
Delaunay Refinement Algorithms

A Thesis
Presented to

The Academic Faculty

by

Steven Elliot Pav

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Department of Mathematical Sciences
Carnegie Mellon University

May 2003

Copyright c© 2003 by Steven Elliot Pav

ii

iii

For Richard and Nancy.

iv

v

ACKNOWLEDGEMENTS

It would be difficult to acknowledge those people who have contributed to this work without

either making an omission or exceeding the proper page limits:

First, partial funding for this work was provided by National Science Foundation Grants

DMS–0208586 and CCR–9902091.

I could not have completed my education without the constant support and encourage-

ment of my family: my father and mother, my two brothers, sisters-in-law, and three young

ones to whom “Uncle Steve” is synonymous with “the bogeyman.”

I thank my advisor, Noel Walkington, for three years of guidance and support. Much

of this work was developed in (nearly) innumerable discussions with Noel and Gary Miller.

Many of the insights for this work are theirs, while the deficiencies are mine only.

I have much profitted from discussing the topic with Guy Blelloch and Clemens Kadow.

The meshing algorithms described herein were coded with components developed by Umut

Acar, Guy Blelloch, Franklin Chen, Herb Derby, David Garmire, Robert Harper and Alek-

sandar Nanevski, as part of the PSciCo project. That my code runs at all is only through

their efforts. Many of the figures (and some of the results) herein were generated with

KSEG, written by Ilya Baran. Computational support was provided by Florin Manolache.

Much deserved thanks go to the department secretaries.

I enjoyed a summer working with Kokichi Sugihara at Tōkyō University. I thank the

NSF and MEXT for offering such a program. I am grateful to Momoko Ono and the Ono

family for their friendship and hospitality. I suspect my admission to Carnegie Mellon was

due to the special efforts of William Zeimer, for which I am grateful. My knowledge of

triangle centers dates to Douglas Hofstadter’s CAT-DOG class. The constellations in my

math sky all have 17 yellow pigs, er, stars, thanks to David Kelly.

I thank the colleagues with whom I suffered through my first year at Carnegie Mellon:

Caner Kazançı, Adam Speight and Kate “Skater” Trapp. John Krueger, Kerry Ojakian

and Ksenija Simic round out the fresh-math crew. That there has been no gunplay in

our cramped office over the years is a lasting tribute to my officemates, Chad Brown and

Matthew Szudzik. My compadres worldwide bear mention for couches slept-upon, phone

calls, and art swaps: Daniel Seifert, Stephen Markacs, Paul Ford, Joy Patterson, Heather

Rowe, Ian Rothwell and Mark Bishop. If this thesis is defended, I will surely celebrate with

Jessi Berkelhammer, Abie Flaxman, Devon Yates, and Critical Mass Pittsburgh.
I cannot thank enough the ladyfriend, Linda Shipley, who is the law as far as I know it.

vi

vii

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGEMENTS v

LIST OF TABLES ix

LIST OF FIGURES xi

LIST OF SYMBOLS OR ABBREVIATIONS xiii

GLOSSARY xv

SUMMARY xvii

I INTRODUCTION 1

1.1 Motivation . 1

1.2 Meshing . 2

1.3 This Thesis . 8

CHAPTERS

II DELAUNAY TRIANGULATIONS AND DELAUNAY REFINEMENT 11

2.1 The Delaunay Triangulation . 11

2.2 The Meshing Problem . 13

2.3 The Delaunay Refinement Algorithm . 14

2.3.1 The Delaunay Refinement Algorithm at Work 15

2.4 Failures of the Delaunay Refinement Algorithm 16

2.5 A Generic Proof of Good Grading . 20

III THE DELAUNAY REFINEMENT ALGORITHM 29

3.1 Encroachment Basics . 29

3.2 Input with Restricted Cosines . 32

3.2.1 Assumptions on the Input . 32

3.2.2 Establishing the Encroachment Sequence Bound Hypothesis 33

3.3 Input with Restricted Lengths . 37

3.3.1 Assumptions on the Input . 38

3.3.2 Establishing the Encroachment Sequence Bound Hypothesis 38

viii

IV AUGMENTING INPUT 43

4.1 Bounded Reduction Augmenter . 43

4.2 Feature Size Augmenter . 48

V THE ADAPTIVE DELAUNAY REFINEMENT ALGORITHM 53

5.1 Description of the Algorithm . 53

5.2 Is Adaptivity Necessary? . 54

5.3 Circumcenter Sequences . 55

5.4 Good Grading . 59

5.4.1 Asymptotic Grading Optimality . 67

5.5 Output Quality . 68

5.6 Termination and Optimality . 73

5.7 Augmented Input . 75

5.8 How Good is “Optimal?” . 79

VI VARIATIONS 83

6.1 Delaunay Refinement with an Augmenter 83

6.1.1 Good Grading . 86

6.2 A Runtime Analyzable Algorithm . 92

6.2.1 Good Grading . 94

VII OPTIMALITY 99

7.1 The Whirl . 100

7.2 An Upper Bound . 104

7.3 A Lower Bound . 109

7.4 Using the Upper Bound . 113

APPENDICES

REFERENCES 117

ix

LIST OF TABLES

1 The value of θ which minimizes fλ,φ(θ) for given values of λ, φ is shown. . . 103

x

xi

LIST OF FIGURES

1 Meshes of Lake Superior. 3

2 The Delaunay Triangulation of a set of points. 12

3 The Delaunay Triangulation of a point set with degeneracies. 12

4 A possible run of the Delaunay Refinement Algorithm. 17

5 An input which causes the Delaunay Refinement Algorithm to commit an
infinite cascade of midpoints on two segments subtending small angle. . . . 18

6 An input which causes the Delaunay Refinement Algorithm to commit an
infinite cascade of spiraling midpoints on seven segments. 19

7 An input which causes the Delaunay Refinement Algorithm to fall into an
infinite recursion due to midpoint-circumcenter interaction. 20

8 An input which causes the Delaunay Refinement Algorithm to fall into an
infinite recursion due to midpoint-circumcenter interaction when κ ≥ π/6. . 21

9 The definition of local feature size. 22

10 The classical “yield” case where a circumcenter causes a midpoint to be
committed. 25

11 Claim 3.1.1: subsegments of an input segment have restricted length. 29

12 Claim 3.1.2: the geometry of encroachment. 30

13 Lemma 3.1.4: more on the geometry of encroachment. 31

14 The “ping-pong” is impossible for input conforming to Assumption 3.2.1 . . 34

15 Establishing a lower bound on the local feature size decrease from a γ-
Bounded Reduction Augmenter. 45

16 Example of a 5-Bounded Reduction Augmenter at work. 47

17 Establishing a lower bound on the local feature size decrease from a γ-Feature
Size Augmenter. 49

18 Example of a 3+
√

13
2 -Feature Size Augmenter at work. 52

19 Lemma 5.3.2: circumcenter sequences must be long to “turn” around a line
segment. 56

20 A helpful figure for Lemma 5.3.2. 57

21 A counterexample showing Lemma 5.3.2 cannot be extended. 58

22 A counterexample showing that µ = Ω
(

1
sin θ∗

)

, i.e., that Lemma 5.4.3 is tight. 67

23 A smarter algorithm may outperform the Delaunay Refinement Algorithm
in the presence of small angles. 69

xii

24 Lemma 5.5.1: the geometric origin of arctan [(sin θ)/(2 − cos θ)]. 69

25 The main argument of Corollary 5.5.4. 72

26 The minimum output angle of the Adaptive Delaunay Refinement Algorithm. 73

27 The optimality constant, ζ (θ∗), plotted versus θ∗. 80

28 The two factors comprising the optimality constant, ζ (θ∗), plotted versus θ∗. 81

29 A counterexample showing a lower bound on the optimality constant. . . . 82

30 Augmenter as preprocessor versus adaptive augmenting. 84

31 The two “yield” conditions for the runtime analyzable algorithm. 93

32 A α-whirl for α ≈ 27.6◦ is shown. 100

33 The decreasing function
√

h2
α + 1 tanα

2 gα(− arctan 1
hα

), plotted versus α. . . 105

34 The idea of Lemma 7.2.1. 106

35 The spiral mesh with n = 6. 110

36 The optimality constant, ζ (α), for Ruppert’s Algorithm plotted versus α. . 114

37 The two optimality constants, ζt (α) , ζm (α), for Ruppert’s Algorithm plotted
versus α. 115

xiii

LIST OF SYMBOLS OR ABBREVIATIONS

Ω The domain of the input, (P, S), i.e., the convex hull of P .

θ∗ A lower bound on the angle subtended by input segments, with 0 < θ∗ ≤ π/3.

α The minimum angle in a mesh.

κ The output angle parameter for the Delaunay Refinement Algorithm.

|x− y| The Euclidian distance between the points x and y.

lfs (x) The local feature size at the point x with respect to an understood input, (P, S).

β, ρ Constants relevant to the Encroachment Sequence Bound Hypothesis and the
generalized good grading theorem.

d1 (x) The distance from x to the nearest distinct feature of an understood input,
(P, S).

lfs′ (x) The local feature size at the point x with respect to an augmented input, (P′, S′).

γ Constant describing the possible scaling of a Bounded Reduction Augmenter or
Feature Size Augmenter.

κ̂ The output angle parameter for the Adaptive Delaunay Refinement Algorithm.

η Roughly the ratio of the distance from which a point can cause a segment to

split to the radius of that segment, η = 1 +
√

2
1−2 sin κ̂ .

µ The grading constant for split segments under the Adaptive Delaunay Refine-
ment Algorithm. Normally µ = O

(η
θ∗

)

.

ζ (θ∗) The optimality constant for input with lower angle bound θ∗. Roughly, this
constant reflects how much worse, with regard to number of Steiner points, the
Delaunay Refinement Algorithm is than any other mesher with the same output
angle guarantees.

xiv

xv

GLOSSARY

Local Feature Size A positive Lipschitz function determined by a set of
points and a set of segments, (P, S). The local feature
size of a point x is the radius of the smallest circle cen-
tered at x which touches two disjoint elements from the
set of points and segments.

Planar Straight Line Graph Abbreviated PSLG, a set of points and a set of seg-
ments, (P, S), such that two segments intersect at most
at an endpoint, the endpoints of all segments are in the
collection of points, and points only intersect segments
at the ends.

xvi

xvii

SUMMARY

In this thesis, the problem of planar mesh generation with quality bounds is considered.

A good mesh generation algorithm should accept an arbitrary planar straight line graph

and output a Delaunay Triangulation of a set of points (all the input points plus some

acceptably small number of Steiner Points) which conforms to the input and has no small

or large angles. Ruppert’s algorithm for solving this problem is reanalyzed: it is shown that

this algorithm terminates for a larger class of input than previously proven. The analysis

removes a deficiency of Ruppert’s original exposition and analysis: the requirement that

input segments meet at nonacute angles.

An “adaptive” variant of the algorithm is introduced. This simple variant deals with

small input angles adaptively, producing meshes where most triangles have no small angles,

except where conformality to the input prevents this. The analysis shows that small output

angles of the mesh are not much smaller than nearby small input angles, and that large

angles are entirely prevented. As in Ruppert’s algorithm, the output meshes are “well-

graded” in the sense that the size of edges in the output is bounded by some function of

the input.

Lastly, a certain measure on triangulations with bounded minimum angle is considered.

This measure is similar to that analyzed by Mitchell. The new measure allows an asymptotic

improvement in the optimality claims of the algorithms considered.

xviii

1

CHAPTER I

INTRODUCTION

“There are only two kinds of math books. Those you cannot read beyond the first sen-

tence, and those you cannot read beyond the first page.” –C.N. Yang

1.1 Motivation

Physical systems are often modelled by a collection of partial differential equations. The

solution to such a collection is a function which satisfies the equations on the domain of the

problem, and exhibits some prerequisite continuity and boundary conditions. Typically the

class of potential solutions is an infinite dimensional vector space, call it U . The method of

finite elements selects some finite dimensional subspace, Uh ⊂ U , and finds an member of

this space which approximates the actual solution to the equations. Finding this approx-

imate solution is performed automatically, by computer, and the task is subdivided into

determining the basis vectors of Uh, constructing some (typically sparse) system of linear

equations, then solving the system, which yields the approximate solution [24, 36, 4].

The space Uh usually consists of truncated polynomials of a certain degree with some

local support; it is convenient to construct this space by partitioning the original problem

domain, call it Ω, into combinatorially similar elements, then defining the basis vectors in

terms of this partitioning. Two dimensional domains are usually decomposed into triangles

or quadrilaterals; for three dimensional domains, tetrahedra or hexahedra. The partition

is called a mesh, and the objective of the study of meshing is to reconcile how the choice

of meshes affects the success of the finite element method. A decomposition of a physical

domain is illustrated in Figure 1.

The classical analysis of the finite element method shows that the approximation error

is bounded by some function of the element size. This matches the intuition that somehow

finer meshes should produce more accurate results, though at the computational cost of

solving larger linear systems. However, this analysis always assumes a bound on the aspect

ratio of mesh elements [24]. The aspect ratio is some measure of the shape of the elements,

and a number of roughly equivalent definitions exist [21, 44].

The celebrated work of Babuška and Aziz shows that in two-dimensional triangular

meshes, large angles (near π) can yield poor interpolation accuracy [2, 23]. Small (and

large) angles in meshes are known to generate poorly conditioned linear systems for the

2 CHAPTER 1. Introduction

finite element method, leading to poor performance of iterative solvers [1, 44].

Many meshing algorithms pursue the strategy of producing meshes with no small angles,

since this also eliminates large angles. In some situations no such mesh may exist; for

example when the boundary of the domain Ω contains a small angle the mesher cannot

hope to partition Ω without including a small angle. In the case that small angles are

unavoidable, a good mesher should at least avoid large angles. The remainder of this

thesis, then, is devoted to the fairly simpleminded task of dividing two dimensional domains

into triangular meshes, of modest cardinality, while avoiding small and large angles. This

is actually a rather small subset of meshing; the reader interested in a broader view is

encouraged to consult the survey paper by Bern and Eppstein [6].

1.2 Meshing

Many meshing algorithms generate Delaunay or “nearly” Delaunay meshes. Delaunay meth-

ods are preferred because they have a sound theoretical footing, there are many algorithms

for generating Delaunay Triangulations, not a few of which have been implemented and are

commonly available, and Delaunay Triangulations have a number of attractive and well-

studied properties [37, 15, 18, 40, 9, 47, 22]. In particular, the Delaunay Triangulation is

known to maximize the minimum angle over all meshes on a given set of coplanar points.

Moreover, of all possible meshes, it lexicographically maximimizes the vector of all angles

of the triangulation (modulo degeneracies) [15, 33].

The Constrained Delaunay Triangulation is a generalization of the Delaunay Triangu-

lation to the case of a set of input segments and a set of input points. It has the property

of maximizing the minimum angle over all triangulations on the set of points which include

the set of segments as edges [26, 11].

Most meshing algorithms do not simply output the (Constrained) Delaunay Triangula-

tion of the input, as this can lead to rather small angles, even when they are absent from

the input. Rather a typical mesher will add Steiner Points to the input points, sometimes

dividing input segments into subsegments, and return a mesh which is the (Constrained)

Delaunay Triangulation of this augmented set of points. A common means of implementing

this is by generating some mesh on the input, then incrementally examining the properties

of the current mesh, and introducing Steiner Points to locally improve mesh quality. As

illustrated in Figure 1, there is usually some tradeoff between number of Steiner Points

added and overall mesh quality.

Chew introduced the first Delaunay Refinement algorithm with provable quality bounds

[12]. The algorithm accepts a planar straight-line graph, and, under some modest conditions

on the input, returns a Constrained Delaunay Triangulation in which no angle is smaller

1.2. Meshing 3

Figure 1: A “famous” domain from the world of meshing, Lake Superior, is shown at top.
In the middle, a Delaunay mesh of the domain is shown, with many small angle triangles.
The minimum angle in the mesh is around 0.9◦, and the maximum angle is around 177◦. At
bottom, a high quality Delaunay mesh of the domain is shown; all angles are greater than
14◦, and less than 125◦. In general one can expect some tradeoff between mesh quality and
cardinality of the point set. Input edges are shown in bold in the bottom two figures.

4 CHAPTER 1. Introduction

than π/6. The method is notable for its simplicity: the algorithm maintains a Constrained

Delaunay Triangulation of the current set of points, then adds to this set the circumcenter

of any triangle in the mesh with circumradius larger than some parameter, h, which is

user-provided; when no such triangle exists, the algorithm outputs the mesh. The main

drawback of the method is that the meshes are uniform–all edges in the output mesh have

length between h and 2h. By itself, this isn’t damning, but it implies that the number of

triangles in the mesh is Ω
(

A/h2
)

, where A is the area of the input domain, Ω. This may

be an unacceptably large number of elements.

Ruppert developed a Delaunay Refinement algorithm which is more input-sensitive [39].

The algorithm constructs a Conforming Delaunay Triangulation of the input, i.e., a mesh

which is the Delaunay Triangulation of a set of points including the input points, and in

which each input edge is the union of output edges. We will describe the algorithm in greater

detail in the following chapters. Roughly it guarantees that input edges are represented by

adding midpoints of edges as necessary, and removes triangles with small angles by adding

their circumcenters to the set of maintained points. The algorithm can guarantee that no

angle in the output mesh is smaller than some parametrizable κ < arcsin 1
2
√

2
≈ 20.7◦.

Unlike in Chew’s method, the edges of the mesh are well-graded, that is, short edges can be

“blamed” on nearby parts of the input which are close to one another. Moreover, it comes

with some optimality guarantee: the number of Steiner Points added by the algorithm is

within a constant of the number added by any mesher which generates a mesh on the input

with minimum angle κ. This optimality constant depends only on the angle κ.

A few holes remained in Ruppert’s original analysis, however. The most serious draw-

back of the original exposition was that it required input angles meet at nonacute angles.

This restriction was loosened to a π/3 lower bound on input angles [41, 30]. It was known

that the algorithm could fail (i.e., run indefinitely) for input with small angles, but that

this wasn’t always the case. Ruppert’s original paper suggests a heuristic for splitting in-

put segments to prevent the algorithm from diverging, but no proof is given of correctness

[39]. This heuristic cannot be employed without some other modification of the algorithm,

as small input angles could lead to vertices in the mesh with out-edges of highly varying

length, which clashes with the fact that in a mesh with no angle larger than κ, the ratio of

the lengths of edges emanating from a vertex is bounded by at most (2 cosκ)
2π
κ .

Shewchuk’s “Terminator” algorithm incorporates Ruppert’s idea for dealing with small

angles, and adds some modification for subverting the rules of Ruppert’s method when

they could lead to a sequence of decreasing mesh edges [43]. The proof of termination is

laudable for its elegance; the main idea of the proof–and of the algorithm–is to ensure that

any newly created mesh edge can either be directly blamed on some input features, or is

1.2. Meshing 5

not shorter than some (possibly distant) previously created mesh edge. Thus the algorithm

terminates with no mesh edge smaller than some h, which is determined solely by the input.

This property, however, points to an obvious failing of the analysis, e.g., that there is no

theoretical guarantee of good-grading. Though this may not be observed in practice, the

algorithm might generate meshes where all edges have length Θ (h) , and thus have Ω
(

A/h2
)

elements.

The output angle guarantees of the Terminator are also unsatisfactory; the analysis

shows only that no angle of the output is smaller than arcsin
[

sin
(

θ∗

2

)

/
√

2
]

, where θ∗ ≤
π/3 is a lower bound on input angle. The proof of this lower bound is tight, in that it

provides an example where an angle of size arcsin
[

sin
(

θ∗

2

)

/
√

2
]

+ ε could persist in the

final mesh. Moreover, no maximum angle bound is given, other than the näıve one of

π − 2 arcsin
[

sin
(

θ∗

2

)

/
√

2
]

, which deteriorates when θ∗ is small.

Shewchuk shows that his algorithm can be modified to remove angles which are smaller

than π/6 and are “far” from input features [43]. This partly addresses a long-standing

gap between the theoretical and actual performance of Ruppert’s algorithm; starting with

Ruppert [39], users of the algorithm have noted that it can be run in practice with κ chosen

as large as π/6, even though the theoretical upper bound on the number of Steiner Points

given by Ruppert diverges as κ approaches arcsin 1
2
√

2
.

Ruppert’s original optimality constants are far too large to be meaningful; for the case

where κ = π/9, Ruppert proved a constant of 1.81 × 1025. Mitchell studied a measure on

triangulations, showing that it is inversely related to the minimum angle of the mesh [31].

Use of this measure improves the optimality constants by several orders of magnitude; for

the case where κ = π/9, an optimality constant of 1.1 × 106 can be shown.1 Such a

guarantee, however, is useless. Fortunately the algorithm in practice performs much better

than the theory can guarantee.

Chew refined his original algorithm to accept a user-defined grading function, and to

split triangles that do not satisfy the grading function, or which have angles smaller than

π/6. The algorithm returns a mesh which is constrained Delaunay, although some input

segments have been split. The algorithm relies on the operation of removing Steiner Points

from the mesh, which marks a departure from his first algorithm and Ruppert’s algorithm

which only add Steiner Points. Chew claims some vague optimality result; this claim could

be interpreted, roughly, to mean that the algorithm produces a mesh with a number of

Steiner Points within a constant of that in any mesh which also satisfies the user-defined

grading function. No formal statement or proof of optimality is made. Moreover, the

1Mitchell claims a value of 6.3 × 105 which is clearly erroneous. I have attributed this to his use of his
Theorem 10 when computing the constants, and not his Theorem 11, as is appropriate [31].

6 CHAPTER 1. Introduction

algorithm, in the form presented by Chew, requires that no angle of the input is less than

π/3 [13].

Shewchuk analyzes Chew’s second algorithm, removing the user-defined grading func-

tion. He shows that it can produce meshes which are graded to the input, as those pro-

duced by Ruppert’s algorithm, and in which no angle is smaller than a parametrizable

κ < arcsin 5−1/2 ≈ 26.57◦. Given this proof, the optimality results of Ruppert apply, giving

an affirmation of Chew’s claim [43]. Again, this result relies on a π/3 lower bound on input

angle.

Shewchuk entertains a bewildering array of modifications which can be applied to stan-

dard Delaunay Refinement algorithms [43]. The first is the replacement of “diametral cir-

cles” with “diametral lenses;” roughly the idea is to make the algorithm less likely to split

an edge because a Steiner Point is too close to an input segment. In so doing, he is able

to increase the output guarantee of his Terminator algorithm to arcsin
[(√

3/2
)

sin
(

θ∗

2

)]

;

applying this modification, however, can sacrifice the Delaunay property, and the output

meshes are only guaranteed to be Constrained Delaunay. As mentioned above, Shewchuk

shows that a bound of κ < π/6 can be applied to triangles “far” from input features, with-

out sacrificing good grading. He also discusses “range-restricted segment splitting,” which

is a means of modifying how input edges are split in Ruppert’s algorithm to get a π/6

output angle bound; this modification requires an input bound of π/3, and has no grading

guarantee.

Ollivier-Gooch and Boivin formulate a grading function which is controlled by two user-

defined parameters. They use this function in a modified version of Ruppert’s algorithm in

the same way a grading function is used in Chew’s second algorithm [38]. They also extend

this work to the more general case where the input consists of vertices and curves [8].

