
Delaunay Refinement by Corner Lopping

Steven E. Pav1 and Noel J. Walkington2

1 University of California at San Diego, La Jolla, CA. spav@ucsd.edu
2 Carnegie Mellon University, Pittsburgh, PA. noelw@andrew.cmu.edu

Summary. An algorithm for quality Delaunay meshing of 2D domains with curved
boundaries is presented. The algorithm uses Ruppert’s “corner lopping” heuristic
[MR96b:65137]. In addition to admitting a simple termination proof, the algorithm
can accept curved input without any bound on the tangent angle between adjoining
curves. In the limit case, where all curves are straight line segments, the algorithm
returns a mesh with a minimum angle of arcsin

�
1/2

√
2
�
, except “near” input cor-

ners. Some loss of output quality is experienced with the use of curved input, but
this loss is diminished for smaller input curvature.

Key words: unstructured, simplicial, planar, curved boundary, Delaunay, mesh.

1 Introduction

The Delaunay Refinement method is used for quality simplicial mesh generation
in two and three dimensions. A Delaunay Refinement algorithm takes an input
of points and segments (or curves) and adds Steiner Points to guarantee that the
output Delaunay Triangulation conforms to the input and has high quality simplices,
as measured by the circumradius to shortest edge length ratio. A Steiner Point is
added to “split” an input segment into subsegments if a mesh vertex forms an
obtuse angle with the segment. A Steiner Point is added at the circumcenter of a
poor triangle in the mesh. Termination of the algorithm is had by proving a lower
bound on the distance between Steiner Points, and applying compactness arguments
[MR96b:65137, Pse2003].

Ruppert was a pioneer of the Delaunay Refinement method. Ruppert’s Algo-
rithm accepts a planar straight line graph, and outputs a Delaunay mesh where no
output angle is smaller than a user-chosen parameter, which can be as large as 20.7◦.
In Ruppert’s analysis input segments have to meet at nonacute angles, otherwise
his näıve algorithm might not terminate [MR96b:65137].

Ruppert offered two heuristic solutions to this problem. The first, “concentric
shell splitting,” has been adapted to a working algorithm, and allows better output
quality guarantees [Sjr1997, Pse2003, MglPseWnj2005]. In this solution, segments
sharing a common endpoint are split at the same distance from the endpoint, i.e., on

166 Steven E. Pav and Noel J. Walkington

the same “shell.” This simple fix gives a good lower bound, and an input-independent
upper bound, on output angles. However, its analysis is involved, and does not
generalize naturally to higher dimensions or curved input (due to its reliance on
“power of two” arguments). Ruppert’s second solution, “corner lopping,” is analyzed
herein, and admits a simple proof.

Delaunay Refinement for curved input was considered by Boivin and Ollivier-
Gooch [BcOGc:2002]. Their analysis requires that input segments meet at an angle
of at least π/3. Concentric shell splitting to deal with smaller input angles was
mentioned in this context, but not shown to give a working algorithm; this fix
clearly would require further modification to the output quality guarantee.

Fig. 1. The outline of a mock air foil and output from the meshing algorithm.
Solving a fluid dynamics PDE would probably require further mesh refinement.

The Delaunay Refinement Algorithm has also been generalized to three dimen-
sions. Early analysis required input segments and faces to meet at nonacute angles
[MglPseWnj2002c]. As a fix, later work used protective regions around input points
and segments [338236, CoVeYv01, Cswetal2004, PseWnj2004]. In that way these
algorithms resemble corner lopping, which places a protective ball around acute cor-
ners in the input. Reverse from what is usually seen, these three-dimensional algo-
rithms do not appear to be the natural generalization of any known two-dimensional
algorithm.

The motivations for the present work, then, are:

Delaunay Refinement by Corner Lopping 167

1. To present an algorithm which accepts straight or curved input without a lower
bound on input angle, yet admits a simple termination proof.

2. To find an algorithm which is the “projection” into the plane of recently discov-
ered three-dimensional algorithms, and thereby to gain a better understanding
of those algorithms.

2 Preliminaries

The input to the algorithm is assumed to be a PRCC.

Definition 1 (PRCC). A set of points and a set of non-closed regular curves em-
bedded in R2, (P, C), form a Piecewise Regular Curve Complex (PRCC) if

(i) for any curve, c ∈ C, the endpoints of c are elements of P.
(ii) given two curves, c1, c2 ∈ C, their intersection is either empty or an endpoint

(or endpoints) common to both curves.
(iii) given p ∈ P, c ∈ C, either p is an endpoint of c, or p is not on c.

The goal of meshing is to produce, from input (P, C), the Delaunay Triangulation
of a set of points, P�, hereafter denoted as D (P�), such that (i) P ⊆ P�, (ii) each
input curve of C is approximated by a piecewise linear curve which is the union
of edges in D (P�), (iii) all or most of the triangles of D (P�) are “high quality.”
Absent of a specific interpolation problem, triangle “quality” is taken to be inversely
proportional to its minimum angle. When guaranteeing a large minimum angle is
not possible due to input constraints, an upper bound on the maximum angle of the
mesh is often desired [BaAz76, Ci78, MglPseWnj2005].

