable/2983669


Short Sharpe Course, version v0.2.999;

[56] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Ru-
bin. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts
in Statistical Science. Taylor & Francis, 2013. ISBN 9781439840955. URL
http://books.google.com/books?id=ZXL6AQAAQBAJ.

[57] G. M. Goerg. Lambert W Random Variables - A New Family of Generalized
Skewed Distributions with Applications to Risk Estimation. ArXiv e-prints, dec
2009. URL http://arxiv.org/abs/0912.4554.

[58] G. M. Goerg. The Lambert Way to Gaussianize skewed, heavy tailed data with
the inverse of Tukey’s h transformation as a special case. ArXiv e-prints, oct
2010. URL http://arxiv.org/abs/1010.2265.

[59] Georg M. Goerg. LambertW: An R package for Lambert W x F Random Vari-
ables, 2014. R package version 0.5.

[60] William Sealy Gosset. The probable error of a mean. Biometrika, 6(1):1–25,
March 1908. URL http://dx.doi.org/10.2307/2331554. Originally published
under the pseudonym “Student”.

[61] R. Grinold and R. Kahn. Active Portfolio Management: A Quantitative Ap-
proach for Producing Superior Returns and Selecting Superior Returns and Con-
trolling Risk. McGraw-Hill Library of Investment and Finance. McGraw-Hill Ed-
ucation, 1999. ISBN 9780070248823. URL http://books.google.com/books?

id=a1yB8LTQnOEC.

[62] William C. Guenther. Evaluation of probabilities for the noncentral distribu-
tions and the difference of two t-variables with a desk calculator. Journal of
Statistical Computation and Simulation, 6(3-4):199–206, 1978. doi: 10.1080/
00949657808810188. URL http://dx.doi.org/10.1080/00949657808810188.

[63] Peter Hall. Chi squared approximations to the distribution of a sum of indepen-
dent random variables. The Annals of Probability, 11(4):pp. 1028–1036, 1983.
ISSN 00911798. URL http://www.jstor.org/stable/2243514.

[64] P. R. Hansen. A test for superior predictive ability. Journal of Business and
Economic Statistics, 23(4), 2005. doi: 10.1198/073500105000000063. URL http:

//pubs.amstat.org/doi/abs/10.1198/073500105000000063.

[65] Peter Reinhard Hansen. Asymptotic tests of composite hypotheses. Working
Paper 2003-09, Brown University, Department of Economics, Providence, RI,
2003. URL http://hdl.handle.net/10419/80222.

[66] Campbell R Harvey and Yan Liu. Backtesting. The Journal of Portfolio Manage-
ment, 42(1):13–28, 2015. URL https://www.cmegroup.com/education/files/

backtesting.pdf.

210

http://books.google.com/books?id=ZXL6AQAAQBAJ
http://arxiv.org/abs/0912.4554
http://arxiv.org/abs/1010.2265
http://dx.doi.org/10.2307/2331554
http://books.google.com/books?id=a1yB8LTQnOEC
http://books.google.com/books?id=a1yB8LTQnOEC
http://dx.doi.org/10.1080/00949657808810188
http://www.jstor.org/stable/2243514
http://pubs.amstat.org/doi/abs/10.1198/073500105000000063
http://pubs.amstat.org/doi/abs/10.1198/073500105000000063
http://hdl.handle.net/10419/80222
https://www.cmegroup.com/education/files/backtesting.pdf
https://www.cmegroup.com/education/files/backtesting.pdf


Short Sharpe Course, version v0.2.999;

[67] Joel Hasbrouck. Empirical Market Microstructure:The Institutions, Economics,
and Econometrics of Securities Trading: The Institutions, Economics, and
Econometrics of Securities Trading. Oxford University Press, USA, 2007. ISBN
9780195301649. URL http://books.google.com/books?id=KIEHmQEACAAJ.

[68] Roy D. Henriksson and Robert C. Merton. On market timing and investment
performance. II. statistical procedures for evaluating forecasting skills. The Jour-
nal of Business, 54(4):513–533, 1981. URL http://www.jstor.org/stable/

2352722.

[69] G. W. Hill. Algorithm 396: Student’s t-quantiles. Commun. ACM, 13(10):
619–620, oct 1970. ISSN 0001-0782. doi: 10.1145/355598.355600. URL http:

//doi.acm.org/10.1145/355598.355600.

[70] G. W. Hill. Remark on “Algorithm 396: Student’s t-quantiles [s14]”. ACM
Trans. Math. Softw., 7(2):250–251, jun 1981. ISSN 0098-3500. doi: 10.1145/
355945.355956. URL http://doi.acm.org/10.1145/355945.355956.

[71] S. Hodges and Financial Options Research Centre. A Generalization of
the Sharpe Ratio and Its Applications to Valuation Bounds and Risk Mea-
sures. FORC preprint: Financial Options Research Centre. Financial Op-
tions Research Centre, Warwick Business School, University of Warwick,
1998. URL http://www2.warwick.ac.uk/fac/soc/wbs/subjects/finance/

research/wpaperseries/1998/98-88.pdf.

[72] D. Hogben, R. S. Pinkham, and M. B. Wilk. The moments of the non-central
t-distribution. Biometrika, 48(3/4):pp. 465–468, 1961. ISSN 00063444. URL
http://www.jstor.org/stable/2332772.

[73] Jiunn T. Hwang. Empirical Bayes estimation for the means of the selected
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GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the doc-
ument must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is not
limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the
work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
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A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors of
the Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Document
is released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic trans-
lation to a variety of formats suitable for input to text formatters. A copy made in
an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transpar-
ent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Docu-
ment to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that trans-
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lates XYZ in another language. (Here XYZ stands for a specific section name men-
tioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this defini-
tion.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered
to be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added mate-
rial. If you use the latter option, you must take reasonably prudent steps, when you
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begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title
as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
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J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS
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You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium,
is called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.
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8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense, or distribute it is void, and will automatically terminate your rights under this
License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this is
the first time you have received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days after your receipt of
the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your rights
have been terminated and not permanently reinstated, receipt of a copy of some or all
of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
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applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example
of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in
the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as
part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC,
and subsequently incorporated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the title
page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section
entitled “GNU Free Documentation License”.
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If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.
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