Miller has recently formulated a Delaunay Refinement algorithm which admits a timing

analysis. This analysis shows that the algorithm can run in time O (m logm) plus some

geometric factor which depends on the input, where m is the number of output points. [28]

Delaunay Refinement has also been generalized to three dimensions. Ruppert considers

the matter briefly and without optimism; he recognized that his method of proving good

grading could only guarantee a bound on a weak quality measure in three dimensions [39].

Indeed, the Delaunay Refinement method bounds the “radius-edge” ratio of simplices; in

two dimensions this is equivalent to a bounded classical aspect ratio, but in three and

higher dimensions, the two ratios need not be related. Known generalizations of Ruppert’s

Algorithm to three dimensions are notorious for producing meshes with “slivers,” which are

tetrahedra with nearly coplanar vertices, and which have a fine radius-edge ratio, but a poor

classical aspect ratio. Meshes with bounded radius-edge ratio may be sufficient for some

1.2. Meshing 7

applications [27], but in general a bound on classical aspect ratio is desired. Practitioners

often rely on a postprocessor to remove slivers from meshes produced by the Delaunay

Refinement method [10, 17].

Shewchuk proves termination and good grading of a three-dimensional generalization

of Ruppert’s algorithm; it requires that input segments make angles no smaller than π/3,

that no input segment meets a plane at an angle smaller than arccos 1
2
√

2
≈ 69.3◦, and,

essentially, that adjoining input planes have nonacute dihedral angle. The algorithm is

shown to produce well-graded meshes. However, in three dimensions, this does not imply

size optimality. As mentioned above, output meshes may contain slivers [41]. Miller et

al., and Ollivier-Gooch and Boivin also discuss three-dimensional Delaunay Refinement

algorithms, with results similar to Shewchuk’s [30, 29, 38].

While this thesis focuses mostly on the Delaunay Refinement method, it would be

negligent not to give a brief survey of other advances in guaranteed-quality mesh gener-

ation. Many of the meshing algorithms outside the Delaunay Refinement framework rely

on quadtree and other anisotropic methods.

Baker et al. describe an algorithm that produces meshes with no angle smaller than

arctan 1
3 ≈ 18.43◦, and no angle larger than π/2. The algorithm comes without guarantees

on the number of Steiner Points added [3]. The technique involves a grid overlaying the

input which is used to generate Steiner Points.

Bern et al. produced the first meshing algorithm with quality bounds and a size-

optimality guarantee. The algorithm matches the arctan 1
3 lower bound of Baker et al.,

but comes with a guarantee on the number of Steiner Points added. The algorithm runs in

(optimal) O (n logn+m) time, where m is the output size [7]. The algorithm is based on

quadtrees: essentially, space is recursively divided into squares until each square contains

at most one input feature and neighboring squares are not of widely varying size, then the

mesh is constructed from these squares. As presented the algorithm is more of a theoretical

victory, since output meshes have an unacceptably large number of Steiner Points, even

for relatively simple inputs. Practical mesh generators based on this algorithm must rely

heavily on heuristics to reduce the output cardinality. Moreover, meshes produced by this

method display their Cartesian ancestry. The quadtree-method has been generalized to

higher dimensions by Mitchell and Vavasis [32].

Bern et al. developed an algorithm for generating nonobtuse triangulations of polygons

with (optimal) O (n) triangles. The method uses disc packing to subdivide the polygon into

regions which are then meshed. No lower angle bound is provided, and the algorithm only

works on polygons, possibly with polygonal holes–no generalization to planar straight-line

graphs has been discovered. The output of this algorithm is often visually aberrant–triangle

8 CHAPTER 1. Introduction

size in the output mesh is not closely tied to the local feature size of the input [5].

1.3 This Thesis

This thesis reanalyzes the Delaunay Refinement Algorithm of Ruppert; it is shown that the

algorithm terminates for a wider class of input than previously suspected. Without any

alteration, the method is shown to be applicable to input with minimum angle as small as

π/4, subject to a condition on the angles about every input point. This result comes with a

non-trivial loss in output quality. It is shown that Ruppert’s algorithm with no modification

will terminate with good grading for input with arbitrarily small angles if the input satisfies

a certain condition regarding the lengths of segments which share a common endpoint. In

this case, an output bound of arcsin
[

sin
(

θ∗

2

)

/
√

2
]

is possible, where θ∗ ≤ π/3 is a lower

bound on the input angle. It is shown that arbitrary input can be put in the latter form by

the addition of a few augmenting points, while keeping the optimality result (albeit with an

extra factor in the constant). Ruppert’s original strategy of splitting on concentric circular

shells performs this augmenting procedure on an “as-needed” basis, thus it is shown that

Ruppert’s original algorithm with concentric shell splitting can be applied to input with

arbitrarily small angles and produces well-graded output with the same output guarantees

as Shewchuk’s Terminator.

An alteration of the algorithm, the Adaptive Delaunay Refinement Algorithm, is also

analyzed. This algorithm simply redefines the bad-triangle test of Ruppert’s algorithm to

avoid edges which are too short compared to the local feature size. Assuming a slightly

more restrictive condition on edge-lengths than above, this algorithm produces well-graded

meshes on input with arbitrary lower angle bound, θ∗. All angles in the output mesh are at

least arcsin 2−7/6 ≈ 26.45◦, except those at or opposite an input angle of size θ: such output

angles are shown to be at least arctan
(

sin θ
2−cos θ

)

. Thus the output contains no angle smaller

than min
{

arcsin 2−7/6, arctan
(

sin θ∗

2−cos θ∗

)}

. Moreover, in spite of the potential of arbitrarily

small output angles if θ∗ is small, the analysis guarantees that no output angle is larger

than around 137.1◦. Again, Ruppert’s method of concentric shell splitting is shown to put

input into the required form. It is shown that this variant is entirely unnecessary when θ∗ is

modest. That is, Ruppert’s algorithm with concentric shell splitting employing output angle

parameter κ < min
{

arcsin 2−7/6, arctan
(

sin θ∗

2−cos θ∗

)}

has the same performance guarantees

as the Adaptive Delaunay Refinement Algorithm. Thus when θ∗ is greater than about

36.53◦, the adaptive variant is not necessary.

The work of Mitchell on optimality measures is also expanded. An integral over the

edges of a triangulation with bounded minimum angle is related to the minimum angle. This

allows an improvement of Ruppert’s optimality proof where segment midpoints and triangle

1.3. This Thesis 9

circumcenters are considered separately. This also allows an asymptotic improvement in the

optimality constants for the abovementioned algorithms.

10 CHAPTER 1. Introduction

11

CHAPTER II

DELAUNAY TRIANGULATIONS AND DELAUNAY

REFINEMENT

“The truth is rarely pure, and never simple.” –Oscar Wilde

2.1 The Delaunay Triangulation

An introduction to Delaunay Triangulations is provided here, though more skillful and

complete expositions exist elsewhere [37, 15, 18]. Although the theory easily extends to R
n,

we will work entirely in two dimensions. We suppose the existence of a finite set of “sites,”

S, which are points in R
2.

Definition 2.1.1 (Delaunay Triangulation). An edge or polygon, P, which has corners

C = (s0, s1, . . . , sl) , is said to have the (Strong) Delaunay Property with respect to S if there

is some 2-dimensional open ball, B, such that si is on the boundary of B for i = 0, 1, . . . , l,

and such for every sj ∈ S \ C, sj is not in (the closure of) B.

We let D (S) be the collection of edges (si, sj) with the Strong Delaunay Property. Then

the Delaunay Triangulation is the graph (S,D (S)) . We implicitly identify the graph with

its embedding in R
2, and identify the edges with line segments.

A set of points in R
2 and the associated Delaunay Triangulation are shown in Figure 2.

Balls of the type mentioned above play a special part in the following analysis, making

the following definition convenient.

Definition 2.1.2 (Circumcircle). Given three noncollinear sites, s0, s1, s2, in R
2, the

circumcircle of the triangle on these sites is the unique circle passing through all three sites.

The circumcenter of the triangle is the center of its circumcircle.

Given two distinct sites, s0, s1, in R
2, a circumcircle of the edge (s0, s1) is any circle

with the edge as a chord. The diametral circle of the edge is the circle with the edge as a

diameter.

This description of the Delaunay Triangulation might better be termed a pre-triangu-

lation since in the presence of degeneracies, the embedded graph will not decompose space

into triangles. This is illustrated in Figure 3, which shows the Delaunay Triangulation of a

set of five cocircular sites in R
2. Each of the edges (A,B) , (B,C) , (C,D) , (D,E) , (E,A) has

12 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

(a) A Set of Points in the Plane (b) The Delaunay Triangulation of these
Points

Figure 2: In (b), the Delaunay Triangulation of the points of (a) is shown.

the Strong Delaunay Property, but there is no edge cutting through the pentagon ABCDE.

In fact, this “triangulation” contains no triangles at all, rather one pentagon.

PSfrag replacements

A

B

C

D

E

Figure 3: The Delaunay Triangulation of a set of cocircular sites, S = {A,B,C,D,E} , is
shown. The outer edges of the pentagon ABCDE all have the Strong Delaunay Property
and thus are in D (S), but no edge through the pentagon has the Strong Delaunay Property.
The “triangulation” then contains no triangles.

Theoreticians and practitioners of meshing generally agree that degeneracies are an

unavoidable nuisance. A number of strategies exist for dealing with degeneracy. At one

end of the spectrum is the approach of rewriting the common geometric predicates to either

symbolically perturb input in a consistent manner so that no input is degenerate, or to

2.2. The Meshing Problem 13

better detect degeneracy via higher precision calculation [19, 48, 41]. In the latter case, the

algorithm must still be able to produce correct results when degeneracy has indeed been

detected. In either case, the rewritten predicates may be unacceptably slow or too difficult

to implement. At the other end of the spectrum are “topological” methods, which assume

imperfect predicates, but attempt to at least output topologically consistent results [45, 16].

In this thesis, the common strategy of ignoring degeneracy is employed to simplify the

exposition. The algorithms described herein can be used to generate a Delaunay Triangu-

lation as defined above, after which degeneracies can be resolved in some way consistent

with the input and optimizing output angles. Alternatively, they may be combined with

some of the abovementioned methods for dealing with degeneracy to produce an actual

triangulation.

2.2 The Meshing Problem

The meshing problem is described in terms of the input to the algorithm and the expected

conditions on the output. The input to the mesher is defined as follows:

Assumption 2.2.1 (Input). The input to the meshing problem consists of a finite set of

points, P ⊆ R
2, and a set of segments S such that

(a) the two endpoints of any segment in S are in P,

(b) any point of P intersects a segment of S only at an endpoint,

(c) two segments of S meet only at their endpoints, and

(d) the boundary of the convex hull of P is the union of segments in S.

Let Ω denote the convex hull of the input, and let 0 < θ∗ ≤ π/3 be a lower bound on the

angle between any two intersecting segments of the input.

Items (a)-(c) characterize (P, S) as a Planar Straight Line Graph (PSLG); item (d)

can always be satisfied by augmenting an arbitrary PSLG which does not satisfy it with

a bounding polygon (typically a rectangle). The restriction that θ∗ ≤ π/3 is merely for

convenience; asserting a larger lower bound does not give any better results.

Assumption 2.2.2 (Output). The algorithm outputs sets of points, segments, triangles,

P′, S′,T′, respectively, satisfying:

(a) Complex: The output collectively forms a simplicial complex, i.e., {∅} ∪P′ ∪ S′ ∪ T′

is closed under taking boundaries, and under intersection.

(b) Delaunay: Each triangle of T′ has the Delaunay property with respect to P′.

(c) Conformality: P ⊆ P′, and for every s ∈ S, s is the union of segments in S′.

(d) Quality: There are few or no “poor-quality” triangles in T′.

(e) Cardinality: Few Steiner points have been added, i.e., |P′ \ P| is small.

14 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

Given the discussion in the introductory chapter on mesh quality, one passable definition

of item (d) is that there are some reasonably large constants 0 < α ≤ ω ≤ π+α
4 such that

for every triangle t ∈ T′, no angle of t is smaller than α or larger than π − 2ω. However,

such a guarantee is not consistent with conformality of the triangulation (item (c)) when

the input contains angles less than α. Thus a weaker definition is that most triangles satisfy

the above condition, and those that do not (a) are describably near an input angle of size θ,

(b) have no angle smaller than θ −O
(

θ2
)

, and (c) have no angle larger than π − 2ω. This

definition, of course, is rigged so that it will be satisfied by some algorithm herein described.

2.3 The Delaunay Refinement Algorithm

We describe a whole class of algorithms, which we collectively refer to as “the” Delaunay

Refinement Algorithm. This class contains Ruppert’s original formulation [39], as well as

the incremental version [30].

We suppose that the algorithm maintains a set of “committed” points, initialized to

be the set of input points, P. The algorithm also maintains a set of “current” segments,

initialized as the input set, S. The algorithm will “commit” points to the set of committed

points. At times the algorithm will choose to “split” a current segment; this is achieved

by removing the segment from the set of current segments, adding the two half-length

subsegments which comprise the segment to the set of current segments, and committing to

the midpoint of the segment. The word “midpoint” should be taken to mean one of these

segment midpoints for the remainder of this work, to distinguish them from the other kind

of Steiner Point, which will be called “circumcenters.”

The algorithm has two high-level operations, and will continue to perform these op-

erations until it can no longer do so, at which time it will output the committed points,

the current segments and the Delaunay Triangulation of the set of committed points. For

convenience, we say that a segment is “encroached” by a point p if p is inside the diametral

circumball of the segment. Then the two major operations are as follows:

(Conformality) If s is a current segment, and there is a committed point that

encroaches s, then split s.

(Quality) If a, b, c are committed points, the circumcircle of the triangle ∆abc con-

tains no committed point, triangle ∆abc has an angle smaller than the global minimum

output angle, κ, and the triangle’s circumcenter, p is in Ω, then attempt to commit

p. If, however, the point p encroaches any current segment, then do not commit to

point p, rather in this case split one, some, or all of the current segments which are

encroached by p.

It should be clear that if the algorithm terminates then every segment of the set S

2.3. The Delaunay Refinement Algorithm 15

has been decomposed into current segments, none of which are encroached by committed

points, and thus have the Delaunay property with respect to the final point set, and are

thus present in the output Delaunay Triangulation. The algorithm clearly never adds any

points outside Ω. The following claim insures that if the algorithm terminates, no triangle

in the Delaunay Triangulation has an angle greater than the minimum output angle κ. The

proof requires the notion of the radical axis [14, 25], and is somewhat tangential to our

discussion of the algorithm; we include it for its completeness, if not for its clarity. The

proof is essentially the same as that of Shewchuk [41, Lemma 13]

Claim 2.3.1. Suppose that no current segment is encroached by a committed point. Let

∆abc be a triangle with committed corners and with the Delaunay Property with respect

to committed points. Then the circumcenter of the triangle is inside Ω.

Proof. Let p be the circumcenter of the triangle. If all of a, b, c are on the diametral circle

of some segment, then p is the center of the segment, and thus is in Ω. Assuming, toward

a contradiction, that p is outside Ω, there is some segment s on ∂Ω which intersects the

interior of one of (p, a),(p, b),(p, c). Starting from the point p, imagine a growing circle,

ending with C1, the circumcircle of the triangle. The radical axis of the growing circle and

C2, the diametral circle of s, is perpendicular to the line through the centers of C1,C2. When

the growing circle first touches C2, the radical axis runs through the point of intersection;

as the growing circle reaches C1, which must have a point not on C2, the radical axis must

pass one or both endpoints of s, which are thus actually inside C1, a contradiction to the

Delaunay Property of the triangle.

The heuristics involved with determining which operation to perform when and on which

segment or poor-quality triangle are not relevant to our discussion. This is not to say that

they might not affect ease of implementation, running time, cardinality of the final set

of committed points, parallelizability, etc. A common heuristic (and the one chosen by

Ruppert and others) is to prefer conformality operations over quality operations, which

likely results in a smaller output, and which simplifies detecting that a circumcenter is

outside of Ω. A description of a member of this class of algorithms would have to include

some discussion of how to figure out which current segments are encroached, which triangles

are suitable for removal via the quality operation, how to deal with degeneracy, etc. We do

not concern ourselves with these details (though see [15, 46, 28, 30, 35, 41, 34]).

2.3.1 The Delaunay Refinement Algorithm at Work

The reader familiar with the Delaunay Refinement Algorithm may have found the above

description a bit odd. Most expositions on the matter give much more detailed accounts,

16 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

talking about meshes which are updated by point additions, segments which are “buried” in

the mesh, etc. We ignore these details since they are irrelevant to our results. Since this may

leave some readers bewildered, we clarify our description of the algorithm by illustrating a

possible run of the algorithm in Figure 4.

2.4 Failures of the Delaunay Refinement Algorithm

We describe some input for which the Delaunay Refinement Algorithm will not work. These

are input which either result in an infinite recursion, or in poor quality output. The con-

sideration of these input is instructive in improving the algorithm and its analysis.

Ping-Pong Recursion: A well-known failure [39] of the Delaunay Refinement Algo-

rithm is the “ping-pong,” illustrated in Figure 5. If two input segments meet at an angle

θ less than π/4, the algorithm can easily fall into an infinite recursion. One segment may

be encroached by an input point on the other segment, as in Figure 5(b). The algorithm

splits the encroached segment to ensure conformity, but the newly committed midpoint

encroaches the other segment, as in Figure 5(c). Thus the other segment will be split. The

picture has effectively been scaled in half, and the cycle of midpoints will be repeated ad

infinitum, as in Figure 5(d). We will show that the ping-pong can only occur if the segments

meet at an angle less than π/4.

Spiral Recursion: Another case that can lead to an infinite recursion is the “spiral,”

as illustrated in Figure 6(a). The seven segments, {Si}6
i=0 , are each separated by 2π/7 >

π/4, (so will not cause ping-ponging), and their lengths form a geometric progression. As

shown in Figure 6(b), an endpoint of S6 encroaches on S0. The algorithm splits S0 to

ensure conformity, but the newly committed midpoint encroaches S1. Another midpoint is

committed, which encroaches S2. Eventually S6 is split because it is encroached. However,

the midpoint of S6 encroaches a subsegment on S0, as shown in Figure 6(c). The entire

figure has been effectively scaled in half, so the cycle will occur again, as in Figure 6(d).

Indeed, the cycle will repeat forever. We will show that, without any restriction on lengths

of input segments, there is a condition concerning the angles about a given input point that

prevents spirals; moreover, this condition is simple to check.

Refinement Recursion (I): Next we consider an input for which conformity alone

does not cause problems, rather the choice of κ too large can cause an infinite recursion.

Consider 7 input segments, {Si}6
i=0 , each separated by π/4, (except S6 and S0, which are

separated by π/2.), and such that the length of S0 is 1 and the length of Si is 2−i/2 + ε, for

i = 1, 2, . . . , 6, and some ε > 0. If the midpoint of S0 is added to the mesh, it will encroach

S1, which will be split, causing S2 to be split, and eventually S6, which has a length 1
8 + ε,

is split. This is shown in Figure 7(a). The triangle shown in Figure 7(b) (which has empty

2.4. Failures of the Delaunay Refinement Algorithm 17

����� � ����� 	
����

PSfrag replacements

(a)

���� � ����� � �����

PSfrag replacements

(a)

(b)

����� � ����� � �����

PSfrag replacements

(a)
(b)

(c)

�� "! ! �#�$ % &�'�!

PSfrag replacements

(a)
(b)
(c)

(d)

(�)�* *)�+�, - .�/�*

PSfrag replacements

(a)
(b)
(c)
(d)

(e)

0�1�2 2 1�3�4 5 6�7�2

PSfrag replacements

(a)
(b)
(c)
(d)
(e)

(f)

8�9�: : 9�;�< = >�?�:

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)

(g)

@�A"B B A�C�D E F�G�B

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)

(h)

H�I�J J I�K�L M N�O�J

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

(i)

P�Q�R R Q�S�T U V�W�R

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

(j)

X�Y�Z Z Y�[�\] ^�_�Z

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)

(k)

`�a"b b a�c�d e f�g�b

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)

(l)

h�i�j j i�k�l m n�o�j

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

(m)

p�q�r r q�s�t u v�w�r

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

(m)

(n)

x�y"z z y�{�| } ~���z

PSfrag replacements

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

(m)
(n)

(o)

Figure 4: A possible run of the Delaunay Refinement Algorithm on the input of (a) is
shown. In (b)-(e), segments are split in (Conformality) operations. In (f) a circumcenter
is added in a (Quality) operation. In (g) a circumcenter is considered, but it encroaches
a segment, as shown in (h); the segment is split instead. In (i) another segment is split.
A circumcenter is considered in (j), but it encroaches on two segments, both of which are
split. In (l) the same circumcenter is considered again, but instead another segment is split.
A circumcenter is committed in (m). In (n) the final vertex and segment sets are shown, in
(o) the Constrained Delaunay Triangulation is shown, with segments in bold.

18 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

topleft

bottomright

PSfrag replacements

S0

S1

(a) Input

bottomright

topleft

(b) Input Point Encroaches

bottomright

topleft

(c) Midpoint Encroaches Opposite Seg-
ment

bottomright

topleft

(d) Cycle Repeats

Figure 5: An input which breaks the Delaunay Refinement Algorithm is illustrated. The
input is shown in (a); the segments meet at an angle of approximately 27◦. The endpoint
of S1 encroaches on S0, as in (b). The newly committed midpoint encroaches on S1, whose
midpoint is committed, as in (c). Since the figure has essentially been scaled in half, the
cycle repeats, as shown in (d); the algorithm will fail to terminate for this input.

circumcircle) has an angle smaller than arcsin
(

1+8ε√
73

)

. If the algorithm attempts to add this

triangle’s circumcenter, it will encroach on a subsegment on S0, as shown. This will cause

another sequence of midpoints, as shown in Figure 7(c). Since splitting at the midpoints

has merely scaled the picture by a half, another skinny triangle will be present, causing

another encroachment spiral, causing another skinny triangle, etc. and the algorithm will

fall into an infinite recursion.

Thus the algorithm will not terminate unless κ in this case is no greater than arcsin 1√
73

≈
6.72◦. Clearly this minimum output angle is far smaller than the smallest angle of the input,

π/4.

2.4. Failures of the Delaunay Refinement Algorithm 19

B

A

PSfrag replacements

S0

S1
S2

S3

S4

S5

S6

(a) Input

B

A

(b) Spiral of Midpoints

B

A

(c) Last Midpoint Encroaches First Seg-
ment

B

A

(d) Cycle Repeats

Figure 6: An input which breaks the Delaunay Refinement Algorithm is illustrated. The
input is shown in (a); the segments are separated by an angle of 2π/7, and their lengths form
a geometric progression. The endpoint of S6 encroaches S0, so its midpoint is committed.
This midpoint encroaches on S1, whose midpoint encroaches on S2, etc, as shown in (b).
The newly committed midpoint of S6 encroaches on the new subsegment on S0, as shown
in (c). Since the input has been effectively scaled in half, the cycle repeats, as shown in (d);
the algorithm will fail to terminate for this input.

Refinement Recursion (II): Lastly, we consider an input for which any κ > π/6 will

cause an infinite recursion. The input consists of two segments, separated by an angle of

7π
12 − ε, with

√
2 the ratio of their lengths, as shown in Figure 8(a). The triangle formed by

the endpoints has an angle π/6+O (ε) and its circumcenter encroaches the longer segment.