Given two points, p, q let pq be the line segment with these points as endpoints,
and let %pq denote a curve with p and q as endpoints. Let |p− q| denote the distance
between p and q. For a curve c, and a point p, let

|p− c| = min
x∈c

|p− x|

be the distance from p to c. We use a ∨ b to denote the maximum of quantities a
and b, and a ∧ b to represent the minimum.

The local feature size, first defined by Ruppert [MR96b:65137], is used to prove
termination and quality of the output mesh. We take the classical definition:

Definition 2 (Local Feature Size). Given a PRCC, (P, C), define lfsi (x), for
i = 0, 1, as the distance from x to two mutually disjoint features of the PRCC of
dimension no greater than i. By “feature” we mean a point in P or a curve in C.
Thus, for example, lfs0 (x) is the distance from x to the second nearest point of P.
Let lfs (x) = lfs1 (x) be the local feature size.

Note 1. The following facts about local feature size are immediate: (i) For any x,
lfs1 (x) ≤ lfs0 (x) , (ii) lfsi (x) is a Lipschitz function with constant 1, i.e., lfsi (p) ≤
lfsi (q) + |p− q| , (iii) lfsi (x) has a positive minimum value on R2.

Some authors use “local feature size” to describe a different function, the distance
of a point on the input to the medial axis of the input [AnCsKrk2001]. While both
definitions give Lipschitz functions, our definition yields a function defined in all of

168 Steven E. Pav and Noel J. Walkington

R2 with a strictly positive lower bound. The latter fact is important because our
local feature size describes, roughly, the size of triangles we expect to see nearby in
an output mesh of the given input.

In the case of straight line input, a lower bound on the angle subtended by input
segments is used to show that Steiner Points on input segments are not placed too
close together. For PRCC input, we instead use the following

Definition 3 (Curve Separation). For the sake of this definition, given curve
c = &xy, we say that a point z on c is sufficiently far from x if |x− z| ≥ lfs (x) /2C0,
where C0 = 1 +

√
2, is a “grading constant” (see Lemma 5).

Given two curves c1, c2 sharing a single endpoint x, then the separation between
them is

inf
z1,z2

|z1 − z2|
|z1 − x| ∨ |z2 − x| ,

where zi is a point on ci that is sufficiently far from x.
If curves c1, c2 share both their endpoints, say x and y, then the separation

between them is

inf
z1,z2

|z1 − z2|
|z1 − x| ∨ |z2 − x| ∨ |z1 − y| ∨ |z2 − y| ,

where zi is a point on ci that is sufficiently far from both x and y.
For a given PRCC, let σ be a lower bound on the separation between any pair

of curves with at least one common endpoint. We say σ is the “minimum curve
separation” of the PRCC.

Given that input curves are continuous and may meet at most at their endpoints, the
separation between two curves is strictly positive, and thus σ is positive as well. In
the case where all input curves are straight line segments, we have σ = 2 sin (θ∗/2) ,
where θ∗ ≤ π/3 is a lower bound on the angle subtended by the segments.

Following Boivin and Ollivier-Gooch [BcOGc:2002], we make the following

Definition 4 (Total Variation of a Curve). The total variation of curve c is�
c
| dθ| , where θ is the angle subtended by the tangent of the curve. Let Δt be an

upper bound on the total variation of every curve in an input PRCC.

For the remainder of this paper we assume Δt ≤ π/3. Such a bound can be
achieved by splitting curves in a preprocessing step.

3 The Algorithm

The Delaunay Refinement algorithm we consider maintains sets, P�, and C�, which
are initialized, respectively, as P and C. The algorithm adds Steiner Points to P�,
then returns D (P�) on termination. Throughout this work, “curve” or “subcurve”
means a member of C�, while “input curve” refers to a member of C. “Input point”
refers to a point of P. We will take lfsi (·) to be with respect to the PRCC input to
the algorithm, (P, C).

Our algorithm protects regions around the input points and (sub)curves. Follow-
ing the notation of Ruppert [MR96b:65137], a (sub)curve is said to be “encroached”
if there exists a vertex of the mesh inside its diametral circle, where the diametral

Delaunay Refinement by Corner Lopping 169

Algorithm 2: Algorithm for meshing via corner lopping.
Input: A PRCC, an angle bound, the splitting fraction
Output: A mesh

cornerLop((P, C) , κ, β)
(1) Let P� ← P, C� ← C.
(2) Construct D (P�).
(3) Use D (P�) to find lfs0 (·) for points in P’.
(4) foreach p ∈ P

(5) if p is the corner of an acute angle in C�.
(6) d(p) ← �√

2− 1
�
lfs0 (p)