20 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

tl

bl

(a) Original Spiral

tl

bl

PSfrag replacements

cc

(b) Circumcenter Encroaches

tl

bl

(c) Cycle Repeats

Figure 7: An input which breaks the Delaunay Refinement Algorithm is illustrated. In
(a) the midpoint of the longest segment has been committed, causing the midpoints of
each of the segments to be committed, as each new midpoint encroaches another segment.
After this sequence, the algorithm appears to have stabilized. However, as in (b), when the
circumcenter, cc, of a skinny triangle is considered for addition to the mesh, it encroaches
a diametral circle, so is rejected; the segment is split and its midpoint is committed. This
causes another sequence of midpoints to be committed, as shown in (c). Since the input has
been effectively scaled in half, the cycle repeats, causing an infinite recursion; the algorithm
will fail to terminate for this input.

Attempted addition of the circumcenter to remove this triangle causes the long segment to

be split, as in Figure 8(b). The picture will then have been effectively scaled by 1√
2

and

“flipped.” That is, there will be two segments of length ratio
√

2, meeting at an angle of

7π
12 −ε. This process will repeat as shown in Figure 8(c), and the algorithm suffers an infinite

recursion.

2.5 A Generic Proof of Good Grading

It is relatively easy to prove a generic theorem concerning termination and optimality of

the Delaunay Refinement Algorithm, given an assumption on the behaviour of midpoint-

midpoint interactions for certain classes of input.

Some preliminary definitions and results are essential to the exposition. First there is

the matter of terminology: if p is a committed point that was the midpoint of a segment,

we say this segment is the “parent” segment (or parent subsegment) of p; the “radius” of a

segment is half its length, while the radius associated with a midpoint is the radius of its

parent segment; any segment derived from a segment s ∈ S by splitting is a “subsegment”

of (or on) s; segments in S which share an endpoint are nondisjoint; distinct nondisjoint

segments are said to be “adjoining.”

2.5. A Generic Proof of Good Grading 21

topleft

bottomright

PSfrag replacements

S0

S1

(a) Input

bottomright

topleft

PSfrag replacements

cc

(b) Circumcenter Encroaches

bottomright

topleft

PSfrag replacements

cc

(c) New Triangle Circumcenter En-
croaches

bottomright

topleft

PSfrag replacements

cc

(d) Cycle Repeats

Figure 8: An input which breaks the Delaunay Refinement Algorithm is illustrated. The
input is shown in (a); the segments are separated by an angle of 7π

12 − ε, and the ratio of

their lengths is
√

2. The angle opposite S1 is π/6 + O (ε) . If the triangle is to be removed,
its circumcenter encroaches on the segment S0, which is split instead, as shown in (b). The
newly committed midpoint creates a triangle which is similar to the one considered for
removal previously, but its circumcenter encroaches S1, as shown in (c). Another midpoint
is committed, and the picture has been scaled in half. The cycle will repeat forever, as
shown in (d).

22 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

Throughout this thesis, we let |x− y| denote the Euclidian distance between points x

and y. For a segment S, we let |S| denote the length of the segment. Local feature size is

defined in terms of the input, and is the classical definition:

Definition 2.5.1 (Local Feature Size). For a point x ∈ R
2, the local feature size at x,

relative to an input PSLG, (P, S), is

lfs (x) = lfsP,S (x) = min
{

r > 0
∣

∣ B̄r(x) intersects at least two disjoint features of P ∪ S.
}

,

where B̄r(x) is the closed ball of radius r centered at x. The local feature size is a Lipschitz

function, i.e., lfs (x) ≤ |x− y| + lfs (y) .

The definition of local feature size of illustrated in Figure 9.

PSfrag replacements

u

v

w x

y

z

Figure 9: For a number of points in the plane, the local feature size with respect to the
given input is shown. About each of the points u, v, w, x, y, z is a circle whose radius is the
local feature size of the center point. The point u is an input point.

Considering sequences of segment midpoints will allow us an abstract condition for

proving good grading. In particular we are concerned with encroachment sequences.

Definition 2.5.2. A sequence of segment midpoints, {pi}l−1
i=0 is an encroachment sequence

if for i = 1, 2, . . . , l − 1, at the time pi is committed, its parent segment is encroached by

the already committed point pi−1.

We cite a simple hypothesis that can be applied to analyze the Delaunay Refinement

Algorithm. This hypothesis serves as an interface to the generic proof and will be applied

in the following sections.

Definition 2.5.3. The Encroachment Sequence Bound Hypothesis is defined as

follows:

2.5. A Generic Proof of Good Grading 23

There are constants 1 ≤ β, and 1 ≤ ρ such that if pl−1 is a midpoint whose parent

segment is encroached by a committed point, pl−2, which is a midpoint on an adjoining

input segment, then either

(a) The inequality lfs (pl−1) ≤ β |pl−1 − pl−2| holds, or

(b) There is an encroachment sequence, {pi}l−1
i=0 , such that (i) the parent segment of p0

was not encroached by a point on an adjoining input segment, and (ii) the inequality

lfs (pl−1) ≤ (β + ρ
lfs (p0)

r0
) |pl−1 − pl−2| ,

where r0 is the radius associated with p0, holds.

The following lemma ensures that if this hypothesis holds, and a point p is committed,

then the distance from p to the nearest committed point is bounded below by the local

feature size at p (divided by a constant). This establishes termination of the algorithm,

and locally bounds below the length of any edge in the output triangulation. Moreover, the

cardinality of the set of committed points will be at most a constant times the number of

points of any mesh which conforms to the input and has no angle less than κ. The proof is

very little different from Ruppert’s good-grading proof [39].

Lemma 2.5.4 (Generic Good Grading). Suppose that the Encroachment Sequence

Bound Hypothesis holds with constants β, ρ. Then there are positive constants C1, C2 depend-

ing on β, ρ such that when the Delaunay Refinement Algorithm, operating with a minimum

output angle, κ < arcsin 1
2ρ

√
2
, commits or attempts to commit the point p, and the nearest

already committed point to p is q, then

• If p is the midpoint of a subsegment, s, of radius r, then

– If q is a committed midpoint on an adjoining input segment which encroached

the parent segment of p, then

lfs (p) ≤ (β + C1) |p− q| ≤ (β + C1)r.

– If q is not such a midpoint, then

lfs (p) ≤ (1 +
√

2C2) |p− q| ≤ (1 +
√

2C2)r.

• If p is the circumcenter of a triangle then

lfs (p) ≤ C2 |p− q| .

Proof. We determine the sufficient conditions on the constants. To reduce verbosity, we say

that q “provokes” midpoint p if q is an already committed point that encroaches the parent

segment of p.

24 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

• Suppose p is the midpoint of segment s, of radius r, and q is a midpoint on a nondisjoint

input segment. Using the Encroachment Sequence Bound Hypothesis, either lfs (p) ≤
β |p− q| , and it suffices to take C1 nonnegative, or there is an encroachment sequence,

beginning with the point p0, and ending with the points q, p in order such that lfs (p) ≤
(β + ρ lfs(p0)

r0
) |q − p| , and such that p0 was not provoked by a point on an adjoining

input segment.

Using this lemma inductively, since p0 was not provoked, the second alternative holds,

and thus lfs (p0) ≤ (1 +
√

2C2)r0. So lfs(p0)
r0

≤ (1 +
√

2C2). Then lfs (p) ≤ (β + ρ(1 +
√

2C2)) |p− q| . Thus any C1 satisfying the following inequality suffices:

ρ(1 +
√

2C2) ≤ C1.

Since q provoked p, then |p− q| ≤ r.

• Suppose p is the midpoint of segment s, of radius r, and q is not a midpoint on an

adjoining input segment. We consider the cases:

– Suppose that p was not provoked by q, so q is not in the diametral circle of s. In

this case p is being committed because it was encroached by a circumcenter, q ′,

of some triangle T , which was not committed, as shown in Figure 10. Note that

s must have been current when the algorithm last attempted to kill T , thus both

the endpoints of s were committed at that time. Let rq′ be the circumradius

of T . Because the circumcircle of T was empty at the time it was considered

for removal, the circumradius rq′ cannot have been more than the distance from

q′ to the nearest endpoint of s, which, because q′ encroaches the segment, is

no greater than
√

2r. Inductively lfs (q′) ≤ C2rq′ ≤
√

2C2r. Using the Lipschitz

property, lfs (p) ≤ |p− q′| + lfs (q′) ≤ (1 +
√

2C2)r. Noting that |p− q| = r, the

result holds.

– Otherwise suppose that p was provoked by q. Then q is an input point or a

midpoint on a disjoint input feature. By definition, lfs (p) ≤ |p− q| . Since we

assume C2 to be positive, then lfs (p) ≤ (1 +
√

2C2) |p− q| , which suffices since

|p− q| < r.

• If p is a circumcenter of a skinny triangle of circumradius r, then let a, b be the vertices

of the shortest edge. Note that |p− q| = r, since by definition of the quality operation,

the circumcircle of the triangle is empty when p is to be committed. If a, b are both

input points, then they are disjoint and by definition lfs (p) ≤ r, so it suffices to

take 1 ≤ C2. Otherwise let b be the most recently committed of the two points. By

definition of the quality operation and the sine rule, |a− b| ≤ 2 sinκ r.

Consider, inductively, the time when b was committed: since a was already committed,

2.5. A Generic Proof of Good Grading 25

������� �	�
�

� ������������ �����

PSfrag replacements s
p

q′rq′

r

Figure 10: The “yield” case is illustrated; s is encroached by q′, a circumcenter of a triangle.
Rather than commit q′, the segment is split, causing the midpoint p to be committed.
Because the endpoints of s cannot have been inside the circumcircle of the triangle, rq′

cannot exceed
√

2r.

lfs (b) ≤ C |b− a| for some constant C. Considering all the cases in the lemma,

C = max
{

β + C1, 1 +
√

2C2, C2

}

= β + C1 works. Using the Lipschitz condition

lfs (p) ≤ r + lfs (b) ≤ r + C |a− b| ≤ (1 + 2C sinκ)r,

it suffices to ensure that 1 + 2C sinκ ≤ C2.

In all it suffices to ensure that

1 + 2(β + C1) sinκ ≤ C2.

Accumulating the boxed constraints, it suffices to take

κ < arcsin
1

2ρ
√

2
,

C1 = ρ(1 +
√

2C2)

C2 =
1 + 2(β + ρ) sinκ

1 − 2ρ
√

2 sinκ
.

The lemma shows that the distance between committed points is bounded from below

by the local feature size. It is also possible to show that the distance will be bounded from

above, i.e., if the local feature size of a committed point is small, eventually the algorithm

will have committed another point nearby. The result is used in bounding the cardinality

of the final point set, in Corollary 2.5.7.

Definition 2.5.5 (Distinct Input Distance). For a point x ∈ R
2, the distinct input

distance at x, relative to an input PSLG, (P, S), denoted by d1 (x), is the distance from x

26 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

to the nearest member of the input which is distinct from x. The function d1 (·) is not a

distance function at all; in particular it is not continuous.

Thus if x is not a point of P and is not on any segment of S, d1 (x) is the distance from

x to the nearest member of either of these sets. If x is a point of P, d1 (x) is the distance

to the nearest point of P \ {x} or segment of S which does not have x as an endpoint. If

x is on segment s ∈ S, but not an endpoint of s, then d1 (x) is the distance to the nearest

point of P, or segment of S \ {s} .
Clearly d1 (x) ≤ lfs (x) . Moreover, if C is a circle centered at x with radius d1 (x), then

there is a point of P on C, or the projection of x onto a segment of S is on C.

Lemma 2.5.6. Given an input PSLG (P, S) , let (P′, S′) be a PSLG such that P ⊆ P′, every

s ∈ S is the union of segments in S′, and every segment of S′ has an empty diametral circle

with respect to the set P′.

Then for every p ∈ P′ there is some q ∈ P′ such that

|p− q| ≤
√

2 d1 (p) ,

where d1 (·) is with respect to (P, S) .

Proof. Let C be the circle centered at p of radius d1 (p). Then either there is a point of P

on C, in which case let this point be q; otherwise the projection of p onto some segment

distinct from any input containing p is on C. Let this projection be p′. The point p′ is on

some segment s′ ∈ S′. Since the segment s′ does not contain the point p, it must be the case

that its endpoints are no farther from p′ than d1 (p), in which case they are no farther than
√

2 d1 (p) from p.

We briefly note that by substituting the empty diametral circle condition in the previous

lemma with an empty diametral lens condition [41], we can claim |p− q| ≤ 2d1 (p) ; if we

substitute it with a minimum angle bound of α for (P′, S′) a triangulation, we can claim

|p− q| ≤ 1
sinαd1 (p) .

Corollary 2.5.7. Suppose the hypotheses of the lemma hold for the input P, S to the Delau-

nay Refinement Algorithm. Then the algorithm terminates with output (P′, S′,T′) satisfying

∣

∣P
′ \ P

∣

∣ ≤ 2 (2(β + C1) + 3)2

π

∫

Ω

1

lfs2 (x)
dx = O

(

(

β + ρ

1 − 2ρ
√

2 sinκ

)2 ∫

Ω

1

lfs2 (x)
dx

)

. (1)

Moreover, if there is a triangulation, T′′ on a set of points P′′ that conforms to the input

(P, S) and has minimum angle κ then

∣

∣P
′∣
∣ = O

(

1

κ

(

β + ρ

1 − 2ρ
√

2 sinκ

)2
)

∣

∣P
′′∣
∣ . (2)

2.5. A Generic Proof of Good Grading 27

Proof. The termination result, and equation 1 will follow as in Ruppert [39]. First note

that max
{

β + C1, 1 +
√

2C2, C2

}

= β+C1, so if p is committed before q then lfs (q) ≤ (β+

C1) |p− q| . Thus, by the Lipschitz condition, if p, q are any two committed points, without

knowing which was committed first, we can conclude that lfs (p) ≤ (β + C1 + 1) |p− q| .
Suppose the algorithm runs forever. Since each major operation results in a point being

committed, it must be the case that an infinite number of points are committed. Clearly

no point is committed twice, and, as already noted, all points are added in the closed,

bounded, and therefore compact, set, Ω. So there must be an infinite sequence converging

to an accumulation point, point P . Let {Pi}∞i=0 be such an infinite sequence. Then

lfs (P) = lim
i

lfs (Pi) ≤ lim
i

(β + C1 + 1) |Pi − Pi−1| = 0,

contradicting lfs (x) > 0 for all x ∈ Ω. It follows that the algorithm must terminate.

Next, as in Ruppert [39], for each p ∈ P′ \ P, let Bp be an open ball centered at p, of

radius rp = lfs(p)
2(β+C1+1) . Then if q is another committed point rp ≤ |p−q|

2 , so the balls are

disjoint, and contain no other point of P′. Now we claim that at least half of each Bp is in

Ω. If p ∈ ∂Ω, then, since it is not in P, it is not a corner of ∂Ω. Because the balls Bp do

not intersect, the ball does not contain the endpoints of the edge that p is on. Then half of

Bp is outside Ω. We call the other half of Bp the “inside” half, and show that it really is

fully inside of Ω.

By Lemma 2.5.6, there is some committed point q such that |p− q| ≤
√

2 d1 (p) . By

definition of rp, it is the case that rp ≤ |p−q|
2 ≤ 1√

2
d1 (p) < d1 (p) . Thus there is no segment

intersecting Bp other than the one containing p. Thus half of Bp is inside Ω.

If p 6∈ ∂Ω, i.e., p is a circumcenter or is on an internal segment, then we can repeat the

above argument to show that all of Bp is contained in Ω. Then, as in Ruppert’s paper, we

bound

∫

Ω

1

lfs2 (x)
dx ≥ 1

2

∑

p∈P′\P

∫

B

1

lfs2 (x)
dx ≥ 1

2

∑

p∈P′\P

πr2p
(lfs (p) + rp)2

≥ π

2 (2(β + C1 + 1) + 1)2
∣

∣P
′ \ P

∣

∣ .

Algebraic cancellation reveals that β + C1 ≤ β+ρ(1+
√

2)

1−2ρ
√

2 sinκ
, which establishes equation 1.

For equation 2, we use Theorem 11 of Mitchell [31], which states that if a triangulation

of the points P′′ respects the input and has minimum output angle κ, then

∣

∣P
′′∣
∣

(

21.5

κ
+ 11.9

)

≥
∫

Ω

1

lfs2 (x)
dx.

This establishes the optimality of |P′ \ P| . We then use P ⊆ P′′ to bound |P| .

28 CHAPTER 2. Delaunay Triangulations and Delaunay Refinement

It is then sufficient to show that the Encroachment Sequence Bound Hypothesis holds

when the algorithm is given a specific input. Moreover, if the ρ of the hypothesis can be

identified, then the minimum output angle can be set accordingly. In the following chapter,

it is shown that the hypothesis can be established for certain classes of input.

29

CHAPTER III

THE DELAUNAY REFINEMENT ALGORITHM

“There is no royal road to geometry.” –Euclid

In this chapter, the Encroachment Sequence Bound Hypothesis is established for two

different classes of input, namely input with θ∗ as small as π/4, subject to a “cosine con-

dition,” and input with arbitrarily small θ∗, with an edge-length condition. In Chapter 4,

procedures for putting arbitrary input into the latter form by the addition of a few “aug-

menting” points are discussed.

3.1 Encroachment Basics

The following simple claims regarding encroachment will be used ubiquitously.

Claim 3.1.1. Let (a, b) be a subsegment of an input segment which has endpoint x. Let

|x− a| < |x− b| . Then either x = a or |a− b| ≤ |x− a|.

Proof. See Figure 11. Suppose that a is distinct from x. Then a must be a midpoint of

some subsegment of radius at least |a− b| . However, |x− a| is at least this radius, i.e.,

|a− b| ≤ |x− a| .

�����������	��
 ����

������� �����

PSfrag replacements

a b

x

(a) Possible Case

������������� � !�"#�

����$�% &�'��

PSfrag replacements

a b

x

(b) Impossible Case

Figure 11: The argument of Claim 3.1.1 is shown. When (a, b) is a subsegment on an input
segment with endpoint x, such that 0 < |x− a| < |x− b| , we show that |a− b| ≤ |x− a| ,
as shown in (a). The case illustrated in (b) is impossible since a would have to be the
midpoint of a subsegment which actually contained the endpoint x. In both figures we show
the diametral circle of the subsegment of which a is the center.

30 CHAPTER 3. The Delaunay Refinement Algorithm

Claim 3.1.2. Let (a, b) be a subsegment of an input segment which has endpoint x. Suppose

p is a point on an input segment which shares the endpoint x that encroaches on the

diametral circle of (a, b). Assume that |x− a| < |x− b| , and let θ be the angle between the

two input segments. Then |x− a| < |x− p| cos θ, and θ < π
2 . Also we can claim |x− p| ≤

|x− b| . Moreover, if m is the midpoint of (a, b), and r is its radius, then |x−m| sin θ < r.

Proof. The gist of this claim is shown in Figure 12. Since p encroaches the diametral

circle of (a, b), then so does it’s projection onto the line containing the segment, p′. Thus

|x− a| < |x− p′| . But |x− p′| = |x− p| cos θ. This implies that cos θ is strictly positive, so

θ < π
2 . Since the circle centered at x of radius |x− b| contains the diametral circle of (a, b),

it contains the point p, so then |x− p| ≤ |x− b| .
Since p encroaches (a, b), the radius of the diametral circle must be at least the distance

from m to the line segment containing p, which is |x−m| sin θ.

����� � ����� � 	�
��

� ���� ��� �

PSfrag replacements

a
b

C1
C2

x

p

m
p′

m′

b′

Figure 12: The argument of Claim 3.1.2 is shown. Letting θ = ∠axp, by definition of sine
and cosine, |m−m′| = |x−m| sin θ, and |x− p′| = |x− p| cos θ, where m′, p′ are projections
of the points m, p, onto the opposing segment. Thus |x− a| ≤ |x− p| cos θ, and the radius
of the circle is at least |x−m| sin θ. Part of the circle C2 centered at x of radius |x− b| is
shown. Since C2 contains C1, the diametral of (a, b), then |x− p| ≤ |x− b| .

Lemma 3.1.3. Let (x, y) , (x, z) be two input segments sharing a common endpoint x, and

subtending an angle of θ, with arcsin 1
3 ≤ θ < π/2. Consider a subsegment, (a, b), on (x, y),

and assume that 0 < |x− a| < |x− b| . Then no point on (x, z) encroaches (a, b).

As a consequence, if there is a subsegment (a, b) on (x, y) which is encroached by a point

on (x, z), then a = x. Moreover, if m is the midpoint of a subsegment on (x, y) which was

encroached by a point on (x, z), then |x−m| ≤ |y −m| .

Proof. Suppose some point p on (x, z) encroaches the segment. Since 0 < |x− a| , by

Claim 3.1.1, |a− b| ≤ |a− x| , and so r ≤ |x− a| /2, where r is the radius of (a, b). By

Claim 3.1.2, r is large compared to the distance from the midpoint of (a, b) to x, i.e.,

(|x− a| + r) sin θ < r, where |x− a| + r is the distance from x to the midpoint of the

3.1. Encroachment Basics 31

subsegment. Putting these two inequalities together we have

|x− a| sin θ
1 − sin θ

< r ≤ |x− a|
2

,

which requires that 2 sin θ < 1 − sin θ, or sin θ < 1
3 , contradicting the assumption that

arcsin 1
3 ≤ θ.

The following lemma is invaluable to our proofs.

Lemma 3.1.4. Given two rays, R and R′ from a point x with angle θ between them, suppose

there is a ball of radius r with center p on ray R such that the ball does not contain x but

does contain a point q of R′. Then if π/4 ≤ θ < π/2,

|q − x|
|p− x| ≤

|q − x|
r

<
|q − x|
|p− q| ≤ 2 cos θ.

If 0 < θ < π/4, then only the inequality

|q − x|
|p− x| < 2 cos θ

can be asserted.

PSfrag replacements

Q

Q′

Q′

X
P

R

R′

R′

θ

ψ
q

x
p

h

(a) as stated

PSfrag replacements

Q

Q′

Q′

Q′

X
P

R

R′

R′

θ

θ

ψ

q

x
ph

(b) bounded by the isosceles

PSfrag replacements

Q

Q′

Q′

Q′

XP

R

R′

R′

θ

θ

ψ

q

x
p

h

(c) the small angle case

Figure 13: Proof of Lemma 3.1.4; The lemma as stated is shown in (a). It can be shown
that θ ≤ ψ, so we may draw the isosceles triangle, as in (b) with base angle θ to get the
desired bound. The altitude is also drawn in (b), and both triangle legs will be to its right
in the order shown. The case where θ < π/4 is shown in (c); in this case the ordering of
the legs relative to the altitude is not fixed, and only a weaker result is obtained.

Proof. Letting P,Q,X be as in Figure 13, first note that X < r ≤ Q because x is not inside

the ball (which has radius r), but q is; thus for the “large” angle case, it suffices to show

only that P/X ≤ 2 cos θ. Using the sine identity, we find that sin θ ≤ sinψ, implying that

32 CHAPTER 3. The Delaunay Refinement Algorithm

θ ≤ ψ. We can then draw an isosceles triangle of base angle θ and base (x, q) , with side

lengths Q′. In the case where π/4 ≤ θ, the apex angle of this isosceles triangle will be acute,

so the altitude h, the leg Q′ and the leg X are ordered left to right as shown in Figure 13(b),

and thus Q′ ≤ X. Using the cosine relation it is easy to show that P/Q′ = 2 cos θ and thus

P/X ≤ 2 cos θ, as desired.