(7) splitball(p, 1)
(8) else
(9) Let d(p) ← 0.
(10) while any of these rules can be executed, execute one of them, with the

rules listed in descending priority:
(11) if there are p ∈ P, q ∈ P�, with |p− q| < d(p) then splitball(p, β)
(12) if there is z ∈ P�, c ∈ C� such that z encroaches c then splitcurve(c, z)
(13) if there is Δxyz ∈ D (P�) such that ∠xyz ≤ κ and the circumcenter of

Δxyz is not closer to some q ∈ P than d(q) then splittri(Δxyz)
(14) return D (P�)

splitball(p, C)
(15) Let d(p) ← Cd(p).
(16) foreach %pt ∈ C�

(17) Let x be the point on %pt such that |p− x| = d(p)
(18) Add x to P�. Remove %pt from C�, replacing it with &px, %xt.

splitcurve(&xy, [z])
(19) if a z is given
(20) Let p be some point on &xy, perhaps based on z.
(21) else
(22) Let p be some point on &xy.
(23) Add p to P�, replace &xy in C� by subcurves &xp and &py.

splittri(Δxyz)
(24) Let p be the circumcenter of Δxyz.
(25) if p encroaches curve c ∈ C�

(26) splitcurve(c)
(27) else
(28) Add p to P�.

circle of curve %pq is the circle with pq as diameter. We denote the diametral circle
of curve c by Cd (c).

The algorithm assigns to each input point, p, a radius d(p) ≥ 0, and, by analogy
with curves, p is said to be encroached if a vertex of the mesh is in B (p), which is
defined to be the open ball of radius d(p) centered at p.

The algorithm, given as Algorithm 2, takes the input PRCC and two parameters:
κ, the desired angle bound of the output mesh, and β ∈ �

1
2
, 1

�
, the factor by which a

170 Steven E. Pav and Noel J. Walkington

radius d(p) is reduced when an input point p is encroached. Adjusting β may affect
output mesh cardinality.

To split the curve c = &xy, an intermediate point p ∈ c is selected and c is replaced
by two subcurves &xp and &py. In the case c is a segment, traditionally p is chosen as
the midpoint of the segment. Without a clear definition of the midpoint of a curve,
we assume only that the algorithm satisfies the following assumption regarding the
selection of p:

Assumption 1. Assume there are constants η ≥ 1 and μ ≥ 1 such that the algo-
rithm is implemented so that
(1) if p is selected to split curve c by a call to splitcurve(c, z), then |p− Cd (c)| ≥

|p− z|/η.
(2) if p is selected to split curve c = &xy by a call to splitcurve(c), then |p− Cd (c)| ≥

r/μ, where r is the radius of the circumcircle, i.e., |x− y| /2.

This assumption is needed to prevent a midpoint from being added too close to
the diametral circle (and any points outside this circle) of the curve it is added to
split; see Figure 2.

cor2

cor1

zp

w

(a) Case 1

cor2

cor1

z

pw

(b) Case 2

Fig. 2. For the case of segment input, as shown in (a), Assumption 1 can be satisfied
with η = μ = 1. For general curves, as in (b), a point p selected to split a curve may
be near the diametral circle of the curve, i.e., near other Steiner Points which may
lie outside the diametral circle.

4 Proof of Termination

We first consider some facts regarding curved input. The following lemma is a con-
sequence of the Mean Value Theorem:

Lemma 1 (Lens Containment). Let c be a curve with endpoints x, y, and with
total variation less than Δt. Suppose z is a point on c distinct from the endpoints.
Then

Delaunay Refinement by Corner Lopping 171

∠xzy ≥ π −Δt.

This lemma claims that the worst case of a curve of total variation no more than
Δt is a circular arc. That is, a curve &xy with bounded total variation is contained
in a diametral lens of segment xy. The corollaries claim that by careful choice of p
in step 20 and step 22, the algorithm will conform to Assumption 1, with

η =
1 + tan (Δt/2)

1− tan (Δt/2)
, μ =

1

1− tan (Δt/2)
.

Corollary 1. Let c = &xy be a curve with total variation less than Δt. Let Cd (c) be
the diametral circumcircle of c, and let z be a point in this circle. Then there is a
point p on c such that

|p− Cd (c)| ≥ |p− z| 1− tan (Δt/2)

1 + tan (Δt/2)
.

Corollary 2. Let c = &xy be a curve with total variation less than Δt. Let Cd (c) be
the diametral circumcircle of c. Then there is a point p on c such that

|p− Cd (c)| ≥ r (1− tan (Δt/2)) ,

where r is the radius of the diametral circle.

Both the corollaries are proved by taking p to be the intersection of the curve with
the perpendicular bisector of segment xy, as shown in Figure 2(b).

The following lemma, which is proved by basic geometry and use of the Mean
Value Theorem, guarantees that a point encroaching a subcurve cannot be a mid-
point on the same input curve.

Lemma 2. Let c� = &xy be a subcurve of c, which is a curve with total variation less
than Δt ≤ π/2. Let z be a point on c which is not on c�. Then ∠xzy ≤ π/2.

The next lemma is needed since we protect curves with the diametral circle
of their secant segments, but add “midpoints” on the curve. Thus, in general, the
diametral circle of a curve may not wholly contain the diametral circles of its sub-
curves.

Lemma 3 (Diametral Circle Protection). Let c = &xy be a curve with total
variation less than Δt. Let p be a point which does not encroach the diametral circle
of c. Letting |p− c| be the distance from p to the curve c, then

|p− c|
|p− x| ∧ |p− y| ≥

1

ζ
,

where ζ =
√

2 sin (Δt/2)/
�√

1 + sin Δt − 1
�
.

Proof. We assume that |p− x| ≤ |p− y| . Let <1, <2 be the two arcs of points sub-
tending angle π −Δt with x, y. By Lemma 1, c is between these two arcs. Without
loss of generality, assume p is “above” <1. Let w be the center of arc <1.

We consider two cases:

172 Steven E. Pav and Noel J. Walkington

 cor2

 cor1

x y

p

w

�1

�2

p�

p��

m

(a) Case 1

 cor2

 cor1

x y

p

w

�1

�2

(b) Case 2

Fig. 3. Two cases in the proof of Lemma 3. In (a), wp intersects the arc <1, while
there is no such intersection in (b).

1. The first case is if pw and <1 intersect. Let p� be their point of intersection.
Let p�� be the intersection of pw with the diametral circle of segment xy, as in
Figure 3(a).
Then, using the sine rule,

|p− c|
|p− x| ∧ |p− y| =

|p− c|
|p− x| ≥

|p− p�|
|p− x| =

sin ∠p�xp

sin ∠pp�x
≥ sin ∠p�xp��

sin ∠p��p�x
=
|p�� − p�|
|p�� − x| .

Note that since ∠pp�x is obtuse, then ∠p�xp is acute and we can indeed conclude
that sin ∠p�xp ≥ sin ∠p�xp��. Let R = |w − x| , and let r = |m− x| , where m
is the midpoint of x and y. Because ∠xwy = Δt, then r = R sin (Δt/2) . Let
φ = ∠p��mx. Then**p�� − p�** =

w − p��−R =

!
(R cos (Δt/2) + r sin φ)2 + (r cos φ)2 −R

= R
�"

1 + sin Δt sin φ− 1
�

.

Then

|p�� − p�|
|p�� − x| =

R
√

1 + sin Δt sin φ−R

2r sin (φ/2)
=

√
1 + sin Δt sin φ− 1

2 sin (Δt/2) sin (φ/2)
.

This quantity decreases as φ increases, thus it takes minimum value when φ =
π/2. Thus

|p�� − p�|
|p�� − x| ≥

√
1 + sin Δt − 1√
2 sin (Δt/2)

.

2. The other case is that pw and <1 do not intersect, as shown in Figure 3(b). That
is, ∠mxp > π/2 + Δt/2. Looking at the circle centered at w through <1, then
|p− c| ≥ |p− <1| = |p− x| . Thus

|p− c|
|p− x| ∧ |p− y| ≥ 1 >

1√
2
≥
√

1 + sin Δt − 1√
2 sin (Δt/2)

.

Delaunay Refinement by Corner Lopping 173

As expected, this lower bound is “worse,” i.e., smaller, for larger Δt. However, we
can make the rough uniform bound, ζ < 2 for 0 ≤ Δt ≤ π/3.

For p ∈ P, let B (p) be the open ball of radius d(p) centered at p during any step
of the execution of colop. Let ∂B (p) be the boundary of B (p), and let B (p) be the
closed ball of radius d(p) centered at p. If d(p) = 0, let B (p) be the empty set and
let B (p) be the point p.

After d(p) is set for all p ∈ P, then for p, q ∈ P,

d(p) + d(q) ≤
�√

2− 1
�

(lfs0 (p) + lfs0 (q)) <
lfs0 (p) + lfs0 (q)

2
≤ |p− q|

Since d(p) can only shrink for a given p ∈ P during the lifetime of the algorithm,
we make the following claim.

Claim. For distinct p, q ∈ P, at all times B (p) ∩ B (q) = ∅.
In the following analysis, we will refer to points of P as “input;” points which

are added to split curves, that is at step 7 or step 23, as “midpoints;” triangle
circumcenters added at step 28 are called “circumcenters.”

The following two lemmata assert that a ball B (p) is only split by a midpoint on
an input edge disjoint from p, and thus d(p) is always bounded below by a constant
times lfs (p).

Lemma 4. If a point t is added to P� such that t ∈ B (p) for some p ∈ P then t
must be a midpoint on a curve of C disjoint from p.

Proof. Consider the possible identity of such a t:
• It cannot be that t ∈ P, as B (p) ∩ B (t) = ∅.
• It cannot be that t was added to P� in step 7, as if t is on ∂B (p) then it is not

in B (p), and if t ∈ ∂B (q) for some q ∈ P, then since B (p) does not meet B (q),
q is not in B (p).