In the “small” angle case, the apex angle may be obtuse. However, since θ < ψ, we have

Q′ < Q. Thus 2 cos θ = P/Q′ > P/Q, as desired.

3.2 Input with Restricted Cosines

In this section we show that the Delaunay Refinement Algorithm may be applied to input

with angles as low as π/4, although with a single added restriction which is simple to

check. The drop from π/3 is not without a concomitant loss in output quality. In light of

Lemma 2.5.4, and assuming a proper lower bound on input angles, it suffices to show that

encroachment sequences are well-behaved. We start with the assumptions on our input.

3.2.1 Assumptions on the Input

Assumption 3.2.1. In addition to Assumption 2.2.1 we assume that the input satisfies

the following constraints.

(a) The lower bound on input angles, θ∗, is in the range π/4 ≤ θ∗ ≤ π/3.

(b) There is some 1 ≤ d ≤ min
{

7, b2π
θ∗ c
}

, such that no input point has degree greater

than d, where by “degree” of a vertex we mean the number of incident edges.

(c) If an input point has k ≤ d segments emanating from it, and {Si}k−1
i=0 are the k angles

between the segments, and every θi is acute, then

k−1
∏

i=0

2 cos θi ≤ 2. (3)

The condition of item (c) is automatic for k < 4. It is elementary to prove that it holds

for k = 4, and Corollary 3.2.3, following, shows that it holds automatically for k = 5, 6. The

spiral recursion of Figure 6 shows that it needn’t hold for k = 7, and it cannot be satisfied

for k = 8 (which would require that θi = θ∗ = π/4.). Note that the input shown in Figure 7

does conform to these assumptions.

Lemma 3.2.2. Given the collection {θi}k−1
i=0 with θi ∈ [0, π/2] , then

k−1
∏

i=0

cos θi ≤ cosk

(

∑k−1
i=0 θi
k

)

.

3.2. Input with Restricted Cosines 33

Proof. First note that due to the restriction on the θi, that cos θi is nonnegative, so the

arithmetic mean of the collection {cos θi}k−1
i=0 exceeds its geometric mean, that is

k

√

√

√

√

k−1
∏

i=0

cos θi ≤
∑k−1

i=0 cos θi
k

,

and so it suffices to prove that

∑k−1
i=0 cos θi
k

≤ cos

(

∑k−1
i=0 θi
k

)

.

This follows, however, from Jensen’s Inequality, since the cosine is concave on [0, π/2] .

Corollary 3.2.3. Given a collection of k angles, {θi}k−1
i=0 , which sum to 2π, and with

π/4 ≤ θi < π/2 for 0 ≤ i < k, then if k = 5 or k = 6, the following relation holds:

k−1
∏

i=0

2 cos θi ≤ 2.

Proof. By the lemma it suffices to show that
(

2 cos 2π
k

)k ≤ 2. However, cos 2π
k ≤ 1

2 for

k = 5, 6.

3.2.2 Establishing the Encroachment Sequence Bound Hypothesis

We now set out to show that labouring under these assumptions, the Delaunay Refinement

Algorithm will not cause infinite “ping-pong” cascades of the kind shown in Figure 5, or

infinite inward “spirals,” as outlined in Figure 6.

Lemma 3.2.4 (Ping Pong). Let (x, y) , (x, z) be two input segments sharing a common

endpoint x, and subtending an angle of θ, with π/4 ≤ θ < π/2. Suppose a committed

midpoint, p, on (x, z) encroaches a subsegment on (x, y). Then the midpoint of this segment,

m, does not encroach on any subsegment along (x, z).

Proof. Let p be the point on (x, z) that encroached the subsegment on (x, y), as in Figure 14.

Let L = |x− p| , let M = |x−m| , and let r be the radius of the segment on (x, y) that was

encroached. By Lemma 3.1.4,

L/M ≤ L/r < 2 cos θ. (4)

Suppose there is a subsegment on (x, z) which is encroached by m. By Lemma 3.1.3,

it must be the case that x is one of the endpoints of the subsegment, since arcsin 1
3 <

π/4 ≤ θ. Let r′ be the radius of this subsegment. Since this subsegment does not contain

34 CHAPTER 3. The Delaunay Refinement Algorithm

����� � ����� 	
����

� ���� ��� �

PSfrag replacements
x

z

y

p

m

(a) “Ping”

����� � ����� � �����

� ����� ��� �

PSfrag replacements
x

z

y

p

m

(b) No “Pong”

Figure 14: The argument of Lemma 3.2.4 is shown. The point p encroaches a subsegment
along (x, y), causing its midpoint m to be committed, as shown in (a). Because the angle
θ = ∠yxz is assumed to be large, by Lemma 3.1.3, it must be the case that the subsegment
has x as one of its endpoints, as shown. Then the point m cannot encroach any subsegment
which will ever be current along (x, z), as shown in (b). Again because of the angle condition,
this subsegment would have to have endpoint x, but cannot have diameter greater than
|x− p|. This leads to a contradiction on the cosine of θ.

the committed point p, it must be the case that 2r′ ≤ |x− p| = L, or r′ ≤ L
2 . Using

Lemma 3.1.4 we have M/r′ < 2 cos θ. Combined with equation 4 we have

L

2 cos θ
< M < 2r′ cos θ ≤ L cos θ.

Thus 1
2 < cos2 θ, which is impossible for θ ∈ [π/4, π/2) .

We now turn to the proof of Lemma 3.2.5 where the key geometric arguments required

to establish the Encroachment Sequence Bound Hypothesis are developed.

Lemma 3.2.5. Suppose that the input to the Delaunay Refinement Algorithm conforms

to Assumption 3.2.1. Let {Si}k−1
i=0 be a collection of k ≤ 7 consecutively numbered (either

clockwise or anticlockwise) input segments sharing a common endpoint, x. Let θi be the

angle between Si and Si+1, where Sk is read as S0.

Furthermore, let {pj}l−1
j=0 be an encroachment sequence such that each pj is a midpoint

on some segment from the collection {Si}k−1
i=0 Assume p0 is on S0, and p1 is on S1. Let rj

be the radius of the subsegment of which pj was the midpoint. Then the following hold:

(a) l ≤ k. Moreover, pj is on Sj for 0 ≤ j < l.

(b) |x− p0|
∏j−1
i=0

1
2 cos θi

≤ |pj − pj−1| < rj = |x− pj | for 1 ≤ j < l.

(c) For 1 ≤ j < l,

lfs (pj) ≤
(

1

sin θj−1
+ (1 +

lfs (p0)

r0
)

j−1
∏

i=0

2 cos θi

)

|pj − pj−1| .

3.2. Input with Restricted Cosines 35

(d) |pl−1 − p0| ≤
(

1 + 2 cos θl−2 +
∏l−2
i=0 2 cos θi

)

|pl−1 − pl−2| .

Proof. First note that by the angle condition, π/4 ≤ θi, the angle between two non-

consecutive input segments must be at least π/2; so a point on one of them will never

encroach a subsegment along another. Thus it is the general case to assume that p1 was on

a segment consecutive to S0, which, by convention, we have named S1. By Lemma 3.1.3, be-

cause arcsin 1
3 < θi for all i, it is the case that x is an endpoint of every encroached segment,

and so rj = |x− pj | , for j ≥ 1. Note, however, that we can only claim that r0 ≤ |x− p0| .
We establish item (b) and item (a) together, inductively; By assumption, pj is on Sj for

j = 0, 1. Moreover, since p0 encroached on a subsegment on S1, causing the midpoint p1 to

be committed, by Lemma 3.1.4

|x− p0|
2 cos θ0

≤ |p1 − p0| < r1 = |x− p1| .

Now the induction step: suppose that for all j up to m < l − 1 that Pj is on Sj mod k,

and that

|x− p0|
j−1
∏

i=0

1

2 cos θi mod k
≤ |pj − pj−1| < rj = |x− pj | .

We show these hold for j = m+1. By Lemma 3.2.4, pm+1 cannot be on the same segment as

pm−1, nor, as per above, can it be on an input segment not consecutive to the one containing

pm, that is Sm mod k. Thus it must be on Sm+1 mod k. By Lemma 3.1.4

|x− pm|
2 cos θm mod k

≤ |pm+1 − pm| < rm+1 = |x− pm+1| .

Using the inductive result, this gives immediately that

|x− p0|
m
∏

i=0

1

2 cos θi mod k
≤ |pm+1 − pm| < rm+1 = |x− pm+1| .

So we need only show that l ≤ k to show that item (b) and item (a) hold. Suppose to

the contrary that some point pk, the midpoint of a subsegment along S0 is committed due

to the subsegment being encroached. (Note that since θi < π/2, it must be the case that

k > 4.) By Lemma 3.1.3, one endpoint of the subsegment must be x. It must be, then, that

rk ≤ |x−p0|
2 Putting this together with the above result we have

|x− p0|
k−1
∏

i=0

1

2 cos θi
< rk ≤

|x− p0|
2

.

Thus 2 <
∏k−1
i=0 2 cos θi, which contradictions equation 3 in Assumption 3.2.1.

36 CHAPTER 3. The Delaunay Refinement Algorithm

For item (c), we use the Lipschitz property of lfs (·) , the initial estimate at p0, and the

above results. Let C = lfs(p0)
r0

. Then

lfs (pj) ≤ |pj − p0| + lfs (p0)

≤ |x− pj | + |x− p0| + Cr0

≤ |x− pj | + (1 + C) |x− p0|

≤ |x− pj | + (1 + C) |pj − pj−1|
j−1
∏

i=0

2 cos θi.

The result then follows from the sine estimate of Claim 3.1.2, |x− pj | sin θj−1 ≤ |pj − pj−1| .
To establish item (d), we start with the triangle inequality:

|pl−1 − p0| ≤ |pl−1 − pl−2| + |pl−2 − x| + |x− p0| .

By item (b), |x− p0| ≤
∏l−3
i=0 2 cos θi |x− pl−2| . By use of Lemma 3.1.4, |pl−2 − x| ≤

2 cos θl−2 |pl−1 − pl−2| . Thus

|pl−1 − p0| ≤
(

1 + 2 cos θl−2 +
l−2
∏

i=0

2 cos θi

)

|pl−1 − pl−2| .

The previous two lemmata allow us to establish the Encroachment Sequence Bound

Hypothesis; Theorem 3.2.7 then follows from Lemma 2.5.4.

Corollary 3.2.6. Suppose that the input to the Delaunay Refinement Algorithm conforms

to Assumption 3.2.1. Let ρ = (2 cos θ∗)d−1 , β = 3 + 2ρ. If pl−1 is a midpoint whose parent

segment is encroached by a committed midpoint pl−2 on an adjoining input segment, then

either

(a) The inequality lfs (pl−1) ≤ β |pl−1 − pl−2| holds, or

(b) There is an encroachment sequence, {pi}l−1
i=0 , such that (i) the parent segment of p0

was not encroached by a committed point on an adjoining input segment, and (ii) the

inequality

lfs (pl−1) ≤ (β + ρ
lfs (p0)

r0
) |pl−1 − pl−2| ,

where r0 is the radius associated with p0, holds.

Proof. Let x be the input point shared by the input segments containing pl−2, pl−1. Let

{pi}l−1
i=0 be a maximal encroachment sequence ending with pl−2, pl−1 such that each pi is on

an input segment with endpoint x. By Lemma 3.2.5, and since angles are bounded by θ∗,

lfs (pl−1) ≤
(

1

sin θ∗
+ ρ+ ρ

lfs (p0)

r0

)

|pj − pj−1| ≤
(

β + ρ
lfs (p0)

r0

)

|pj − pj−1| .

3.3. Input with Restricted Lengths 37

If the parent segment of p0 was not encroached by a point on an adjoining input segment,

then the second alternative holds. So suppose there was some encroaching point on an

adjoining input segment. By item (d) of Lemma 3.2.5, and using the bounds on input

angles,

|pl−1 − p0| ≤ (3 + ρ) |pl−1 − pl−2| .

Let y 6= x be the input point shared by the segment containing p0 and the encroaching point.

By Lemma 3.1.3, |p0 − y| ≤ |p0 − x| . The definition of local feature size gives, lfs (p0) ≤
|p0 − x| ∨ |p0 − y| = |p0 − x| . Then by item (b) of Lemma 3.2.5, lfs (p0) ≤ ρ |pl−1 − pl−2| .
Using the Lipschitz property,

lfs (pl−1) ≤ |pl−1 − p0| + lfs (p0) ≤ (3 + 2ρ) |pl−1 − pl−2| = β |pl−1 − pl−2| ,

and the first alternative holds.

With a little bit more work, one could establish a slightly smaller value for β, namely

3 + ρ. Throughout this work we prefer slightly shorter proofs to slightly smaller constants.

Asymptotically the larger constants will make no difference.

Theorem 3.2.7. Suppose that the input to the Delaunay Refinement Algorithm conforms to

Assumption 3.2.1. Let ρ = (2 cos θ∗)d−1 . Then the Delaunay Refinement Algorithm applied

with κ < arcsin 1
2ρ

√
2

terminates with good grading. Moreover, the cardinality and optimality

results of Corollary 2.5.7 apply with the given ρ, and with β = 3 + 2ρ.

Note that if (2 cos θ∗)d−1 = 1, then it must be that θ∗ = π/3, and so our analysis is

redundant, i.e., the classical analysis applies [30].

Note that ρ ≤ 8, by the conditions on θ∗ and d. This bound is tight, i.e., some input,

including the input of Figure 7 (which is covered by the theorem), will exhibit ρ = 8. In this

case the theorem only guarantees the algorithm will terminate for κ < arcsin 1
16

√
2
≈ 2.53◦.

We have already seen that if κ ≥ arcsin 1√
73

≈ 6.72◦, the algorithm will not terminate for

the input of Figure 7.

3.3 Input with Restricted Lengths

The results of the previous section are perhaps of limited applicability; the lower bound on

the input angle may be too restrictive, and the minimum output angle far too small to be

of practical use.

By making assumptions about the lengths of adjoining line segments, we can prove a

much stronger result; In fact, the Delaunay Refinement Algorithm may handle arbitrarily

small input angles, with some loss of output quality. Moreover, in contrast to the previous

38 CHAPTER 3. The Delaunay Refinement Algorithm

section, the assumptions made on the input can be forced onto a wide class of input by a

“grooming” process, as shown in Chapter 4. In Chapter 6, it is shown that the grooming

can be performed adaptively. These ideas are not new, rather they somehow formalize

Ruppert’s strategy of splitting on concentric circular shells [39].

3.3.1 Assumptions on the Input

The algorithm makes some assumptions about the lengths of adjoining input segments.

Since the algorithm splits segments at midpoints, we are interested in the ratio of the

lengths of adjoining segments, modulo powers of two.

Definition 3.3.1. Given an ordered pair of positive real numbers, (l1, l2) we define their

essential ratio to be the unique ξ ∈ [1, 2) such that l1
l2

= 2kξ, for some integer k. We denote

the essential ratio as ess (l1, l2) . Note that ess (l2, l1) = 2
ess(l1,l2) , unless ess (l1, l2) = 1, in

which case ess (l2, l1) = ess (l1, l2) = 1.

Definition 3.3.2. Two adjoining input segments which subtend an angle θ ∈ (0, π] , with

lengths l1, l2 are said to have pairwise acceptable lengths if

(a) π/3 ≤ θ, or

(b) π/4 ≤ θ < π/3, and either ess (l1, l2) = 1, or 2 cos θ ≤ ess (l1, l2) ≤ 1
cos θ , or

(c) 0 < θ < π/4, and ess (l1, l2) = 1.

Notice that in item (b) and item (c) of Definition 3.3.2, the order of the line segments

is immaterial. Also notice that for π/3 ≤ θ < π/2, that the condition 2 cos θ ≤ ess (l1, l2) ≤
1

cos θ holds automatically since ess (l1, l2) ∈ [1, 2) . If π/2 ≤ θ, then no point on one of the

segments will ever encroach any subsegment along the other.

The following assumption on the input can be satisfied by augmenting the input with

at most 2 |S| points, splitting some or all of the line segments in the input which share

an endpoint so they have pairwise acceptable lengths, as defined in Definition 3.3.2; see

Chapter 4.

Assumption 3.3.3. In addition to those of Assumption 2.2.1 we also assume the following:

(a) Two adjoining input segments which are consecutive (i.e., no segment with common

endpoint is between them) have pairwise acceptable lengths, as defined in Defini-

tion 3.3.2.

3.3.2 Establishing the Encroachment Sequence Bound Hypothesis

We begin with the following claim which is applicable to the Delaunay Refinement Algorithm

regardless of assumptions on input. The elementary proof by induction is omitted.

3.3. Input with Restricted Lengths 39

Claim 3.3.4. Let (a, b) be a current segment on an input segment (x, y). Then log2
|x−y|
|a−b|

is a nonnegative integer. Moreover |x−a|
|a−b| is either zero or is an integral power of two, as is

|y−a|
|a−b| ,

|x−b|
|a−b| , and |y−b|

|a−b| .

A geometric argument follows which helps us establish that radii don’t “dwindle” in

encroachment sequences. The lemma which follows is a mild improvement on Lemma 3.1.4

when the input satisfies Assumption 3.3.3

Claim 3.3.5. Given three noncollinear points, x, p, q, with |x− q| ≤ |x− p| then |p− q| ≥
2 |q − x| sin θ

2 , where θ = ∠qxp ≤ π.

Proof. Let L = |x−p|
|x−q| ≥ 1. Using the cosine rule on ∆xpq,

|p− q|2 = |x− p|2 + |x− q|2 − 2 |x− p| |x− q| cos θ.

= (1 + L2) |x− q|2 − 2L |x− q|2 cos θ

≥ 2L |x− q|2 − 2L |x− q|2 cos θ

= 2L |x− q|2 (1 − cos θ),

where we have used that 1 + L2 ≥ 2L. Using L ≥ 1, we obtain |p−q|
|x−p| ≥

√

2(1 − cos θ). It is

a simple exercise to show that 2 sin θ
2 =

√

2(1 − cos θ) for θ ∈ [0, π] .

Lemma 3.3.6. Suppose that the input conforms to Assumption 3.3.3. Let p be the midpoint

of a segment which is encroached by a committed point, q, on an adjoining input segment.

Let rp be the radius associated with p, and rq that of q. Then rq ≤ rp, and moreover,

|p− q| ≥ 2rq sin
θ

2
,

where θ is the angle between the two input segments.

Proof. Let (x, y) , (x, z) be the two input segments containing, respectively, p, q. Let (a, b) be

the subsegment of which p is midpoint. Let (c, d) be that for which q is midpoint. Assume

that a is closer to x than b is, and assume c is closer to x than d is. It may be the case that

x = a, or x = c. Consider the cases for θ, and the lengths of the two segments:

• Suppose π/3 ≤ θ. Then by Lemma 3.1.4, 1 ≥ 2 cos θ > |x−q|
rp

. Since rq ≤ |x− q| , then

1 ≥ rq
rp
, as desired.

• Suppose π/4 ≤ θ < π/3. By Lemma 3.1.3, since arcsin 1
3 < θ, we know that a = x,

and so rp = |x− p| . By Lemma 3.1.4, 2 cos θ > |x−q|
|x−p| = 2l ess (|x− q| , |x− p|) , for

integer l.

By item (3.3.3) of Assumption 3.3.3, the two segments have pairwise acceptable

lengths, and so either ess (|x− z| , |x− y|) = 1, or 2 cos θ ≤ ess (|x− z| , |x− y|) ≤
1

cos θ .

40 CHAPTER 3. The Delaunay Refinement Algorithm

In the first case, we have 2 > 2 cos θ > 2l, forcing l ≤ 0. But then |x−q|
|x−p| = 2l ≤ 1.

In the second case, we have 2 cos θ > 2l ess (|x− z| , |x− y|) ≥ 2l2 cos θ, again forcing

l < 0. But |x−q|
|x−p| = 2l ess (|x− q| , |x− p|) ≤ 1

2 cos θ < 1, since θ < π/3.

In either case, |x−q|
rp

= |x−q|
|x−p| ≤ 1. Using rq ≤ |x− q| gives the desired result rq ≤ rp.

• Suppose θ < π/4. By item (3.3.3) of Assumption 3.3.3, the two segments have pairwise

acceptable lengths, and so ess (|x− z| , |x− y|) = 1. If a = x, then the reasoning of

the first part of the previous case applies. So assume otherwise.

By Claim 3.3.4, log2
|x−y|
|a−b| , and log2

|x−z|
|c−d| are nonnegative integers. By the assumption

on the essential length ratios, log2
|x−y|
|x−z| is an integer. Thus log2

|a−b|
|c−d| = log2

rp
rq

= j is

also an integer. We wish to show that it is nonnegative.

By Claim 3.1.2, |x− a| < |x− q| < |x− b|, so that |x− a| < |x− c|+rq < |x− a|+2rp.

Using Claim 3.3.4 shows that k = |x−a|
|a−b| = |x−a|

2rp
is a nonnegative integer, as is, mutatis

mutandis, l = |x−c|
2rq

. Thus

2krp < (2l + 1)rq < 2(k + 1)rp, or

2j+1k < (2l + 1) < 2j+1(k + 1), and so

2l + 1

2j+1
− 1 < k <

2l + 1

2j+1
.

If j is a negative integer, then 2j+1 is a power of two no greater than 1; in particular

it divides any integer, thus 2l+1
2j+1 = m is an integer. This gives the contradiction that

m− 1 < k < m for integer m,k. Thus j is a nonnegative integer, or rp ≥ rq.

For the second part, by Claim 3.3.5, |p− q| ≥ 2(|x− q| ∧ |x− p|) sin θ
2 . Clearly |x− p| ≥

rp ≥ rq, and |x− q| ≥ rq, so the result |p− q| ≥ 2rq sin θ
2 holds, as desired.

We now prove the Encroachment Sequence Bound Hypothesis for input conforming to

Assumption 3.3.3.

Lemma 3.3.7. Suppose that the input to Delaunay Refinement Algorithm conforms to

Assumption 3.3.3. Then there are constants ρ, β, both at least 1, such that if pl−1 is a

midpoint of a segment that is encroached by a committed point, which is a midpoint, pl−2,

on an adjoining input segment, with the two segments subtending angle θ, then either

(a) lfs (pl−1) ≤ β |pl−1 − pl−2| , or

(b) there is an encroachment sequence, {pi}l−1
i=0 , such that

(i) the parent segment of p0 was not encroached by a committed point on an adjoin-

ing input segment,

(ii) the inequality

lfs (pl−1) ≤ (β + ρ
lfs (p0)

r0
) |pl−1 − pl−2| , (5)

where r0 is the radius associated with p0, holds.

3.3. Input with Restricted Lengths 41

Moreover, ρ = 1
2 sin θ∗

2

, and β = 1 + ρ(1 + 4
sin θ∗) suffice.

Proof. Again it is convenient to say that q “provokes” midpoint p if q is an already com-

mitted point that encroaches the parent segment of p.