• Suppose t is the midpoint of some curve, c, which was added in step 23 or step 26.
Then c cannot have been encroached by some q ∈ B (p) with q -= p as then the
rule splitball would have been preferred to splitcurve or splittri. Thus c
cannot have endpoint p, as otherwise its diametral circle would be contained
in B (p), and thus it could not be encroached by such a q. That is, c must be
disjoint from p.

• It cannot be that t was the circumcenter of a triangle, as this kind of circum-
center is explicitly prohibited from being added to P�.

Lemma 5. During execution of colop, if p ∈ P, and d(p) > 0 then

lfs (p) ≤ C0d(p),

where C0 =
�
1 +

√
2
� ≈ 2.41.

Proof. A nonzero d(p) is set at two places in the algorithm, step 6 and step 15:

(step 6) In this case, because lfs (p) ≤ lfs0 (p) ,

lfs (p) ≤ lfs0 (p) =
1√

2− 1
d(p) = C0d(p).

174 Steven E. Pav and Noel J. Walkington

(step 15) In this case, by Lemma 4, the input point is encroached by a point t on a
curve disjoint from p. Then before d(p) is reduced to βd(p) it is the case that
lfs (p) ≤ |p− t| ≤ d(p). Considering the new value of d(p), this is lfs (p) ≤
d(p)/β ≤ 2d(p) < C0d(p).

Thus the radius d(p) associated with an input point is never too much smaller
than the local feature size, which is determined by the input. This implies that for
a given input, splitball(p, C) is called a finite number of times. Next we show
that this lower bound on d(p) gives a bound on the distance between midpoints on
nondisjoint input curves.

Lemma 6. Suppose p, q are midpoints in P�. Furthermore assume the midpoints are
on distinct nondisjoint curves of C. Then

lfs (p) ≤ 1 + C0

σ
|p− q| ,

where C0 =
�
1 +

√
2
�

is the constant from Lemma 5.

Proof. Let the two curves share input point x. Since p and q are on curves sharing
this point, both |p− x| and |q − x| are at least d(x), which is bounded from below
by lfs (x) /C0, by Lemma 5. Applying Definition 3,

|p− q| ≥ σ (|p− x| ∨ |q − x|) ≥ σ |p− x| .
By the Lipschitz property, then using Lemma 5, then bounding |p− x| and using

the above,

lfs (p) ≤ |p− x|+ lfs (x) ≤ |p− x|+ C0d(x) ≤ (1 + C0) |p− x| ≤ 1 + C0

σ
|p− q|

The following theorem asserts that the spacing between points in P� is bounded
by the local feature size of the input, i.e., the output of the algorithm is “well
graded.” Moreover, this theorem proves termination of the algorithm, by a ball-
packing argument [MR96b:65137, Pse2003].

Theorem 1. Suppose p is to be added to P� during the execution of colop. Suppose
the algorithm is implemented such that Assumption 1 is satisfied. Let q be a point
in P� at the time p is to be added. Then there are constants C1, C2 such that

lfs (p) ≤
�

C1 |p− q| if p is a curve midpoint,

C2 |p− q| if p is a triangle circumcenter.

Proof. We consider the cases:
1. Suppose p is a midpoint on input curve c. If q is an input point disjoint from c,

or a midpoint on a curve disjoint from c, then lfs (p) ≤ |p− q| , and it suffices
to take 1 ≤ C1. If q is an input endpoint of c, then since d(q) ≤ |p− q|, by
Lemma 5, lfs (p) ≤ |p− q| + lfs (q) ≤ |p− q| + C0d(q) = (1 + C0) |p− q| . Thus
1 + C0 ≤ C1 suffices.
If q is a midpoint on a curve nondisjoint from c, then by Lemma 6, it suffices to
take

1 + C0

σ
≤ C1

Thus we can assume q is a circumcenter, or another midpoint on c. Now consider
the subcases for the identity of p:

Delaunay Refinement by Corner Lopping 175

a) Suppose p is a point on input curve c = &xy, added to P� in step 7. Since
no circumcenters have been added to P� when step 7 is executed, q must
be a midpoint on c. Since at most two midpoints are added to c during the
grooming phase, p, q are associated with the endpoints, x, y respectively.
That is |p− x| = d(x), and |q − y| = d(y). Then

|p− q| = |x− y| − d(x)− d(y) ≥ 1√
2− 1

(d(x) ∨ d(y))− 2 (d(x) ∨ d(y))

=
3− 2

√
2√

2− 1
(d(x) ∨ d(y)) .

Because x, y are input points

lfs (p) ≤ |p− x| ∨ |p− y| = d(x) ∨ (|p− q|+ d(y))

≤
�

1 +

√
2− 1

3− 2
√

2

�
|p− q| = (1 + C0) |p− q|

Thus 1 + C0 ≤ C1 suffices.
b) Suppose p is added in step 18 when the ball around input point x is re-

duced. Let B− (x) be ball around x before d(x) is reduced, i.e., the ball
of radius d−(x) = d(x)/β, where d(x) reflects the value after step 15 has
been executed. Then we have |p− x| = d(x), and the distance from x to the
boundary of B− (x) is (1− β)d(x)/β.
By Lemma 4, d(x) is only reduced if there is some t on a curve disjoint from
x with t ∈ B− (x) . In this case lfs (x) ≤ |x− t| ≤ d−(x) = d(x)/β.
We entertain the two possible locations of q. The first is that q is outside
B− (x), and thus |p− q| ≥ (1− β)d(x)/β. Then

lfs (p) ≤ |p− x|+ lfs (x) ≤ (1 + 1/β) d(x) =

�
1 + β

1− β

� �
1− β

β

�
d(x)

≤ 1 + β

1− β
|p− q| .

Thus we must take
1 + β

1− β
≤ C1

The second possibility is that q is inside B− (x). We assumed q is a circum-
center or on the input curve c also containing p. However, by design of the al-
gorithm, q cannot be a circumcenter in P� and be inside B− (x). The remain-
ing possibility is that q be x itself. In this case lfs (p) ≤ |p− x| + lfs (x) ≤
|p− x| + C0d(x) = (1 + C0) |p− x| , and so the requirement 1 + C0 ≤ C1

suffices.
c) Suppose p is added to P� by a call to splitcurve(c�, z).

If z is an input point or midpoint on an input curve distinct from c, then
by arguments above

lfs (p) ≤ 1 + C0

σ
|p− z| .

By Lemma 2, z cannot be a midpoint on c. If z is a circumcenter, then
at the time it was added it did not encroach a supercurve of c�, as oth-
erwise it would have been rejected. By Lemma 3, since p is a point on

176 Steven E. Pav and Noel J. Walkington

that supercurve, |z − p| ≥ rz/ζ, where rz is the radius of the triangle
that z killed. Using this result inductively when z was added, lfs (p) ≤
|p− z|+ lfs (z) ≤ |p− z|+ C2rz ≤ (1 + ζC2) |p− z| . Since Assumption 1 is
satisfied, |p− z| ≤ η |p− Cd (c�)|, and thus

lfs (p) ≤ max

�
1 + C0

σ
, 1 + ζC2

	
η

**p− Cd

�
c�

�** .

Similarly, if q is a point of P� which encroaches c�, then by the preceding
arguments,

lfs (p) ≤ max

�
1 + C0

σ
, 1 + ζC2

	
|p− q| .

If q does not encroach c�, then |p− Cd (c�)| ≤ |p− q| , and so it suffices to
take

η
1 + C0

σ
≤ C1 and η (1 + ζC2) ≤ C1

d) Suppose p is added to P� by a call to splitcurve(c�) at step 26. Then there
was some circumcenter x which encroached c�, but was rejected. Inductively
lfs (x) ≤ C2 |x− t| , where t is either endpoint of c�. Letting r be the ra-
dius of c�, i.e., half the length of its secant, this gives lfs (x) ≤ √

2C2r, by
the classical argument [MR96b:65137]. Then lfs (p) ≤ |p− x| + lfs (x) ≤�
1 +

√
2C2

�
r.

Since circumcenter x was being inserted, splittri was called, thus c� was
not encroached. Thus q does not encroach c�, so |p− Cd (c�)| ≤ |p− q|. Using
Assumption 1, then lfs (p) ≤ �

1 +
√

2C2

�
μ |p− Cd (c�)| , and so it suffices to

take

μ
�
1 +

√
2C2

�
≤ C1

2. Suppose p is the circumcenter of a triangle Δxyz ∈ D (P�) , with ∠xyz ≤ κ.
Without loss of generality, assume z was added to P� after x. If x, z are points
of P, then lfs (z) ≤ |x− z|. Otherwise, if z is not an input point then, induc-
tively, lfs (z) ≤ (C1 ∨ C2) |x− z| . By the sine rule, |x− z| = 2 |p− z| sin θ ≤
2 |p− z| sin κ. Thus

lfs (p) ≤ |p− z|+ lfs (z) ≤ (1 + 2 sin κ [C1 ∨ C2]) |p− z| .
Because the triangle is Delaunay, it must be that |p− z| ≤ |p− q| . Thus it
suffices to take

1 + 2 sin κ [C1 ∨ C2] ≤ C2

Then the following choices of constants work:

C1 = max

�
1 + β

1− β
,
η (1 + C0)

σ
,

η (1 + ζ)

1− 2ζη sin κ
,

μ
�
1 +

√
2
�

1− 2μ
√

2 sin κ

�
,

C2 = 1 + 2C1 sin κ,

as long as κ < arcsin
�
1/2μ

√
2
� ∧ arcsin (1/2ζη) .