Suppose pl−1 is a midpoint which is provoked by a committed midpoint, pl−2, on an

adjoining input segment. Let the nondisjoint input segments share input point x. Construct

a maximal encroachment sequence {pi}l−1
i=0 that is radial about x, i.e., each midpoint is on

an input segment with endpoint x. Let ri be the radius associated with pi. By Lemma 3.3.6,

it is clear that ri ≥ ri−1 for i = 1, 2, . . . , l − 1.

By Claim 3.1.2, since for i > 0, pi is provoked by a midpoint on an adjoining input

segment then |x− pi| sin θ∗ < ri. Using this property, and the triangle inequality, gives the

bound:

|pl−1 − p0| ≤ |pl−1 − pl−2| + |pl−2 − x| + |x− p1| + |p1 − p0| ,
≤ |pl−1 − pl−2| +

rl−2

sin θ∗
+

r1
sin θ∗

+ r1,

≤ |pl−1 − pl−2| +
(

1 +
2

sin θ∗

)

rl−2,

where we have used |p0 − p1| ≤ r1, which holds because p0 provokes p1, and the fact that,

by Lemma 3.3.6, r0 ≤ r1 ≤ . . . ≤ rl−2. By the same lemma we know that rl−2 ≤ |pl−1−pl−2|
2 sin θ

2

.

Thus

|pl−1 − p0| ≤
(

1 +
1

2 sin θ
2

+
1

sin θ∗ sin θ
2

)

|pl−1 − pl−2| . (6)

Moreover because r0 ≤ rl−2, then

lfs (pl−1) ≤ |pl−1 − p0| + lfs (p0) ,

≤ |pl−1 − pl−2| +
(

1 +
2

sin θ∗

)

rl−2 +
lfs (p0)

r0
r0,

≤ |pl−1 − pl−2| +
(

1 +
2

sin θ∗
+

lfs (p0)

r0

)

rl−2,

≤
(

1 +
1

2 sin θ
2

[

1 +
2

sin θ∗
+

lfs (p0)

r0

]

)

|pl−1 − pl−2| ,

≤
(

β + ρ
lfs (p0)

r0

)

|pl−1 − pl−2| .

If p0 was not provoked by a committed point on an adjoining input segment, alternative

(b) holds for the encroachment sequence {pi}l−1
i=0 . So suppose to the contrary that p0 is

provoked by a committed point on an adjoining input segment. By maximality of the

chosen encroachment sequence, the two input segments do not share endpoint x. We’ve

assumed they do share an endpoint, call it y. Let these two segments subtend angle φ. By

Claim 3.1.2, |p0 − y| ≤ r0
sinφ . Since θ∗ ≤ φ < π/2, then |p0 − y| ≤ r0

sin θ∗ .

42 CHAPTER 3. The Delaunay Refinement Algorithm

We bound |pl−1 − y|; using equation 6, and the above estimate on |p0 − y| , and because

r0 ≤ rl−2 ≤ |pl−1−pl−2|
2 sin θ

2

, we have

|pl−1 − y| ≤ |pl−1 − p0| + |p0 − y| ,

≤
[

1 +
1

2 sin θ
2

+
1

sin θ∗ sin θ
2

]

|pl−1 − pl−2| +
r0

sin θ∗
,

≤
[

1 +
1

2 sin θ
2

+
3

2 sin θ∗ sin θ
2

]

|pl−1 − pl−2| ,

≤
[

1 +
2

sin θ∗ sin θ
2

]

|pl−1 − pl−2| ≤ β |pl−1 − pl−2| .

By Claim 3.1.2 we can bound |pl−1 − x| ≤ |pl−1−pl−2|
sin θ∗ . Then by definition of local feature

size,

lfs (pl−1) ≤ |pl−1 − x| ∨ |pl−1 − y|

≤
(

1

sin θ∗
∨ β
)

|pl−1 − pl−2| ≤ β |pl−1 − pl−2| .

Thus alternative (a) is established.

In Chapter 5, we will construct a proof similar to the preceding, thus it may be instruc-

tive to take note of the general idea of the proof. A sequence of midpoints {pi}l−1
i=0 was

constructed, where point pi has associated radius ri. Then the following facts were key in

the proof: (a) The radii are nondecreasing: r0 ≤ r1 ≤ . . . ≤ rl−1, (b) |pi − pi−1| is within a

constant of both ri and ri−1, and (c) |pi − x| is bounded by a constant times ri.

By Lemma 2.5.4 the following is then immediate.

Theorem 3.3.8. Suppose that the input to the Delaunay Refinement Algorithm conforms to

Assumption 3.3.3. Let ρ = 1
2 sin θ∗

2

. Then the Delaunay Refinement Algorithm applied with

κ < arcsin 1
2ρ

√
2

terminates with good grading. Moreover, the cardinality and optimality

results of Corollary 2.5.7 apply with the given ρ, and with β = 1 + ρ(1 + 4
sin θ∗).

Thus the Delaunay Refinement Algorithm can guarantee well graded output when using

any κ < arcsin
[

sin
(

θ∗

2

)

/
√

2
]

. This bound is the same that was achieved by Shewchuck for

his “terminator” algorithm [43]. In Chapter 5, we show that the algorithm can actually use

a larger value of κ.

43

CHAPTER IV

AUGMENTING INPUT

“What’s lost upon the roundabouts we pulls up on the swings!” –Patrick R. Chalmers

The results of Section 3.3 and later of Section 5.4 suggest that input with small angles

may be handled by Delaunay Refinement algorithms subject to some restriction on the

lengths of consecutive segments. The goal of this chapter is to show that by augmenting an

input with points on segments that the input can be made to conform to Assumption 3.3.3,

with a bounded decrease in local feature size.

Throughout this chapter, we assume there is a set of input points and segments, (P, S) ,

conforming to Assumption 2.2.1. We denote the local feature size relative to this input by

lfs (x) . We will augment the set of points, P to form a new set P′, with all new points on

segments of S. The set S will be replaced by S′, where every segment of S is the union

of segments in S′. We denote the local feature size relative to this pair of sets by lfs′ (x) .

Loosely, we call this process an augmentation, and we will analyze two different augmenting

strategies.

4.1 Bounded Reduction Augmenter

The first kind of augmenter that we consider breaks an input segment into pieces not too

much shorter than the original. We introduce an algorithm which performs this kind of

augmentation and creates input that conforms to Assumption 3.3.3. First we give it a

name:

Definition 4.1.1. A γ-Bounded Reduction Augmenter is a procedure that takes an input

(P, S) , and produces an output (P′, S′) such that

(a) P ⊆ P′,

(b) every segment of S is the union of segments in S′,

(c) every point of P′ \ P and every segment of S′ is on a segment of S, and

(d) if S′ ∈ S′ is a segment on segment S ∈ S, then |S| ≤ γ |S ′| .

Note the definition requires that γ ≥ 2, otherwise the augmenting procedure is idempo-

tent, i.e., leaves (P, S) unchanged. Also note that for a γ-Bounded Reduction Augmenter

that |P′ \ P| ≤ bγ − 1c |S| .

44 CHAPTER 4. Augmenting Input

We now show that a γ-Bounded Reduction Augmenter does not greatly diminish local

feature size.

Theorem 4.1.2. Let lfs (x) be the local feature size on (P, S) , and let lfs′ (x) be the local

feature size on (P′, S′) , where P ⊆ P′, every segment of S is the union of segments in S′,

and every point of P′ \ P and segment of S′ is on a segment of S.

Furthermore suppose that coincident segments of S meet at an angle no less than some

θ∗ ≤ π/2, and that there is a constant γ ≥ 2 such that if S ′ ∈ S′ is a segment on the segment

S ∈ S, that |S| ≤ γ |S′| .
Then there is a constant σ such that lfs′ (x) ≥ σlfs (x) for every x ∈ R

2. Additionally,

σ = sin θ∗

2γ−1 suffices.

Note that although we assume in this thesis that θ∗ ≤ π/3, this theorem only requires

that θ∗ is no greater than π/2.

Proof. We will refer to those features of (P, S) as being “input.”

Let r = lfs′ (x) , and let B be the open ball centered at x of radius r. By definition there

are two disjoint features touching the closure of B. Since features of (P′, S′) are on features

of the input, we can assume there are two (not necessarily distinct) features of the input,

say X,Y that intersect the closure of B. We consider the cases:

• If X,Y are disjoint features of the input, then by definition lfs (x) ≤ r = lfs′ (x) , since

the closure of B intersects two features of the input.

• If X = Y , then the closure of B contains two points of P′ placed on some segment

(a, b) ∈ S. If both these points are in P, then by definition lfs (x) ≤ lfs′ (x) . So assume

that there is one, call it p, that is in P′. Our assumptions on the lengths of segments

in S′ give us

|a− p| ∨ |b− p| ≤ (γ − 1) |a− b|
γ

.

By definition of the local feature size, lfs (x) ≤ |x− a| ∨ |x− b| . Using the triangle

inequality gives lfs (x) ≤ r + (|p− a| ∨ |p− b|) ≤ r + (γ−1)|a−b|
γ . So

lfs′ (x)
lfs (x)

≥ lfs′ (x)

lfs′ (x) + (γ−1)|a−b|
γ

.

The two terms involved in the right hand side are both positive, but only one of them

depends on x. It is easy to see that the right hand side is minimized when lfs′ (x) is

minimized. But the new local feature size, lfs′ (x) must be at least half the distance

from p to the other point, i.e., at least half the length of a segment on (a, b), so

4.1. Bounded Reduction Augmenter 45

lfs′ (x) ≥ |a−b|
2γ . Thus

lfs′ (x)
lfs (x)

≥
|a−b|
2γ

|a−b|
2γ + (γ−1)|a−b|

γ

≥ 1

1 + 2(γ − 1)
,

which suffices.

• If X,Y are non-disjoint input features, then we may assume they are segments, as

the case where one is an endpoint of the other is treated in the previous case. Let the

two segments be (a, b) , (a, c) . Without loss of generality assume there is a feature of

(P′, S′) , call it Z, that is on (a, b) and intersects the closure of B, as does the segment

(a, c). Furthermore we may assume that Z is disjoint from every feature of (P′, S′)

which is on (a, c) . Then there is a point p ∈ P′\P which is on (a, b) which is no farther

from a than Z. See Figure 15.

������� �	���

 ������������ �����

PSfrag replacements

p x

a

b

c

B

Z

Figure 15: The “segment-segment” case for the proof of Theorem 4.1.2 is shown. The
segments (a, b),(a, c) are in the input, while p is an augmenting point.

This then gives us the lower bound: lfs′ (x) ≥ |a−p| sin(θ∧π/2)
2 , where θ is the angle

subtended by the segments (a, b) , (a, c) . This lower bound holds because the distance

from Z to (a, c) is at least the distance from a to Z times sin (θ ∧ π/2) . Using the

bounds from the previous case, this gives lfs′ (x) ≥ |a−b| sin(θ∧π/2)
2γ .

The local feature size (with respect to the input) of x is no greater than the distance

from x to b, since b is outside the closure of B, which intersects an input feature

disjoint from b, i.e., the segment (a, c). Using the triangle inequality to bound the

distance from x to b gives an upper bound: lfs (x) ≤ r + |p− b| . This holds because

Z intersects the closure of B, but is no farther from b than p is. Thus

lfs′ (x)
lfs (x)

≥ lfs′ (x)

lfs′ (x) + |p− b| .

Again, the right hand side is minimized when lfs′ (x) is minimized. Using the above

obtained lower bound on lfs′ (x) gives

46 CHAPTER 4. Augmenting Input

lfs′ (x)
lfs (x)

≥
|a−b| sin(θ∧π/2)

2γ

|a−b| sin(θ∧π/2)
2γ + (γ−1)|a−b|

γ

≥ sin (θ ∧ π/2)

sin (θ ∧ π/2) + 2(γ − 1)

≥ sin (θ ∧ π/2)

2γ − 1
≥ sin θ∗

2γ − 1
.

As Algorithm 1 we present a 5-Bounded Reduction Augmenter, which can produce

augmenting input (P′, S′) that conforms to Assumption 3.3.3. By Theorem 4.1.2, it follows

that lfs′ (x) ≥ sin θ∗

9 lfs (x) , where lfs′ (x) is with respect to the augmented pair, and θ∗ is a

proper lower bound on input angles. Moreover, it should be clear that the procedure adds

no more than 2 |S| Steiner Points.

The algorithm can be briefly described as follows: for each input point x, partition the

segments with endpoint x into maximal collections such that each segment is separated from

another in the collection by an angle no greater than π/3; For each such maximal collection

with more than one segment, for each segment (x, y) in the collection, add an augmenting

point, p, to the segment such that 0.2 |x− y| ≤ |x− p| ≤ 0.4 |x− y| , and such that each

new segment created in the maximal collection has the same length modulo a power of two.

Algorithm 1: Algorithm for making input conform to Assumption 3.3.3.
Input: The input points and segments.
Output: An augmented set of points and segments.
BoundedReductionAugment(P, S)
(1) foreach point x ∈ P which is the endpoint of at least two segments

in S

(2) Partition the segments with endpoint x into maximal collections
such that each segment is separated from another in the collection
by an angle no greater than π/3.

(3) foreach maximal collection with more than one segment
(4) To each segment (x, y) in the collection, add an augmenting

point p, such that 0.2 |x− y| ≤ |x− p| ≤ 0.4 |x− y| , and such
that each new segment (x, p) has the same length modulo a
power of two.

Since this is a thesis, and we are not constrained by space, we include a slight variant of

Algorithm 1 which puts input into the form of Assumption 5.4.1. This augmenter, presented

as Algorithm 2, adds augmenting points around each vertex of degree at least two, and thus

can be a bit more aggressive in adding augmenting points. This is because Assumption 5.4.1

is a more onerous assumption than Assumption 3.3.3. In the end the procedure is still a

4.1. Bounded Reduction Augmenter 47

5-Bounded Reduction Augmenter and adds no more than 2 |S| augmenting points. The

output of this algorithm is shown in Figure 16.

Algorithm 2: Algorithm for making input conform to Assumption 5.4.1.
Input: The input points and segments.
Output: An augmented set of points and segments.
BoundedReductionAugment’(P, S)
(1) foreach point x ∈ P which is the endpoint of at least two segments

in S

(2) To each segment (x, y) in S, add an augmenting point p, such that
0.2 |x− y| ≤ |x− p| ≤ 0.4 |x− y| , and such that each new segment
(x, p) has the same length modulo a power of two.

(a) Input (b) Augmented

Figure 16: The input shown in (a) was fed to Algorithm 2, resulting in the augmented
input shown in (b). The augmenting points are added at different concentric circular shells
around the “axis” of the segments.

We briefly argue that Ruppert’s strategy of splitting on concentric circular shells is some-

thing like an as-needed 6-Bounded Reduction Augmenter. This heuristic fixes midpoint-

midpoint interactions as follows: When an input segment is first to be split, it is split at

its midpoint, leaving two subsegments which have one input endpoint each; when either of

these two subsegments is split, they are split at the point closest to their midpoint which

is at a distance 2k from their input endpoint, for integer k; after this, all subsegments are

split at their midpoints [39].

Consider the two subsegments created by the “off-center” split. Clearly neither of them

is shorter than one third the length of their parent subsegment, which is one half the length

48 CHAPTER 4. Augmenting Input

of the input segment. Thus this strategy is a 6-Bounded Reduction Augmenter.

4.2 Feature Size Augmenter

There is another kind of augmenter to consider. This kind may break a segment into

very small pieces, but creates no segments smaller than local feature size would suggest.

Shewchuk considered such an augmenter as a grooming step in the production of Con-

strained Delaunay Triangulations in three dimensions [42], however he had no reason to

consider the resultant loss of local feature size off of the input features.

Definition 4.2.1. For γ > 0, a γ-Feature Size Augmenter is a procedure that takes an

input (P, S) , and produces an output (P′, S′) such that

(a) P ⊆ P′,

(b) every segment of S is the union of segments in S′,

(c) every point of P′ \ P and every segment of S′ is on a segment of S, and

(d) if S′ ∈ S′, and x is any point on S′, including its endpoints, then lfs (x) ≤ γ |S ′| ,
where lfs (x) is with respect to the input (P, S) .

Note that every γ-Bounded Reduction Augmenter is a γ-Feature Size Augmenter. How-

ever this is a strict containment and there is no guarantee that a Feature Size Augmenter

is a Bounded Reduction Augmenter at all. To see this, consider input consisting of two

parallel unit-length segments which are ε distance apart from each other. The local feature

size for every point on one of these segments is merely ε, so a γ-Feature Size Augmenter

may break each segment into as many as γ/ε subsegments. Thus there is no γ > 0 such

that a γ-Feature Size Augmenter is necessarily idempotent, and there is no a priori upper

bound on the number of subsegments created by a γ-Feature Size Augmenter.

We now show that a γ-Feature Size Augmenter does not greatly diminish local feature

size.

Theorem 4.2.2. Let lfs (x) be the local feature size on (P, S) , and let lfs′ (x) be the local

feature size on (P′, S′) , where P ⊆ P′, every segment of S is the union of segments in S′,

and every point of P′ \ P and segment of S′ is on a segment of S.

Furthermore suppose that coincident segments of S meet at an angle no less than some

θ∗ ≤ π/2, and that there is a constant γ > 0 such that if S ′ ∈ S′ and x is any point along

S′ then lfs (x) ≤ γ |S′| .
Then there is a constant σ such that lfs′ (x) ≥ σlfs (x) for every x ∈ R

2. Additionally,

σ = sin θ∗

2γ+3 suffices.

Proof. We will refer to those features of (P, S) as being “input.”

4.2. Feature Size Augmenter 49

Let r = lfs′ (x) , and let B be the open ball centered at x of radius r. By definition there

are two disjoint features touching the closure of B. Since features of (P′, S′) are on features

of the input, we can assume there are two (not necessarily distinct) features of the input,

say X,Y that intersect the closure of B. We consider the cases:

• If X,Y are disjoint features of the input, then by definition lfs (x) ≤ r = lfs′ (x) , since

the closure of B intersects two features of the input.

• If X = Y , then the closure of B contains an entire segment of S′, call it (a, b). By the

Lipschitz condition, lfs (x) ≤ |x− a| + lfs (a) = r + lfs (a) . By assumption lfs (a) ≤
γ |a− b| . Since the segment is entirely in the closure of B, we have |a− b| ≤ 2r.

Putting these all together gives lfs (x) ≤ (1 + 2γ) r, i.e., lfs′ (x) ≥ 1
2γ+1 lfs (x) , which

suffices.

• If X,Y are non-disjoint input features, then we may assume they are segments, as the

case where one is an endpoint of the other is treated in the previous cases. Let the

two segments be (a, b) , (a, c) . Without loss of generality there is a point p ∈ P′ \ P

that is on (a, b) such that (a, p) ∈ S′ does not intersect the open ball B. Note it may

be the case that p is in the closure of B. Let z be a point of (a, b) that is in the closure

of B. See Figure 17.

������� �	���

 ������������ �����

PSfrag replacements

p x

a

b

c

Bz

Figure 17: The “segment-segment” case for the proof of Theorem 4.2.2 is shown. The
segments (a, b),(a, c) are in the input, while p is an augmenting point. The point z is on
(a, b), and inside the closure of B. Although drawn this way, the point z need not be unique.

The distance from z to (a, c) is |a− z| sin (θ ∧ π/2) , where θ is the angle subtended by

(a, b) , (a, c) . Since the closure of B contains a point of (a, c), then the segment from

z to that point is inside the closure of B and has length no greater than 2r. That is

|a− z| sin (θ ∧ π/2) ≤ 2r. Using θ∗ ≤ θ ∧ π/3 gives |a− z| ≤ 2r
sin θ∗ .

Now we use the Lipschitz condition:

lfs (x) ≤ |x− z| + |z − a| + lfs (a) ,

≤ r +
2r

sin θ∗
+ γ |a− p| .

50 CHAPTER 4. Augmenting Input

Noting that |a− p| ≤ |a− z| ≤ 2r
sin θ∗ gives

lfs (x) ≤ r +
2 (1 + γ) r

sin θ∗
≤ 1 + 2 (1 + γ)

sin θ∗
r =

2γ + 3

sin θ∗
lfs′ (x) .

As Algorithm 3 we present a 3+
√

13
2 -Feature Size Augmenter, which can produce aug-

menting input (P′, S′) that conforms to Assumption 3.3.3. By Theorem 4.2.2, it follows

that lfs′ (x) ≥ sin θ∗

6+
√

13
lfs (x) , where lfs′ (x) is with respect to the augmented pair, and θ∗ is a

proper lower bound on input angles. Moreover, it should be clear that the procedure adds

no more than 2 |S| Steiner Points.

Algorithm 3: Algorithm for making input conform to Assumption 3.3.3.
Input: The input points and segments.
Output: An augmented set of points and segments.
FeatureSizeAugment(P, S)
(1) foreach point x ∈ P which is the endpoint of at least two segments

in S

(2) Partition the segments with endpoint x into maximal collections
such that each segment is separated from another in the collection
by an angle no greater than π/3.

(3) foreach maximal collection with more than one segment
(4) Let l be the length of the shortest segment in the collection.
(5) To each segment (x, y) in the collection, add an augmenting

point p, such that |x− p| = 2
1+

√
13
l.

The algorithm can be briefly described as follows: for each input point x, partition the

segments with endpoint x into maximal collections such that each segment is separated

from another in the collection by an angle no greater than π/3; For each such maximal

collection with more than one segment, let l be the length of the shortest segment of the

collection. Then for each segment (x, y) in the collection, add the augmenting point, p, to

the segment such that |x− p| = 2
1+

√
13
l.

Claim 4.2.3. Algorithm 3 is a 3+
√

13
2 -Feature Size Augmenter.

Proof. There are three kinds of subsegments in S’: those with zero, one, or two endpoints

in P. We let S′ ∈ S′ be a subsegment of S ∈ S, and consider the cases.

• Let S′ have two endpoints in P. Then S ′ = S, and by definition, for any point x on

S, lfs (x) is less than |S|, so it is less than 3+
√

13
2 |S′| .

• Let S′ have one endpoint in P. Let S ′ = (a, p) , with a ∈ P. Let S = (a, b) . There are

two separate subcases: p could have been added “near” a or b. By “near,” we mean

because of a cluster of segments around a or b. First we suppose it was near a. In this

4.2. Feature Size Augmenter 51

case there is some segment (a, c) of length l such that (a, p) = 2
1+

√
13
l. Then if x is a

point on (a, p), by definition of the local feature size, and using the triangle inequality,

lfs (x) ≤ |x− a| + l ≤ |p− a| + 1 +
√

13

2
|a− p| ,

and thus lfs(x)
|a−p| ≤ 3+

√
13

2 . Note this is may be a gross overestimate when, for example,

c = b.

Now suppose that p was near b. We know that |p− b| ≤ 2
1+

√
13

|a− b| . Thus

|a− p| ≥
[

1 − 2

1 +
√

13

]

|a− b| =

√
13 − 1

1 +
√

13
|a− b| .

If x is a point on (a, p), then lfs (x) ≤ |a− b| , so

lfs (x)

|a− p| ≤
1 +

√
13√

13 − 1
<

3 +
√

13

2
.

• Let S′ have no endpoint in P. Let S ′ = (p, q) , let S = (a, b) , and suppose that

(a, p) and (q, b) are in S′. We know that neither |a− p| nor |q − b| are greater than

2
1+

√
13

|a− b| . It follows that

|p− q| ≥
[

1 − 4

1 +
√

13

]

|a− b| =

√
13 − 3

1 +
√

13
|a− b| .