Corollary 3. If κ < arcsin
�
1/2μ

√
2
�∧arcsin (1/2ζη) , the algorithm will terminate.

Delaunay Refinement by Corner Lopping 177

The requirement κ < arcsin (1/2ζη) is probably more restrictive than necessary,
as it is built on an unlikely worst case scenario from Lemma 2.

Lemma 7. Let (P�, C�) be the point and curve sets at the termination of colop. Then
1. For every c ∈ C there are c0, c1, . . . , cn ∈ C� such that c is the union of the ci,

and each of the ci has empty diametral circle with respect to P�, and thus each
ci corresponds to an edge in D (P�).

2. If Δxyz ∈ D (P�) , then either the minimum angle of the triangle is no less than
κ, or there is a point p ∈ P with

max (|x− p| , |y − p| , |z − p|) ≤ 2d(p).

Note that, if midpoints are chosen properly (cf. Corollary 1 and Corollary 2),
then as Δt → 0, that ζ → √

2, and η and μ go to 1, and thus the bound on κ
goes to arcsin

�
1/2

√
2
�
. This is the classical output bound of the segment input case

[Pse2003, MR96b:65137].
Thus the user can select κ arbitrarily close to arcsin

�
1/2

√
2
�

by subdividing
his/her input to make Δt sufficiently small. It is straightforward to automate this
process for commonly used curves [BcOGc:2002]. However, this preprocessing step
is likely unnecessary; rather if κ is set to the desired level, curves with too large
variation will automatically be split. An argument of this type was used by the
authors in the analysis of a three-dimensional algorithm [PseWnj2004].

From Theorem 1, and the definition of σ, it should be clear that the algorithm
can accept input with curves that meet at zero tangent angle. See Figure 4 for an
example.

5 Results

A prototype of the algorithm was implemented using CGAL [Fa2001]. The code
accepts straight segments, circular arcs, and quadratic and cubic curves. Curves are
automatically split to meet a user-specified curvature bound, Δt.

The input in Figure 4 contains several curves which meet at a zero tangent angle.
Where input curves meet with small curve separation, the output mesh contains a
large number of large number of triangles, as predicted by the reliance of the grading
constants on 1/σ. This is shown in detail in Figure 5, which shows the region just
above where the two circles meet a line segment and two cubic curves, all at zero
tangent angle. There is small curve separation near the tangency point, which results
in a number of small angle triangles.

6 Discussion and Improvements

The presence of large angles in the output meshes is an obvious annoyance, for which
a fix has been discovered: The fix involves protecting the ball B (p) with “pseudo-
input” arcs, and enforcing the empty diametral circle property for these arcs. The
arcs need to be split to ensure a bound of π/3 on total curvature, which introduces
pseudo-midpoints. When a ball B (p) is split, the pseudo-input arcs are removed
from consideration, while the pseudo-midpoints remain in the mesh.

178 Steven E. Pav and Noel J. Walkington

(a) Input

(b) Output

Fig. 4. Results of the prototype code applied to an example PRCC. The input was
first subdivided with Steiner Points to insure Δt = 0.5. The code was executed with
β = 0.95 and κ = arcsin

�
1/2

√
2
�
. The minimum output angle, however, was only

about 0.29◦, due to the presence of small angles in the input. The mesh contains
2503 points.

Delaunay Refinement by Corner Lopping 179

Fig. 5. Detail from Figure 4, showing the region near where the two larger circles
touch a line segment and two cubic curves. All five curves meet at a zero tangent
angle. The input is shown in bold red lines. Note the presence of triangles with large
angles facing small angle triangles emanating from the point of tangency (which is
not shown).

Then when a ball B (p) is split, check the pseudo-midpoints it would generate.
If one of these has nearest neighbor closer than d(p)/2, split the ball again. If one of
the pseudo-midpoints would encroach a segment, split the segment if its diameter
is less than d(p), otherwise split the ball again. If the ball need not be split again,
add the pseudo-input points to P�.

Then protect the pseudo-input segments as real segments. In particular, if a
circumcenter encroaches one, split the pseudo-input segment instead of adding the
circumcenter. The only other modification is to, not attempt to kill a poor quality
triangle which is wholly contained in a ball B (p).

180 Steven E. Pav and Noel J. Walkington

The changes in the proof are minimal: C0 needs to be increased to 3, the proof
of Lemma 5 has to include the new reasons a ball B (p) might be split, and minor
changes need to be made in Theorem 1. This modification is not considered in
the main of the paper because of the added complication of the description of the
algorithm and its proof, and because it has not yet been implemented.