Now given x on (p, q), using the definition of local feature size,

lfs (x) ≤ |x− a| ∨ |x− b| ≤ 2

1 +
√

13
|a− b| .

Thus
lfs (x)

|p− q| ≤
2

1 +
√

13

1 +
√

13√
13 − 3

=
2√

13 − 3
= 2

3 +
√

13

13 − 9
=

3 +
√

13

2
.

Again, we display an algorithm for putting input into the form of Assumption 5.4.1

merely for completeness. The astute reader will have already surmised its form. The action

of the algorithm is illustrated in Figure 18.

52 CHAPTER 4. Augmenting Input

Algorithm 4: Algorithm for making input conform to Assumption 3.3.3.
Input: The input points and segments.
Output: An augmented set of points and segments.
FeatureSizeAugment’(P, S)
(1) foreach point x ∈ P which is the endpoint of at least two segments

in S

(2) Let l be the length of the shortest segment of the form (x, y) in S.
(3) To each segment (x, y) in S, add an augmenting point p, such that

|x− p| = 2
1+

√
13
l.

(a) Input (b) Augmented

Figure 18: The input shown in (a) was fed to Algorithm 4, resulting in the augmented
input shown in (b). The augmenting points are all added at the same distance from the
“axis” of the segments.

53

CHAPTER V

THE ADAPTIVE DELAUNAY REFINEMENT

ALGORITHM

“What I tell you three times is true.” –Lewis Carroll

5.1 Description of the Algorithm

We describe a locally adaptive algorithm which minimizes the effects of small input angles

by determining quality with respect to location. The algorithm appears to ignore all poor

quality triangles which are “near” small input angles; it will be shown that the ignored

triangles cannot be too poor. Ultimately the algorithm will not be able to guarantee a

minimum output angle greater than arctan
(

sin θ∗

2−cos θ∗

)

, but such small angles will only be

near input segments which meet at an angle of θ∗. The algorithm will also be able to

guarantee that angles “far” from input features are no less than arcsin 2−7/6.

We will assume that the algorithm maintains, for every midpoint, a pointer to the two

input points which are endpoints of the input segment containing the midpoint. This can be

done easily by slightly modifying the segment split procedure to maintain this information.

The adaptive algorithm then has two major operations. The first is the same as in

the Delaunay Refinement Algorithm; the second replaces the operation (Quality) (as

described in Section 2.3) by the operation (Quality′):

(Conformality) If s is a current segment, and there is a committed point that

encroaches s, then split s.

(Quality′) If a, b, c are committed points, the circumcircle of the triangle ∆abc con-

tains no committed point, ∠acb < κ̂, the circumcenter, p, of the triangle is inside Ω

and either (i) both a, b are midpoints on distinct nondisjoint input segments, sharing

input endpoint x, and ∠axb > π/3, or (ii) a, b are not midpoints on adjoining input

segments, then attempt to commit p. If, however, the point p encroaches any current

segment, then do not commit to point p, rather in this case split one, some, or all of

the current segments which are encroached by p.

In summary, the algorithm removes angles smaller than κ̂ except when the opposite

edge spans a small angle in the input, in which case the small output angles are ignored.

For this variant we call κ̂ the output angle parameter ; the output mesh may well contain

angles smaller than κ̂. We will let α be the minimum angle in the output mesh.

54 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

5.2 Is Adaptivity Necessary?

We here make the claim that the Delaunay Refinement Algorithm is as good as its adaptive

variant when the latter runs with a small output angle parameter κ̂. The claim is formalized

as follows:

Claim 5.2.1. Suppose that we can guarantee that if the Adaptive Delaunay Refinement

Algorithm is run with output angle parameter κ̂, on any input with minimum input angle

θ∗ that (a) the algorithm terminates, (b) no angle of the output mesh is smaller than κ̂,

(c) no angle is larger than π − 2ω, and (d) output mesh edges are graded with the local

feature size by some constant.

Then if the Delaunay Refinement Algorithm is run on any input with minimum input

angle θ∗, using output angle parameter κ = κ̂, then (a) the algorithm terminates, (b) no

angle of the output mesh is smaller than κ, (c) no angle is larger than π−2ω, and (d) output

mesh edges are graded with the local feature size by the same constants as above.

Proof. The Adaptive Delaunay Refinement Algorithm only attempts to remove a Delaunay

triangle if it has minimum angle smaller than κ̂. Moreover, it produces meshes with no

angle smaller than κ̂. Then the (Quality′) operation could be rewritten as follows:

(Quality′) If a, b, c are committed points, the circumcircle of the triangle ∆abc con-

tains no committed point, ∠acb < κ̂, and the circumcenter, p, of the triangle is inside

Ω then attempt to commit p. If, however, the point p encroaches any current segment,

then do not commit to point p, rather in this case split one, some, or all of the current

segments which are encroached by p.

This is the same as the operation (Quality) of the Delaunay Refinement Algorithm.

The analysis that follows should be read with a tacit understanding that it can be applied

to the Delaunay Refinement Algorithm as well, if κ is set propertly. For example, it will be

shown that if an input with θ∗ ≈ 36.53◦ conforms to Assumption 5.4.1, then the Adaptive

Delaunay Refinement Algorithm with κ̂ = 26.45◦ will terminate leaving no angle in the

output mesh smaller than κ̂, and no angle larger than π − 2κ̂. Then we can immediately

claim that the Delaunay Refinement Algorithm (i.e., Ruppert’s Algorithm) with κ = 26.45◦

will also terminate on the same input, and with the same grading guarantees.

Thus the adaptive variant is only necessary when θ∗ is small, say smaller than about

36.53◦.When θ∗ is small, the adaptive variant will remove small angles where this is possible,

i.e., away from small input angles.

5.3. Circumcenter Sequences 55

5.3 Circumcenter Sequences

We here analyze sequences of triangle circumcenters, which will be used much like mid-

point sequences were used in Chapter 2 to analyze the Delaunay Refinement Algorithm.

The analysis of circumcenter sequences is relatively simple, but allows examination of the

interaction between segment midpoints, which can be more complex.

Definition 5.3.1. A circumcenter sequence is a sequence of points, {bi}l−1
i=0 such that for

i = 1, 2, . . . , l − 1, bi is the circumcenter of a triangle in which bi−1 is the more recently

committed point of an edge opposite an angle less than κ̂. The point b0 may be an input

point or segment midpoint.

For i = 0, 1, . . . , l − 2, let ai be the other endpoint of the short edge of which bi is the

more recently committed endpoint. In the case where a0, b0 are both input points, they

are committed simultaneously; we imagine a total order on input points which determines

the tie. Both a0, b0 may be midpoints on distinct, nondisjoint input segments. In this case

we assume that the triangle with circumcenter b1 was removed by a (Quality′) operation

because of a small angle opposite a0, b0. In particular this means that we assume the angle

subtended by the input segments containing a0, b0 is at least π/3 in this case.

When talking about such sequences, for i = 1, 2, . . . , l−1, let r̃i be the circumradius of the

triangle associated with bi. Note that r̃i = |bi − bi−1| = |bi − ai−1| , and that |ai − bi| ≥ r̃i.

We let r̃0 = |b0 − a0| , i.e., the length of the first short edge.

Note that for a circumcenter sequence, {bi}l−1
i=0, the points b1, b2, . . . , bl−2 are circumcen-

ters which have been committed, bl−1 is a circumcenter, though it may be rejected, and b0

may be any type of point. If b is a triangle circumcenter, there is always a circumcenter

sequence ending with b, although it may be a trivial sequence of two elements. Any cir-

cumcenter sequence whose first element, b0, is a triangle circumcenter may be extended to

a maximal sequence whose first element is either a segment midpoint or an input point.

The following geometric lemma is the key result which allows us to make the arcsin 2−7/6

output guarantee. It essentially states that only circumcenter sequences longer than a

certain length can “turn” around a 180◦ feature.

Lemma 5.3.2. Let S1, S2 be two segments with disjoint interiors on a common line, L.

Assume that |S2| ≤ |S1| , i.e., S2 is no longer than S1. Let b0 be the midpoint of S1, and let

a0 be some other point. Let {bi}l−1
i=1 be a circumcenter sequence such that bl−1 is inside the

diametral circle of S2, and such that b1 is the circumcenter of a triangle with edge (a0, b0)

opposite an angle smaller than κ̂. Then l ≥ 4.

Note that unlike in the regular terminology of circumcenter sequences, this lemma makes

56 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

no assumptions about which of a0, b0 was committed first. This is why we have chosen to

index the circumcenter sequence from i = 1 instead of the usual i = 0.

topleft

bottomright

PSfrag replacements

b0

b1

b2

a0

a1

S1S2L

G

m
m′

z

x

(a) b1 does not encroach S2.

����� � ����� 	
���

� ����� ��� �

PSfrag replacements

b0

b1
b2

a0

a1

S1S2L

G

m

m′

zx

(b) b2 does not encroach S2.

Figure 19: The head of a circumcenter sequence is shown; the point b1 must be to the
right of the bisector of b0 and x, and so it cannot encroach S2, which is on the other side of
this bisector, as shown in (a). In (b) the bisector of b1 and the point x is shown. Since b2
cannot be closer to x than to b1, and since the diametral circle of S2 is on the opposite side
the bisector, b2 cannot encroach S2. In this case, a0 is shown to be outside the diametral
circle of S1. This is not a necessary hypothesis for this lemma.

Proof. The basic argument is sketched in Figure 19. The point b1 is the circumcenter of a

triangle whose circumcircle does not contain the point x, which is the endpoint of S1 closer

to S2. However, this circumcircle has b0 on it, so b1 must be in the closed halfspace defined

by the bisector of x and b0 and which does not contain x, as shown in Figure 19(a). Thus

b1 cannot be in the diametral circle of S2, which is in the open halfspace on the other side

of this bisector.

Now let G be the bisector of the points b1 and x. The point b2 is the center of a circle

which does not contain x, but has b1 on its boundary, since b1 is one of the vertices of the

triangle which b2 is added to remove. Thus b2 must be either on the line G, or in the open

halfspace defined by G that is closer to the point b1. In Figure 19(b), this is the halfspace

to the upper right of G.

It then suffices to show that the closure of the diametral ball of S2 is contained in the

other open halfspace defined by G, and thus b2 cannot encroach S2.

Let z be the intersection of L and G; take m to be the midpoint of S2, and m′ is its

projection onto G. Let x′ be the projection of x onto G. Let y be the projection of b1 onto

L. See Figure 20. The point x is clearly between m and z, otherwise x would be in the

halfspace closer to b1 than to x, a contradiction. Thus |m− z| = |m− x| + |x− z| .

5.3. Circumcenter Sequences 57

PSfrag replacements
b1

m

m′

z
x

x′

y

Figure 20: The geometric heart of the argument is shown, with three congruent triangles,
∆mm′z,∆xx′z,∆xyb1.

By congruency of the three triangles of Figure 20,

|m−m′|
|m− z| =

|x− x′|
|x− z| =

|x− y|
|x− b1|

.

Let r = |S2|
2 ≤ |S1|

2 , by assumption. Since S1, S2 have disjoint interiors, |m− x| ≥ r.

Then |m− z| ≥ r + |x− z| , so

∣

∣m−m′∣
∣ =

|x− x′| |m− z|
|x− z| ,

≥ |x− x′| (r + |x− z|)
|x− z| ,

≥ |x− x′|
|x− z| r +

∣

∣x− x′
∣

∣ =
|x− y|
|x− b1|

r +
∣

∣x− x′
∣

∣ .

As noted above, b1 is to the right of the bisector of x and b0, so |x− y| ≥ |x−b0|
2 = |S1|

4 ≥
r
2 . Note also that |x− b1| = 2 |x− x′| . Then

∣

∣m−m′∣
∣ ≥ r2

4 |x− x′| +
∣

∣x− x′
∣

∣ .

The right hand side is minimized when |x− x′| = r
2 , where the right hand side has value

r. Note, however, that |x− x′| ≥ r̃1
2 ≥ 1

2 sin κ̂
|S1|
4 > r

2 , so the right hand side will be strictly

larger than r.

That is, |m−m′| > r, and thus the distance from m to G, which is |m−m′| , is greater

than the radius of the diametral circle of S2. Then the closed diametral circle of S2 is

contained in the open halfspace opposite b1, as desired.

This lemma allows us to prove a better output angle for the Delaunay Refinement

Algorithm. Previous proofs required 2 sin κ̂ ≤ 1√
2
; by the lemma, the following proof only

requires that (2 sin κ̂)3 ≤ 1√
2
. A better output angle could be guaranteed if the lemma could

be improved; this would have to be via some alternation of the algorithm, as the example of

Figure 21 shows the lemma cannot be extended in the näıve setting. While it is conceivable

58 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

some alternation could be made to increase the number of “steps” around input segments

that meet at 180◦, such a method could not prevent the “creep” of small subsegments along

an input segment. Shewchuk notes this plaintively: “[a] small feature could . . . propagate

along the whole length of [a] segment.” [43, page 65]

���

� ����� �
	 �

PSfrag replacements

S1S2L b0

a0

b1

a1

b2

a2

b3

Figure 21: A circumcenter sequence, {bi}3
i=0 , is displayed, which shows that Lemma 5.3.2

cannot be extended. The segments S1, S2 are shown, with their diametral circles. The
points b1, b2, b3 are circumcenters of triangles (shown) with an angle smaller than π/6. The
point b3 encroaches S2.

Since κ̂ < π/6, we can establish a geometric series which gives the following lemma and

its corollary. The corollary describes how a segment midpoint which is not caused by a

midpoint encroaching the segment is caused by some other midpoint or input point.

Lemma 5.3.3. Suppose {bi}l−1
i=0 is a circumcenter sequence. For i > 0, let r̃i be the cir-

cumradius associated with bi. Then for i = 1, 2, . . . , l − 1,

• r̃i−1 < 2r̃i sin κ̂ and therefore r̃i < (2 sin κ̂)l−1−ir̃l−1, and

• |bl−1 − bi| < r̃l−1

1−2 sin κ̂ , and |bl−1 − ai| < r̃l−1

1−2 sin κ̂ .

Proof. By definition, bi is the circumcenter of a triangle of radius r̃i, which has a short edge

no shorter than r̃i−1 opposite an angle less than κ̂. By the sine rule, then 2r̃i sin κ̂ > r̃i−1.

Using this repeatedly gives r̃i < (2 sin κ̂)l−ir̃l−1. Since 2 sin κ̂ < 1, we may bound the

distance from bi to bl−1 by the geometric series, as follows:

|bl−1 − bi| ≤ |bl−1 − bl−2| + |bl−2 − bl−3| + . . .+ |bi+1 − bi| ,
≤ r̃l−1 + r̃l−2 + . . .+ r̃i+1,

< r̃l−1 + (2 sin κ̂)r̃l−1 + . . .+ (2 sin κ̂)l−i−2r̃l−1,

<
1

1 − 2 sin κ̂
r̃l−1.

The bound for |bl−1 − ai| follows since |bi+1 − ai| = |bi+1 − bi| = r̃i+1, and the above

analysis suffices.

5.4. Good Grading 59

Corollary 5.3.4. Suppose that segment sp with midpoint p and radius r was split, but the

segment was not encroached by a committed point. Then there is some maximal circumcen-

ter sequence {bi}l−1
i=0 such that bl−1 “yielded” to p, causing it to be committed. Moreover,

r̃i < (2 sin κ̂)l−1−i√2rp, |p− bi| ≤ ηrp, and |p− ai| ≤ ηrp, for i = 0, 1, . . . , l − 1, with

η = 1 +
√

2
1−2 sin κ̂ .

Proof. As in the classical setting (see Figure 10), since bl−1 was the center of an empty

circumcircle, but encroached sp, then r̃l−1 ≤
√

2rp. Using the lemma gives the desired

bound on r̃i. By the lemma, and since κ̂ < π/6, r̃i ≤ r̃l−1. Then

|p− bi| ≤ |p− bl−1| + |bl−1 − bi| ≤ rp +
r̃l−1

1 − 2 sin κ̂
≤
(

1 +

√
2

1 − 2 sin κ̂

)

rp = ηrp.

The bound on |p− ai| follows, mutatis mutandis, as above.

5.4 Good Grading

Since the algorithms under consideration split segments at midpoints, we are interested

in the ratio of the lengths of adjoining segments, modulo powers of two. The following

assumption on the input can be satisfied by augmenting the input with at most 2 |S| points,

splitting some or all of the line segments in the input which share an endpoint so they have

acceptable lengths–see Algorithm 2 and Algorithm 4 of Chapter 4.

Assumption 5.4.1. In addition to those of Assumption 2.2.1 we make the following as-

sumption:

(a) If S1, S2 are two adjoining input segments that meet at angle other than π, then they

have the same length modulo a power of two, that is |S1|
|S2| = 2k for some integer k.

Note that input which satisfy Assumption 5.4.1 also satisfy Assumption 3.3.3. Since the

Delaunay Refinement Algorithm and the adaptive variant differ only on the test for skinny

angles, we claim that Lemma 3.3.6 applies to input satisfying Assumption 5.4.1 and for the

adaptive algorithm.

The following lemma uses the length assumption and Lemma 5.3.2 to obtain a similar

result when a segment is split due to a triangle circumcenter. In this case we show an

alternative: either the local feature size of the midpoint is bounded, or there is some other

segment to “blame” for the split, with the radii non-dwindling.

Lemma 5.4.2. Let sp be a subsegment of midpoint p and radius rp. Suppose that sp was not

encroached by a committed point, rather a circumcenter bl−1 was proposed to be committed,

but rejected in favor of splitting sp. Let η = 1 +
√

2
1−2 sin κ̂ . Then either

60 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

(a) lfs (p) ≤ (
√

2 + η)rp, or

(b) there is a segment sq with committed midpoint q, and radius rq such that

(i) the input segments containing sp, sq are nondisjoint,

(ii) rq ≤ rp,

(iii) |p− q| ≤ ηrp, and

(iv) if sp, sq are on the same input segment then 2rq ≤ rp; if they are on distinct

input segments sharing input point x, then |x− p| < η
sin θ∗ rp.

Proof. For convenience, we say that a point q “provokes” a point p, if q is committed before

p, and p is the midpoint of a segment, s, which is encroached by q.

Let {bi}l−1
i=0 be a maximal cirumcenter sequence ending with the circumcenter bl−1 which

caused p to be committed. Consider the identity of b0:

• If b0 is an input point, then by definition so is a0, and so lfs (p) ≤ |p− b0| ∨ |p− a0| .
By Corollary 5.3.4, these are both bounded above by ηrp, so lfs (p) <

√
2 + ηrp.

• If b0 is a midpoint on an input segment disjoint from the one containing p, then by

definition of local feature size and using Corollary 5.3.4, lfs (p) ≤ |p− b0| ≤ ηrp, which

suffices.

• Suppose that b0 is a midpoint on an input segment nondisjoint to the one containing

p. Furthermore suppose that a0 did not provoke b0. Let sq be the segment associated

with the midpoint q = b0, and let rq be its radius. By assumption rq ≤ |a0 − b0| = r̃0.

We will show the second alternative for this choice of q. By Corollary 5.3.4, |p− q| =

|p− b0| ≤ ηrp.

If sp, sq are on the same input segment, then by Assumption 5.4.1, rp/rq is a power

of two. We will try to use Lemma 5.3.2, with S1 = sq, S2 = sp. The lemma does not

apply if |S1| < |S2| , but this inequality actually states that 2rq < 2rp, which would

imply that 2rq ≤ rp. So assuming otherwise, by use of the lemma, l ≥ 4, and thus

since κ̂ ≤ arcsin 2−7/6, using Corollary 5.3.4

rq <
√

2(2 sin κ̂)3rp ≤
√

2

(

1
6
√

2

)3

rp = rp.

Thus we have a contradiction, so it must be that 2rq ≤ rp.

If sp, sq are on distinct input segments that meet at some angle other than π, by

item (a) of Assumption 5.4.1, rp/rq is a power of two, and so if rp < rq, then rp ≤
rq
2 . But by Corollary 5.3.4, rq < (2 sin κ̂)l−1

√
2rp ≤

√
2rp. Thus we would have the

contradiction rp ≤ rp√
2
, so it must be that rq ≤ rp.

If, on the other hand, sp, sq are on input segments that meet at angle π, then we will

again try to use Lemma 5.3.2, with S1 = sq, S2 = sp. The lemma does not apply if

5.4. Good Grading 61

|S1| < |S2| , i.e., if 2rq < 2rp, which suffices. So assuming otherwise, as above because

κ̂ ≤ arcsin 2−7/6, we have the contradiction rq < rp.

• Suppose that b0 is a midpoint on an input segment nondisjoint to the one containing p,

and a0 did provoke b0, i.e., rq ≥ |a0 − b0| = r̃0, where again rq is the radius associated

with b0.

If a0 was (on) an input feature disjoint from the one containing b0, then by definition

lfs (p) ≤ |p− b0| ∨ |p− a0| . By Corollary 5.3.4, these are both bounded above by ηrp,

so lfs (p) < (
√

2 + η)rp.

The point a0 could not have been a circumcenter, because it provokes b0. So the only

alternative is that it is a midpoint on an input segment nondisjoint from the one

containing b0.
1

Since this a circumcenter sequence, by assumption, φ, the angle between the segments

containing a0, b0 is at least π/3. Let sq be the segment associated with q = a0, of

radius rq. By Lemma 3.3.6, r̃0 = |a0 − b0| ≥ 2rq sin φ
2 ≥ rq, since φ ≥ π/3. Consider

the subcases:

– The input segments containing a0, p are disjoint. Then by definition, lfs (p) ≤
|p− a0| ≤ ηrp, by Corollary 5.3.4, as above, which suffices.

– The input segments containing a0, p are nondisjoint, moreover the input point

x is shared by all three input segments in consideration. We will mirror the

argument from above.

Let sq be the segment associated with the midpoint q = a0, and let rq be its

radius. By Corollary 5.3.4, |p− q| = |p− a0| ≤ ηrp. We have already shown that

rq ≤ r̃0, and thus rq ≤ (2 sin κ̂)l−1
√

2rp.

If sp, sq are on the same input segment, as above, using κ̂ ≤ arcsin 2−7/6, and

Lemma 5.3.2 gives 2rq ≤ rp.

If sp, sq are on distinct input segments that meet at some angle other than π, by

the same argument as above, since rp, rq have essential ratio 1, it must be that

rq ≤ rp.

If, on the other hand, sp, sq are on input segments that meet at angle π, then as

above, using Lemma 5.3.2, rq < rp.

– The input segments containing a0, p are nondisjoint, and no input point is shared

by the three input segments. Let x be the input point shared by the input

segments containing p, b0. Let y be the input point shared by the input segments

containing a0, b0. Then lfs (p) ≤ |p− y| ≤ |p− a0| + |a0 − y| . By Lemma 3.1.4,

1Note there are now three input segments in consideration, namely the ones containing p, a0, b0. It could
be the case that p, b0 are on the same input segment, or even p and a0 are.

62 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

|a0 − y| ≤ |a0 − b0| 2 cosφ ≤ r̃0 ≤
√

2rp. Thus using Corollary 5.3.4 yet again,

lfs (p) ≤ ηrp +
√

2rp, as desired.

Suppose that alternative (b) holds and that sp, sq are on distinct segments sharing input

point x. We have already shown that |p− q| ≤ ηrp. But |p− q| is bounded below by the

distance from p to the segment containing q, which is |x− p| sin((θ ∧ π/2)) ≥ |x− p| sin θ∗.
Thus |x− p| < η

sin θ∗ rp.

We now collapse the two cases of midpoint addition which were considered in the previ-

ous lemma and Lemma 3.3.6, namely encroached and nonencroached, to get a single local

feature size estimate. The proof proceeds by constructing a sequence of midpoints on input

segments sharing a common endpoint, then uses the two lemmata and Lemma 5.3.2 to find

a grading estimate for segment midpoints. Note that unlike previous good-grading proofs,

the grading of midpoints is proved independently of that for circumcenters.

Lemma 5.4.3 (Midpoint Local Feature). Suppose that the input to the Adaptive De-

launay Refinement Algorithm conforms to Assumption 5.4.1. Then there is a constant, µ,

depending on θ∗ and κ̂ such that if p is the midpoint of a segment, s, of radius r that is

committed by the algorithm, then lfs (p) ≤ µr.

Moreover, µ = 4η
(

1 + 1
sin θ∗

)

suffices, where η = 1 +
√

2
1−2 sin κ̂ , as above.

Proof. We construct a hybrid sequence, actually two sequences, {(Pi, Ri)}1−l
i=0 , {Xi}l−1

i=1,

where each Pi will be a midpoint of a segment of radius Ri, and Pi and Pi−1 will be

on input features sharing input point Xi. We may optionally define an X0.

We will use Lemma 3.3.6 and Lemma 5.4.2 to establish the sequence. The sequence is

constructed backwards, so for convenience we pretend that we know how long it will be,

i.e., we know l, so that we can set Pl−1 = p,Rl−1 = r. For convenience, let Sl−1 = s.

The sequence is constructed backwards to make it analogous with encroachment sequences.

Thus we will claim that when Pi is committed, Pi−1 has already been committed, and is

somehow “responsible” for Pi being committed.

Construct the sequence as follows: given segment Si with committed midpoint Pi, and

radius Ri, consider why Pi was committed:

• Suppose that Pi was committed because an input point or a point on a disjoint input

feature encroached Si. Then lfs (Pi) ≤ Ri. Let Pi be the first midpoint in the sequence,

i.e., i = 0 because l was chosen magically.

• On the other hand, suppose Si was encroached by a point, q, on a nondisjoint input

feature. Let the segments share input point x. Since the input conforms to Assump-

tion 5.4.1 we may apply Lemma 3.3.6, which asserts thatRi ≥ rq, the radius associated

5.4. Good Grading 63

with q. Since q encroaches Si we have |Pi − q| ≤ Ri ≤ ηRi. Moreover by Claim 3.1.2,

|x− Pi| < 1
sin θ∗Ri <

η
sin θ∗Ri.

If i 6= l − 1 and x 6= Xl−1 then let P0 = Pi be the first point in the sequence, and let

X0 = x. Otherwise let Xi = x = Xl−1, let Pi−1 = q, let Ri−1 = rq, and let Si−1 be

the parent segment of q.

• If Si was not encroached by any point, then by Lemma 5.4.2, then either lfs (Pi) ≤
(
√

2+ η)Ri, in which case let Pi be the first element of the sequence, i.e., let i = 0; or

there is some midpoint, q, of some subsegment sq, with useful properties. The lemma

asserts that Si, sq are on nondisjoint segments. There are two alternatives:

– If they are on the same input segment, let Pi be the first midpoint of the sequence,

i.e., let i = 0. Note that in this case, by the lemma, R0 ≥ 2rq, and |P0 − q| ≤ ηR0.

– Otherwise, let x be the single input point shared by the two input segments.

If i 6= l− 1 and x 6= Xl−1, then let Pi be the first midpoint in the sequence, and

let X0 = x, P0 = q. By the lemma |X0 − P0| < η
sin θ∗R0. Note also that (X0,Xl−1)

is an input segment.

Otherwise, let Xi = x = Xl−1, let Pi−1 = q, let Si−1 = sq, let Ri−1 be the radius

of Si−1. The lemma asserts that Ri ≥ Ri−1, |Pi − Pi−1| ≤ ηRi, and |Xi − Pi| <
η

sin θ∗Ri.

We can claim the following facts about the hybrid sequence, noting their similarity to

properties proven about encroachment sequences in Chapter 3:

(a) R0 ≤ R1 ≤ . . . Rl−1;

(b) |Pi − Pi−1| ≤ ηRi;

(c) |Xi − Pi| ≤ η
sin θ∗Ri;

(d) Xi = Xl−1 for i = 1, 2, . . . , l − 2.

(e) Either

(i) lfs (P0) ≤ max
{

1,
√

2 + η
}

R0 = (
√

2 + η)R0, or

(ii) there is some X0 6= Xl−1 such that (X0,Xl−1) is an input segment and such that

|P0 −X0| ≤ η
sin θ∗R0, or

(iii) there is some midpoint q of radius rq such that R0 ≥ 2rq, and |P0 − q| ≤ ηR0.

These facts will be enough to establish the lemma. First note that if l = 1, it must be

that s was encroached by a point on a nondisjoint input feature, so it suffices to take µ ≥ 1.

So assume otherwise.

We bound |Pl−1 − P0| ; our analysis will be quite an overestimate for the case where

l = 2, but will suffice. By the triangle inequality, and item (c), item (a), item (d), and

64 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

item (b) of above,

|Pl−1 − P0| ≤ |Pl−1 −Xl−1| + |P1 −X1| + |P1 − P0| ,
≤ η

sin θ∗
Rl−1 +

η

sin θ∗
R1 + ηR1,

≤
(

η +
2η

sin θ∗

)

Rl−1.

We consider the sequence head, i.e., item (e).

• If the first alternative holds, then by the Lipschitz condition,

lfs (Pl−1) ≤ |Pl−1 − P0| + lfs (P0) ,

≤
(

η +
2η

sin θ∗

)

Rl−1 + (
√

2 + η)R0,

≤
(√

2 + 2η +
2η

sin θ∗

)

Rl−1,

so it suffices to take
√

2 + 2η +
2η

sin θ∗
≤ µ.

• If the second alternative holds, then X0 6= Xl−1. So by definition of local feature size,

lfs (Pl−1) ≤ |Pl−1 −Xl−1| ∨ |Pl−1 −X0| ,
≤ η

sin θ∗
Rl−1 ∨ (|Pl−1 − P0| + |P0 −X0|) ,

≤ η

sin θ∗
Rl−1 ∨

([

η +
2η

sin θ∗

]

Rl−1 +
η

sin θ∗
R0

)

,

≤ η

sin θ∗
Rl−1 ∨

(

η +
3η

sin θ∗

)

Rl−1,

≤
(

η +
3η

sin θ∗

)

Rl−1,

so it suffices to take

η +
3η

sin θ∗
≤ µ.

• If the third alternative holds, use this lemma inductively on q to find that lfs (q) ≤
µrq ≤ µR0

2 ≤ µ
Rl−1

2 . Then by the Lipschitz condition,

lfs (Pl−1) ≤ |Pl−1 − P0| + |P0 − q| + lfs (q) ,

≤
(

η +
2η

sin θ∗

)

Rl−1 + ηR0 +
µ

2
Rl−1,

≤
(

2η +
2η

sin θ∗
+
µ

2

)

Rl−1,

so it suffices to take

4η +
4η

sin θ∗
≤ µ.

5.4. Good Grading 65

Simple analysis shows that µ = 4η
(

1 + 1
sin θ∗

)

suffices to satisfy the boxed constraints.

The following lemma is then immediate.

Theorem 5.4.4 (Adaptive Good Grading). Suppose that the input to the Adaptive

Delaunay Refinement Algorithm conforms to Assumption 5.4.1. Let µ be the constant de-

pending on θ∗, κ̂ from Lemma 5.4.3. Then there is a positive constant C such that when the

algorithm, operating with a output angle parameter κ̂ ≤ arcsin 2−7/6, commits or attempts

to commit the point p then if q is any previously committed point then

• If p is the midpoint of a segment encroached by q, which is a midpoint on an adjoining

input segment then

lfs (p) ≤ (1 +
µ

2 sin θ
2

) |p− q| ≤ (1 +
µ

2 sin θ∗

2

) |p− q| ,

where θ is the angle subtended by the two segments.

• If p is a midpoint, and either q did not encroach the parent segment of p or is not a

midpoint on an adjoining input segment, then

lfs (p) ≤ µ |p− q| .

• If p is the circumcenter of a triangle of circumradius r, then

lfs (p) ≤ Cr.

Moreover, C = 1 + 2 sin κ̂(1 + µ) suffices.

Proof. We determine sufficient conditions on the constant C. Again, for convenience, we

say that a point q “provokes” a point p, if q is committed before p, and p is the midpoint

of a segment, s, which is encroached by q.

• Suppose p is the midpoint of subsegment which is encroached by q which is a midpoint

on a nondisjoint input feature. Let θ be the angle between the two input segments.

Let rq be the radius associated with q. By Lemma 3.3.6, |p− q| ≥ 2rq sin θ
2 . By

Lemma 5.4.3, lfs (q) ≤ µrq. Then using the Lipschitz condition,

lfs (p) ≤ |p− q| + lfs (q) ≤ |p− q| + µrq ≤
(

1 +
µ

2 sin θ
2

)

|p− q| ,

as desired.

• Suppose p is the midpoint of a subsegment. Suppose the subsegment is encroached

by q which is not such a midpoint. Then q must be on a disjoint input feature and so

lfs (p) ≤ |p− q| ≤ µ |p− q| .

66 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

If q does not encroach the subsegment, then |p− q| is at least the radius of the

subsegment. r. By Lemma 5.4.3, lfs (p) ≤ µr ≤ µ |p− q| .
• If p is a circumcenter of a skinny triangle of circumradius r, then let a, b be the vertices

of the shortest edge, and θ the angle opposite this edge. By assumption θ < κ̂. Note

that by the sine rule, |a− b| = 2r sin θ < 2r sin κ̂. If a, b are both input points, then

they are disjoint and by definition lfs (p) ≤ r, so it suffices to take 1 ≤ C. Otherwise

let b be the most recently committed of the two points. We consider the possible

identities of b, a:

– Suppose b is a midpoint of a subsegment. If a is a midpoint on a nondisjoint

input segment, with the two segments subtending angle θ, by definition of the

(Quality′) operation, we know θ ≥ π/3, thus 2 sin θ
2 ≥ 1. Using the lemma

inductively, since a witnesses b, it must be the case that lfs (b) ≤ (1 + µ) |a− b| .
– If a was not such a midpoint or did not provoke b, then lfs (b) ≤ µ |a− b| .
– If b was a circumcenter, then since it was committed after a, its associated

circumradius bounds |a− b| from below, so lfs (b) ≤ C |a− b| .
Then using the Lipschitz condition,

lfs (p) ≤ r + lfs (b) ≤ r + max {1 + µ,C} |a− b| ≤ (1 + 2 sin κ̂max {1 + µ,C}) r.

And it suffices to ensure that

1 + 2 sin κ̂max {1 + µ,C} ≤ C.

In all it suffices to take C = max
{

1
1−2 sin κ̂ , 1 + 2 sin κ̂(1 + µ)

}

. Because µ ≥ 4η
sin θ∗ ≥

4
√

2
sin θ∗ (1−2 sin κ̂) , we will have C = 1 + 2 sin κ̂(1 + µ).

Note that for κ̂ ≤ arcsin 2−7/6, simple calculation shows that η < 14, and we may bound

µ:

µ ≤ 4η

(

1 +
1

sin θ∗

)

≤ 56

(

1 +
1

sin θ∗

)

= O
(

1

sin θ∗

)

.

Thus the grading constants of Theorem 5.4.4 are finite for a given input for any acceptable

κ̂. This is in marked contrast to the constants normally found in grading guarantees,

which are unbounded as the output angle approaches a limit value. This also addresses

the discrepancy between the classical grading proofs, which predict that point density is

unbounded as κ̂ approaches arcsin 1
2
√

2
, and the experimental observation that Ruppert’s

algorithm generally converges for all κ less than π/6. The fact that η is finite for all κ̂ < π/6

is a promising sign that the output angle guarantee may be improved to match the empirical

evidence.

5.4. Good Grading 67

5.4.1 Asymptotic Grading Optimality

Lemma 5.4.3 tells us that when a segment s with radius r and midpoint p is split, then

lfs (p) ≤ µr = O
(

1

θ∗

)

r.

Can we do better? We argue that we cannot do better asymptotically, by presenting a

counterexample.

Given n large, let θ = π/n, and let the input consist of the following points: o, the origin,

vi = (cos iθ, sin iθ) , for i = 0, 1, . . . , n, and a point p =
(

1
2 + ε,−ε

)

. We let the segments

of the input be the segments (o, vi) for i = 0, 1, . . . , n. Such an input is demonstrated in

Figure 22(a) for n = 34.

��� ��� �

�	� � � ��
� � ��� �

PSfrag replacements
po

(a) The counterexample lower bound for n =
34.

��� �	� �

�	� � � ���� � ��� �

PSfrag replacements
po

(b) The point p causes splits on (o, v0).

��� 	! "

#�$ " " $&%(') *&+ "

PSfrag replacements
po

(c) The splits spread to (o, vn).

Figure 22: The asymptotic lower bound for µ is illustrated. In (a), the input is shown.
A small feature near (0.5, 0) causes a number of splits on the segment (o, v0), as shown in
(b). Because θ is small, the splits propagate around onto (o, vn), as shown in (c), where a
very small segment is seen to be encroached. The midpoint of this small segment has local
feature size on the order of 1

2 , but the radius of the small segment is on the order of θ.

Employing the (Conformality) rule, the input segment (o, v0) will be repeatedly

bisected into subsegments, adding midpoints of the form
(

0.5 + 2−k, 0
)

for k = 2, 3, 4, . . . ,m,

68 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

where m is the smallest number such that 2−m <
√

2ε. This is shown in Figure 22(b). By

making ε small, m can be made arbitrarily large.

A ghastly calculation reveals that a point
(

0.5 + 2−k, 0
)

will encroach on a segment with

endpoints 1
2 (cos θ, sin θ) and

(

1
2 + 21−k) (cos θ, sin θ) , if

cos θ > 1 − 1

2

(

2−k

1
2 + 2−k

)2

.

This is approximately equivalent to the condition θ ≤ 20.5−k. If this segment has length

21−k, its radius is 2−k. Thus a subsegment will be produced on (o, v1) of length Θ (θ).

The midpoints will percolate through the (o, vi), as the argument above can be used to

show that the midpoints on (o, vi−1) will encroach on subsegments on (o, vi). This creates

the situation shown in Figure 22(c). A segment of length approximately 2−k exists on

(o, vn), but the local feature size of the midpoint is around 1
2 . If the radius of this segment

is r, and m is its midpoint, then

lfs (m) = Ω

(

1

θ

)

r,

which establishes asymptotic optimality of µ.

Note, however, this is only a proof that the analysis was not too sloppy; the algorithm

may still be suboptimal. For example, a smarter algorithm might split the segment (o, v0)

not at the midpoint but a point closer to p. This could result in a single midpoint sufficing

to ensure no subsegment on (o, v0) is encroached. The split would be repeated on each

(o, vi), but no small subsegment would be created, as shown in Figure 23.

This example illustrates the importance of finding a better way to ensure conformality

of the input segments. To find such a technique it might be enlightening to study the open

problem of Conforming Delaunay Triangulations, though it is not clear how the current best

solution to the problem, found by Edelsbrunner and Tan, could be applied to the meshing

problem [20].

5.5 Output Quality

Before addressing optimality, we consider the output quality. Recall that the algorithm

may leave behind angles smaller than the parameter κ̂. We will show that small output

angles are not too much smaller than a nearby small input angle. The following simple

geometric claim gives the output quality guarantee; the idea is to use it with facts about

midpoints, the definition of (Quality′), and the Delaunay property to get the bound on

output angles.

5.5. Output Quality 69

����� � ����� 	
����

�� ��� �

PSfrag replacements
po

Figure 23: A smarter algorithm might handle the input of Figure 22 better. If the
algorithm split (o, v0) at a point closer to p, and these midpoints percolated to each input
segment, the algorithm could guarantee each segment was represented by subsegemnts which
were not encroached, and no subsegment was too much smaller than the local feature size
of its midpoint, independent of θ∗.

Lemma 5.5.1. Let x, s, q be three distinct noncollinear points. Let p be a point on the

open line segment from x to s. Suppose that |p− s| ≤ |x− p| ≤ |x− q| . Let θ = ∠pxq, and

φ = ∠psq. Then

φ ≥ arctan

(

sin θ

2 − cos θ

)

.

PSfrag replacements

x p

q

s
θ

φ

Figure 24: When |p− s| ≤ |x− p| ≤ |x− q| , then φ ≥ arctan
(

sin θ
2−cos θ

)

.

Proof. The hypothesis is illustrated in Figure 24. By the sine rule,

|x− s|
sin∠xqs

=
|x− q|
sinφ

,

so sinφ = |x−q| sin ∠xqs
|x−s| . Since |p− s| ≤ |x− p| ≤ |x− q| , then

sinφ ≥ sin∠xqs

2
.

Clearly ∠xqs+ θ+φ = π, since these are angles of a triangle. So sinxqs = sin(π− θ−φ) =

70 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

sin(θ + φ). Thus

sinφ ≥ sin(θ + φ)

2
=

sin θ cosφ+ cos θ sinφ

2
2 sinφ− cos θ sinφ ≥ sin θ cosφ

sinφ ≥ sin θ cosφ

2 − cos θ

If φ is obtuse, then the result holds, as the arctangent is restricted to (−π/2, π/2).

Otherwise φ is acute, so cosφ is nonnegative, giving tanφ ≥ sin θ
2−cos θ , which suffices.

The following claim is a simple consequence of Thales’ theorem.

Claim 5.5.2 (Edge-Apex Rule). Given a triangle ∆pqr in the Delaunay Triangulation of a

set of points, P, with L the line through p, q, then ∠prq ≥ ∠pr′q for every r′ ∈ P that is on

the same side of L as p, with equality only holding in the case of degeneracy.

We can now state the output guarantee.

Lemma 5.5.3. Suppose the Adaptive Delaunay Refinement Algorithm terminates for a

given input. Let ∆pqr be a triangle in the output triangulation. Then either

(a) The angle ∠prq > κ̂, or

(b) the points p and q are midpoints on adjoining input segments which meet at angle

θ < π/3 and

∠prq ≥ arctan

(

sin θ

2 − cos θ

)

.

Consequently no angle in the output mesh is smaller than min
{

κ̂, arctan
(

sin θ∗

2−cos θ∗

)}

.

Proof. Supposing that ∠prq ≤ κ̂, by the definition of the Adaptive Delaunay Refinement

Algorithm, it must be that p, q are midpoints on an adjoining input segment, meeting at

an angle, θ, less than π/3. Let x be the input point common to these segments. Without

loss of generality, assume that |x− p| ≤ |x− q| . The midpoint p is the endpoint of two

subsegments of this input segment; let the one farther from x be (p, s). By Claim 3.1.1,

|p− s| ≤ |p− x| . Then by Lemma 5.5.1, ∠psq ≥ arctan
(

sin θ
2−cos θ

)

. Letting L be the line

through p, q, consider the location of r:

• Suppose r is on the same side of L as x. By Claim 5.5.2, ∠prq ≥ ∠pxq = θ >

arctan
(

sin θ
2−cos θ

)

.

• If r is on the same side of L as s, by Claim 5.5.2, ∠prq ≥ ∠psq ≥ arctan
(

sin θ
2−cos θ

)

.

The following corollary gives an upper bound on output angles that depends on the

output angle parameter, κ̂, but not on the minimum output angle. Given κ̂ = arcsin 2−7/6 ≈
26.45◦, it guarantees no output angle is bigger than about π − 2 arcsin

√
3−1
2 ≈ 137.1◦.

5.5. Output Quality 71

Corollary 5.5.4. If ∆pqr is a triangle in the output triangulation produced by the Adaptive

Delaunay Refinement Algorithm, then

∠pqr ≤ max

{

π − 2κ̂, π − 2 arcsin

√
3 − 1

2

}

.

Proof. Without loss of generality, assume that ∠prq is the smallest angle of triangle ∆pqr.

We first prove that

∠pqr ≤ min
κ≤κ̂

[

(π − 2κ) ∨ 2

3
(π + arcsin 2 sinκ− κ)

]

.

Pick κ ≤ κ̂. Considering the two alternatives of Lemma 5.5.3: in the first case ∠prq ≥ κ̂ ≥ κ,

and thus, since it is the smallest angle of the triangle, then ∠pqr ≤ π − 2κ̂ ≤ π − 2κ; So

suppose the second case holds, i.e., that p, q are midpoints on adjoining input segments

which meet at angle θ < π/3, and ∠prq ≥ arctan
(

sin θ
2−cos θ

)

. By trigonometry, if θ ≥
arcsin 2 sinκ−κ, then arctan

(

sin θ
2−cos θ

)

≥ κ, in which case, again, ∠pqr ≤ π−2κ. So assume

otherwise. We will show that ∠pqr ≤ 2
3(π + θ).

Let p be on input segment S1, let q be on S2; let x be the input point shared by S1,S2.

Assume that r is not on the same side of the line segment (p, q) as x. In the case where r is

on the same side of the segment as x, an argument similar to that which follows can show

that ∠pqr ≤ 2
3(π − θ).

Because the output of the mesh respects the input segments, it must be the case that

∠pqr is smaller than the angle subtended by (p, q) and S2. That is, r is “between” S1 and

S2, as shown in Figure 25(a). This is an external angle of triangle ∆xpq at q, thus has

magnitude θ + ∠xpq. Then if ∠xpq ≤ π/2, we can bound

∠pqr ≤ θ + ∠xpq ≤ θ + π/2 =
2

3
θ +

1

3
θ + π/2 ≤ 2

3
θ +

π

9
+ π/2 =

2

3
θ +

11

18
π,

because θ < π/3, which suffices. So assume ∠xpq is obtuse.

Let s be the point on the line containing S1 such that ∠pqs = π/2; because we have

assumed ∠xpq is obtuse, there is such a point and it is on the same side of (p, q) as r. Let C1

be the circumcircle of p, q, s; it has center O on the line through S1. Because line segments

in the output are not encroached it must be the case that there is a vertex of the mesh on

the line segment (p, s), since ∠pqs = π/2. It could be the case that this point is s itself. By

Claim 5.5.2 it must be the case that r is inside or on C1, as otherwise, by Thales’ theorem,

∆pqr would not have the Delaunay property.

Since ∠prq is the smallest angle of the triangle, then (p, q) is the shortest edge of the

triangle. Then if C2 is the circle centered at q of radius |p− q|, it must be the case that

r is not inside C2. The point p is a point of intersection of C1, C2; let t be the other. See

Figure 25(b).