The use of pseudo-input arcs would make the algorithm similar to the initializa-
tion part of the three-dimensional Delaunay Refinement Algorithm of these authors,
wherein the boundaries of input faces are protected by portions of arcs [PseWnj2004].
The use of an implicit boundary to protect B (p) in colop, as opposed to an explicit
circle of pseudo-segments, is more akin to the three-dimensional algorithm of Cheng
et al. [Cswetal2004]. The presence of large angles in the meshes produced by this two-
dimensional algorithm raises doubts about the three-dimensional algorithms which
appear to generalize it: do they not also produce simplices with large (solid) angles,
even in the absence of small angles, dihedral and otherwise, in the input? It is pos-
sible this problem is avoided by the more aggressive approach of Cheng and Poon,
who place explicit spherical patches around input facet boundaries to protect small
dihedral angles [MR1974932]. Among these three algorithms, only that of Cheng et
al. appears to have been implemented, so they cannot be compared directly. It seems
that an aggressive protection strategy may be necessary in three dimensions, but this
creates meshes with large cardinalities, and papers with impenetrable technicalities.

The ambiguity in the choice of a midpoint by splitcurve, i.e., that it follows
Assumption 1, allows room for heuristic modifications to the algorithm. In particular,
it may not always be desirable to split a curve &xy by the point where it intersects
the bisector of x and y. In the case where point z encroaches &xy, one may instead
choose the intersection of the angle bisector of ∠xzy with the curve as the splitting
point. In some situations this heuristic can slightly improve the maximum output
angle of the mesh.

The choice of β appears to affect mesh cardinality for some input. For the input
of Figure 4, the use of β = 0.5 results in a mesh with approximately 32% Note that
the term (1 + β)/(1− β) which bounds C1 from below is modest for β ≈ 1

2
. That is,

it should be smaller than the other terms which bound C1, so there appears to be
little lost by increasing β, as was seen in this case. By no means, however, is there
a clear relationship between β and mesh cardinality.

[MR96b:65137] Ruppert J. “A Delaunay refinement algorithm for quality 2-
dimensional mesh generation.” J. Algorithms, vol. 18, no. 3, 548–585, 1995.
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
(Austin, TX, 1993)

[Pse2003] Pav S.E. Delaunay Refinement Algorithms. Ph.D. thesis, Department
of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania, May
2003. URL http://www.math.cmu.edu/\~{}nw0z/publications/phdtheses/

pav/p%avabs

[Sjr1997] Shewchuk J.R. Delaunay Refinement Mesh Generation. Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, May 1997. Available as Technical Report CMU-CS-97-137

[MglPseWnj2005] Miller G.L., Pav S.E., Walkington N.J. “When and Why Delau-
nay Refinement Algorithms Work.” Internat. J. Comput. Geom. Appl., vol. 15,
no. 1, 25–54, 2005. Special Issue: Selected Papers from the 12th International
Meshing Roundtable, 2003

Delaunay Refinement by Corner Lopping 181

[BcOGc:2002] Boivin C., Ollivier-Gooch C.F. “Guaranteed-Quality Triangular
Mesh Generation For Domains with Curved Boundaries.” Internat. J. Numer.
Methods Eng., vol. 55, no. 10, 1185–1213, 2002

[MglPseWnj2002c] Miller G.L., Pav S.E., Walkington N.J. “Fully Incremental 3D
Delaunay Mesh Generation.” Proceedings of the 11th International Meshing
Roundtable, pp. 75–86. Sandia National Laboratory, September 2002

[338236] Murphy M., Mount D.M., Gable C.W. “A point-placement strategy for
conforming Delaunay tetrahedralization.” Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, pp. 67–74. Society for Indus-
trial and Applied Mathematics, 2000

[CoVeYv01] Cohen-Steiner D., de Verdiere E.C., Yvinec M. “Conforming Delaunay
Triangulations in 3D.” CS 4345, INRIA, 2001

[Cswetal2004] Cheng S.W., Dey T.K., Ramos E.A., Ray T. “Quality meshing for
polyhedra with small angles.” SCG ’04: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 290–299. ACM Press, 2004

[PseWnj2004] Pav S.E., Walkington N.J. “Robust Three Dimensional Delaunay
Refinement.” Proceedings of the 13th International Meshing Roundtable, pp.
145–156. Sandia National Laboratory, September 2004

[BaAz76] Babuška I., Aziz A.K. “On the angle condition in the finite element
method.” SIAM J. Numer. Anal., vol. 13, no. 2, 214–226, 1976

[Ci78] Ciarlet P.G. The Finite Element Method for Elliptic Problems. North–
Holland, 1978

[AnCsKrk2001] Amenta N., Choi S., Kolluri R.K. “The power crust.” SMA ’01:
Proceedings of the sixth ACM symposium on Solid modeling and applications,
pp. 249–266. ACM Press, New York, NY, USA, 2001

[Fa2001] Fabri A. “CGAL - The Computational Geometry Algorithm Library.”
Proceedings of the 10th International Meshing Roundtable, pp. 137–142. Sandia
National Laboratory, October 2001

[MR1974932] Cheng S.W., Poon S.H. “Graded conforming Delaunay tetrahedral-
ization with bounded radius-edge ratio.” Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), pp.
295–304. ACM, New York, 2003