72 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

topleft

bottomright

PSfrag replacements

S1

S2

x
p

q

rs
t
O

C1

C2

(a) Input

bottomright

topleft

PSfrag replacements

S1

S2

x
p

q

r

s

t

O

C1

C2

(b) With Circles

Figure 25: The proof of Corollary 5.5.4 is shown, for the case where r is opposite (p, q)
from x. The point r must be between S1,S2, so ∠pqr is smaller than the angle subtended
by (p, q) and S2. The point r must be inside the circle C1, as otherwise some point on S1

subtends a larger angle to (p, q) than r does, violating the Delaunay property of the output.
By assumption, (p, q) is the shortest edge of the triangle ∆pqr so r is outside the circle C2

. Thus ∠pqr ≤ ∠pqt. These two bounds together give ∠pqr ≤ 2
3(π + θ).

Then ∠pqr ≤ ∠pqt. Looking at the two congruent isosceles triangles of Figure 25(b), it

is clear that ∠pqt is twice the external angle of ∆xpq at p, that is ∠pqt = 2(π−∠xpq). We

have already seen that ∠pqr ≤ θ + ∠xpq, thus

∠pqr ≤ min {2(π − ∠xpq), θ + ∠xpq} .

We have assumed that π/2 ≤ ∠xpq ≤ π−θ. Over this range the terms cross at ∠xpq = 2π−θ
3 ,

and thus ∠pqr ≤ 2
3(π + θ), as desired.

Now we note that π− 2κ is decreasing with increasing κ, while 2
3(π+ arcsin 2 sinκ− κ)

is increasing. A calculation shows that they cross when κ = arcsin
√

3−1
2 . Thus if κ̂ ≤

arcsin
√

3−1
2 ≈ 21.47◦, then ∠pqr is smaller than π− 2κ̂. If κ̂ ≥ arcsin

√
3−1
2 , then ∠pqr is no

larger than π − 2 arcsin
√

3−1
2 ≈ 137.1◦.

In Figure 26, the guaranteeable minimum output angle is plotted versus θ∗. The bound

achievable by Shewchuk’s Terminator algorithm, arcsin
[

sin
(

θ∗

2

)

/
√

2
]

, is also plotted [43].

As was noted in Chapter 1, the minimum angle bound for the Terminator is tight. Clearly

the Adaptive Delaunay Refinement Algorithm offers significant improvement in minimum

angle bounds over the Terminator.

5.6. Termination and Optimality 73

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

P
S
frag

rep
lacem

en
ts

arcsin 2−7/6 ∧ arctan
[

(sin θ∗)/(2 − cos θ∗)
]

arcsin
[

sin
(

θ∗

2

)

/
√

2
]

θ∗

α

Figure 26: The maximum minimum output angle guaranteeable by the Adaptive Delaunay
Refinement Algorithm, i.e., arcsin 2−7/6 ∧ arctan [(sin θ∗)/(2 − cos θ∗)] , is plotted versus
minimum input angle, θ∗. The previous best known bound, arcsin

[

sin
(

θ∗

2

)

/
√

2
]

, is also
shown.

5.6 Termination and Optimality

We could rely on the work of Corollary 2.5.7 to make our termination and optimality claims;

however, the form of Theorem 5.4.4 indicates that we can make a slightly improved optimal-

ity claim. The key idea is that segment midpoints may be near other segment midpoints

because of a small angle in the input, but they should be relatively farther away from

other segment midpoints on the same input segment. Thus we make our optimality claim

by packing disks about segment midpoints that are within input segments. To make this

claim, we refer to Chapter 7, where we alter Mitchell’s results to allow this one-dimensional

packing.

Corollary 5.6.1. Suppose an input, (P, S) , that conforms to Assumption 5.4.1 is fed to the

Adaptive Delaunay Refinement Algorithm, using output angle parameter, κ̂ ≤ arcsin 2−7/6.

Then the algorithm terminates, outputting the Delaunay Triangulation of the set of points

P′, and with no angle in the triangulation less than α = min
{

κ̂, arctan
(

sin θ∗

2−cos θ∗

)}

, and

with no angle larger than max
{

π − 2κ̂, π − 2 arcsin
√

3−1
2

}

.

74 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

Let Pm be the Steiner midpoints added by the algorithm, and let Pt be the Steiner cir-

cumcenters. Then we can make the following bounds:

|Pm| ≤ 1.02 (µ+ 1)

∫

S

1

lfs (x)
dx = O

(

1

θ∗

)∫

S

1

lfs (x)
dx, (7)

|Pt| ≤ 1

π
(2µ+ 3)2

∫

Ω

1

lfs2 (x)
dx = O

(

(

1

θ∗

)2
)

∫

Ω

1

lfs2 (x)
dx. (8)

Then, if there is any triangulation on a set of points P′′ that conforms to the original

input and has minimum angle α then

∣

∣P
′∣
∣ = O

(

α−3
) ∣

∣P
′′∣
∣ . (9)

Note that without making separate packing arguments, we could have only been able

to claim that |P′| = O
(

α−5
)

|P′′| , which represents a more serious asymptotic loss of opti-

mality.

Proof. By Theorem 5.4.4, termination follows as in Corollary 2.5.7. We now pack the points

separately:

1. Circumcenters: The argument here is nearly identical to that in Corollary 2.5.7.

First we recall that

η = 1 +

√
2

1 − 2 sin κ̂
≥ 1 +

√
2, and

µ = 4η

(

1 +
1

sin θ∗

)

≥ 4
(

1 +
√

2
)

(

1 +
2√
3

)

> 20.

But since κ̂ < arcsin 2−7/6, then C = 1+2 sin κ̂ (1 + µ) < 1.9+0.9µ < 2.0+0.9µ < µ.

Now, for each circumcenter, p, consider a ball of radius rp = lfs(p)
2(µ+1) about p. We

claim that the balls are disjoint, and no input point or segment midpoint is inside

any such ball. If p, p′ are two circumcenters, then using the Lipschitz condition and

Theorem 5.4.4, we have lfs (p) ≤ (C + 1) |p− p′| < (µ+ 1) |p− p′| , and thus rp <
|p−p′|

2 . Similarly for rp′ . If q is an input point, it is committed before p and so by

the theorem lfs (p) ≤ C |p− q| , which implies that rp is smaller than half |p− q|.
Now consider the case where q is a segment midpoint. If q was committed before

p, then the argument of above suffices. If q was committed after p, then we claim

that |p− q| is larger than rq, the radius associated with q, since otherwise p would

not have been committed but would have yielded to some segment midpoint. Thus

lfs (q) ≤ µ |p− q| , so lfs (p) ≤ (µ+ 1) |p− q| , which shows that rp is smaller than half

|p− q|.

5.7. Augmented Input 75

Now we can use the argument of Corollary 2.5.7, namely that rp < d1 (p) for each

circumcenter p. This implies that all of the ball about p is inside Ω, because p is not

on ∂Ω. Thus

∫

Ω

1

lfs2 (x)
dx ≥

∑

p∈Pt

∫

Bp

1

lfs2 (x)
dx ≥ π

(2(µ+ 1) + 1)2
|Pt| ,

follows as in Corollary 2.5.7, establishing equation 8.

2. Midpoints: Now we pack a one-dimensional disc about each segment midpoint. If

p is a segment midpoint, let rp = lfs(p)
2(µ+1) , and let Bp be the one-dimensional interval

about p of radius rp running along the input segment containing p. By Theorem 5.4.4

and the Lipschitz property, the Bp do not intersect one another. Thus we have

∫

S

1

lfs (z)
dz ≥

∑

p∈Pm

∫

Bp

1

lfs (z)
dz ≥ |Pm| 2 ln

∣

∣

∣

∣

rp + lfs (p)

lfs (p)

∣

∣

∣

∣

= |Pm| 2 ln

∣

∣

∣

∣

1 +
1

2(µ+ 1)

∣

∣

∣

∣

.

Then, using the fact that µ > 20, it can be shown that

|Pm| ≤
1

2 ln
∣

∣

∣1 + 1
2(µ+1)

∣

∣

∣

∫

S

1

lfs (z)
dz < 1.02(µ+ 1)

∫

S

1

lfs (z)
dz,

establishing equation 7.

By Theorem 11 of Mitchell [31],

∫

Ω

1

lfs2 (x)
dx ≤

(

21.5

α
+ 11.9

)

∣

∣P
′′∣
∣ = O

(

1

α

)

∣

∣P
′′∣
∣ .

Thus

|Pt| ≤
(2(µ+ 1) + 1)2

π

∫

Ω

1

lfs2 (x)
dx = O

(

µ2

α

)

∣

∣P
′′∣
∣ = O

(

1

θ∗2α

)

∣

∣P
′′∣
∣ = O

(

1

α3

)

∣

∣P
′′∣
∣ .

By Corollary 7.2.3 of Chapter 7,

∫

S

1

lfs (x)
dx = O

(

1

α
log

1

α

)

.

Thus

|Pm| = O
(

µ

α
log

1

α

)

∣

∣P
′′∣
∣ = O

(

1

α3

)

∣

∣P
′′∣
∣ .

5.7 Augmented Input

In this chapter we have been assuming that input conforms to Assumption 5.4.1. Algo-

rithm 2 and Algorithm 4 of Chapter 4 accept arbitrary input conforming to Assumption 2.2.1

and create augmented input which conform to Assumption 5.4.1. Moreover, Theorem 4.1.2

76 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

and Theorem 4.2.2 assert that the resultant decrease in local feature size is Ω (sin θ∗).

Paired with Corollary 5.6.1, this would appear to add a factor of O
(

1
sin2 θ∗

)

= O
(

1
α2

)

to

the optimality constant. We here argue that we can do better, i.e., that the increase in the

optimality constant is related to γ and not θ∗.

As in Chapter 4, we let lfs (z) be the local feature size with respect to the given input, and

lfs′ (z) be with respect to an input which has been augmented by a γ-Bounded Reduction

Augmenter or a γ-Feature Size Augmenter.

Now we reprove Lemma 5.4.3 with respect to lfs (·) for the case where the algorithm is

given the augmented input. The proof is only marginally trickier than before.

Lemma 5.7.1 (Augmented Midpoint Local Feature). Suppose an input is fed to a γ-

Bounded Reduction Augmenter, which produces an input that conforms to Assumption 5.4.1.

Suppose that the augmented input is given as input to the Adaptive Delaunay Refinement

Algorithm. Then there is a constant, µ, depending on θ∗ and κ̂ such that if p is the midpoint

of a segment, s, of radius r that is committed by the algorithm, then lfs (p) ≤ µr.

Moreover, µ = (2γ + 1)
(

η + 3η
sin θ∗

)

suffices, where, as above, η = 1 +
√

2
1−2 sin κ̂ .

Proof. As in the proof of Lemma 5.4.3, we construct a hybrid sequence. The sequence is

constructed exactly as in that previous proof, substituting the words “augmented input”

for “input,” and referring to lfs′ (·) instead of lfs (·). We recall that by Theorem 4.1.2, that

lfs′ (x) ≥ sin θ∗

2γ−1 lfs (x) for all x.

We skip then to the following facts about the hybrid sequence, which follow as in the

proof of Lemma 5.4.3:

(a) R0 ≤ R1 ≤ . . . Rl−1;

(b) |Pi − Pi−1| ≤ ηRi;

(c) |Xi − Pi| ≤ η
sin θ∗Ri;

(d) Xi = Xl−1 for i = 1, 2, . . . , l − 2.

(e) Either

(i) lfs′ (P0) ≤ max
{

1,
√

2 + η
}

R0 = (
√

2 + η)R0, so lfs (P0) ≤ (2γ−1)(
√

2+η)
sin θ∗ R0, or

(ii) there is some point of the augmented input X0 6= Xl−1 such that |P0 −X0| ≤
η

sin θ∗R0; moreover, (X0,Xl−1) is a segment of the augmented input; or

(iii) there is some midpoint q of radius rq such that R0 ≥ 2rq, and |P0 − q| ≤ ηR0.

These facts will be enough to establish the lemma. First note that if l = 1, it must be

that s was encroached by a point on a nondisjoint feature of the augmented input, so then

lfs′ (p) ≤ r, so lfs (p) ≤ 2γ−1
sin θ∗ r, so it suffices to take

2γ − 1

sin θ∗
≤ µ.

5.7. Augmented Input 77

So assume l 6= 1.

We bound |Pl−1 − P0| ; our analysis will be quite an overestimate for the case where

l = 2, but will suffice. By the triangle inequality, and item (c), item (a), item (d), and

item (b) of above,

|Pl−1 − P0| ≤ |Pl−1 −Xl−1| + |P1 −X1| + |P1 − P0| ,
≤ η

sin θ∗
Rl−1 +

η

sin θ∗
R1 + ηR1,

≤
(

η +
2η

sin θ∗

)

Rl−1.

We consider the sequence head, i.e., item (e).

• If the first alternative holds, then by the Lipschitz condition,

lfs (Pl−1) ≤ |Pl−1 − P0| + lfs (P0) ,

≤
(

η +
2η

sin θ∗

)

Rl−1 +
(2γ − 1)(

√
2 + η)

sin θ∗
R0,

≤
(

η +
2η + (2γ − 1)(

√
2 + η)

sin θ∗

)

Rl−1,

so it suffices to take

η +
2η + (2γ − 1)(

√
2 + η)

sin θ∗
≤ µ.

• If the second alternative holds, then X0 6= Xl−1, and (X0,Xl−1) is a segment of

the augmented input. Since a γ-Bounded Reduction Augmenter is a γ-Feature Size

Augmenter, then the local feature size of points on this segment are bounded by the

segment length, i.e., lfs (X0) ≤ γ |X0 −Xl−1| .
Let R∗ = (|Pl−1 −Xl−1| ∨ |Pl−1 −X0|) . In the proof of Lemma 5.4.3, it was shown

that R∗ ≤
(

η + 3η
sin θ∗

)

Rl−1. Since the circle centered at Pl−1 of radius R∗ contains

both X0 and Xl−1, then |X0 −Xl−1| ≤ 2R∗. By the Lipschitz condition,

lfs (Pl−1) ≤ |Pl−1 −X0| + lfs (X0) ,

≤ R∗ + γ |X0 −Xl−1| ,

≤ R∗ + 2γR∗,

≤ (2γ + 1)

(

η +
3η

sin θ∗

)

Rl−1.

So it suffices to take

(2γ + 1)

(

η +
3η

sin θ∗

)

≤ µ.

78 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

• If the third alternative holds, then as in the proof of Lemma 5.4.3, use this lemma

inductively on q to find that lfs (q) ≤ µrq ≤ µR0
2 ≤ µ

Rl−1

2 . Then by the Lipschitz

condition,

lfs (Pl−1) ≤ |Pl−1 − P0| + |P0 − q| + lfs (q) ,

≤
(

η +
2η

sin θ∗

)

Rl−1 + ηR0 +
µ

2
Rl−1,

≤
(

2η +
2η

sin θ∗
+
µ

2

)

Rl−1,

so it suffices to take

4η +
4η

sin θ∗
≤ µ.

Simple analysis, and using γ ≥ 2 shows that µ = (2γ + 1)
(

η + 3η
sin θ∗

)

suffices to satisfy

the boxed constraints.

We actually get the same bounds when using a γ-Feature Size Augmenter, assuming

γ ≥ 3. Given the space, we state the lemma:

Lemma 5.7.2 (Augmented Midpoint Local Feature). Suppose an input is fed to

a γ-Feature Size Augmenter, with γ ≥ 3, and which produces an input that conforms to

Assumption 5.4.1. Suppose that the augmented input is given as input to the Adaptive

Delaunay Refinement Algorithm. Then there is a constant, µ, depending on θ∗ and κ̂ such

that if p is the midpoint of a segment, s, of radius r that is committed by the algorithm,

then lfs (p) ≤ µr.

Moreover, µ = (2γ + 1)
(

η + 3η
sin θ∗

)

suffices, where, as above, η = 1 +
√

2
1−2 sin κ̂ .

Proof (Sketch). The proof is exactly as that of Lemma 5.7.1. We note that at one point

in that proof we use the fact that a γ-Bounded Reduction Augmenter is a γ-Feature Size

Augmenter. The constraints which µ must satisfy are given as

2γ + 3

sin θ∗
≤ µ,

η +
2η + (2γ + 3)(

√
2 + η)

sin θ∗
≤ µ,

(2γ + 1)

(

η +
3η

sin θ∗

)

≤ µ,

4η +
4η

sin θ∗
≤ µ.

Only the first two differ from the proof of Lemma 5.7.1, and these reflect the slight loss

of bound on lfs′ (·) when comparing a Bounded Reduction Augmenter to a Feature Size

Augmenter. (cf. Theorem 4.1.2 and Theorem 4.2.2.)

5.8. How Good is “Optimal?” 79

Simple analysis using γ ≥ 3 shows that µ = (2γ+1)
(

η + 3η
sin θ∗

)

suffices to satisfy these

constraints.

We can reprove Theorem 5.4.4 using the new µ, and get the following termination and

optimality result, which follows as Corollary 5.6.1.

Corollary 5.7.3. Suppose an input, (P, S) , that conforms to Assumption 2.2.1 is fed to

a γ-Bounded Reduction Augmenter or a γ-Feature Size Augmenter (with γ ≥ 3), whose

output is fed as input to the Adaptive Delaunay Refinement Algorithm, using an output

angle parameter κ̂ ≤ arcsin 2−7/6.

Then the algorithm terminates, outputting the Delaunay Triangulation of the set of

points P′, and with no angle in the triangulation less than α = min
{

κ̂, arctan
(

sin θ∗

2−cos θ∗

)}

,

and no angle is larger than max
{

π − 2κ̂, π − 2 arcsin
√

3−1
2

}

. Moreover, if there is any

triangulation on a set of points P′′ that conforms to the original input and has minimum

angle α then
∣

∣P
′∣
∣ = O

(

α−3
) ∣

∣P
′′∣
∣ .

5.8 How Good is “Optimal?”

We here consider the size of the optimality constant of Corollary 5.7.3. Suppose we have

an input with a given lower bound on minimum input angle, θ∗. Suppose this input is fed

to the γ-Feature Size Augmenter given as Algorithm 4, with γ = 3+
√

13
2 . Finally suppose

the output of the augmenter is fed to the Adaptive Delaunay Refinement Algorithm, with

κ̂ = arcsin 2−7/6. Let α = min
{

arcsin 2−7/6, arctan
(

sin θ∗

2−cos θ∗

)}

. Let P′ be the set of output

points; let P′′ be the set of points of a triangulation which conforms to the given input

and has no output angle smaller than α. We let ζ (θ∗) be the bound on |P′|
|P′′| guaranteed by

Corollary 5.7.3.

Then we have the unwieldy expression:

ζ (θ∗) = 1 + 1.02 (µ+ 1) 6

(

ln
3

2
+ hαπ +

√

h2
α + 1

[

ln(hα + 1/hα) − ln(2 sin
ln 3

8
)

])

+
1

π
(2µ+ 3)2

(

21.5

α
+ 11.9

)

,

where hα = 1
α ln 2 cosα, and µ = (2γ + 1)

(

η + 3η
sin θ∗

)

, and η = 1 +
√

2
1−2 sin κ̂ . This is only a

collection of all the terms relevant to Corollary 5.7.3 (see Chapter 7). The graph of ζ versus

θ∗ is of some interest; it is shown in Figure 27.

To show the improvements made by use of linear packings, and to justify Chapter 7, we

also plot the näıve optimality constant which would be had from packing all Steiner points

80 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

1e+13

1e+14

1e+15

1e+16

1e+17

0 0.2 0.4 0.6 0.8 1

P
S
frag

rep
lacem

en
ts

ζ (θ∗)
ζ ′ (θ∗)

θ∗

ζ
(θ

∗)

Figure 27: The optimality constant ζ (θ∗) is plotted versus θ∗. The cardinal-
ity of a mesh constructed by the Adaptive Delaunay Refinement Algorithm is com-
pared against any mesh conforming to the input which has minimum angle α =

min
{

arcsin 2−7/6, arctan
(

sin θ∗

2−cos θ∗

)}

. The näıve optimality constant ζ ′ (θ∗) is also plotted.

together and using Mitchell’s work. We claim this constant is given by

ζ ′ (θ∗) = 1 +
2

π

(

µ

sin θ∗

2

+ 5

)2(
21.5

α
+ 11.9

)

.

The improvements made by using the anisotropic packings is about one order of magnitude

for modest θ∗, but can be several orders of magnitude for smaller θ∗. However, ζ (θ∗) is still

too large to be of any practical use, taking on values larger than 1 × 107.

In Figure 28 the two factors which comprise ζ (θ∗) are plotted, i.e.,

ζm (θ∗) = 1.02 (µ+ 1) 6

(

ln
3

2
+ hαπ +

√

h2
α + 1

[

ln(hα + 1/hα) − ln(2 sin
ln 3

8
)

])

,

ζt (θ
∗) =

1

π
(2µ+ 3)2

(

21.5

α
+ 11.9

)

.

The factor ζt (θ
∗) , which is the optimality of the set of Steiner circumcenters, is clearly

the dominating factor. Thus any attempt at improving the optimality guarantee needs

to focus on this factor. This could be achieved by proving a better grading constant for

5.8. How Good is “Optimal?” 81

circumcenters, improving Mitchell’s work, or employing a smarter packing argument. Note,

however, that ζm, the optimality of the set of Steiner midpoints, is also fairly large, taking

on values at least 1 × 104; improvements of this bound are also welcome.

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

1e+11

1e+12

1e+13

0 0.2 0.4 0.6 0.8 1

P
S
frag

rep
lacem

en
ts

ζm (θ∗)
ζt (θ∗)

θ∗

ζ
(θ

∗)

Figure 28: The two optimality constants which comprise ζ (θ∗) are shown. The factor
ζm (θ∗) is the optimality associated with the Steiner midpoints, while ζt (θ

∗) is that associ-
ated with the Steiner circumcenters. The latter factor is clearly dominating.

Before attempting to improve the analysis of the algorithm one should consider how

poorly the algorithm may perform. Gary Miller (personal communication) provided the

following example which demonstrates that the optimality constant is Ω
(

1
θ∗

)

. The input

consists of the two segments (x, y) , (x, z) , with θ∗ = ∠yxz small, as shown in Figure 29(a).

If the two segments do not conform to Assumption 5.4.1, some augmenting procedure will be

used to put them into the requisite form. If one of the algorithms of Chapter 4 or splitting on

concentric circular shells is used as the augmenter, the result will be at least one augmenting

point on each of the input segments, and some augmented input segments which are “far”

from x, and with small values of lfs′ (·). The result, as shown in Figure 29(b), is two segments

of length on the order of 1
2 , with a distance of approximately sin(θ∗) between them. The

algorithm will fill this region with triangles having no angle smaller than κ̂. There can be

Ω
(

1
θ∗

)

of these triangles, as shown in Figure 29(c). An adversary’s mesher, however, might

82 CHAPTER 5. The Adaptive Delaunay Refinement Algorithm

����� � ����� 	
����

� ���� ��� �

PSfrag replacements

x
y

z
y′

z′

(a) Input

����� � ����� � �����

� ����� ��� �

PSfrag replacements

x
y

z

y′

z′

(b) Augmented

���� ��!#" $ %�&'

 ��(*) +�,

PSfrag replacements

x
y

z

y′

z′

(c) Final

Figure 29: An input showing the limitations of the algorithm is shown in (a). Because
the segments do not conform to Assumption 5.4.1, they will be split by an augmenting
procedure, as in (b). In the augmented input the segments (y, y′) , (z, z′) are disjoint, and
the algorithm will fill in the area between them with Ω

(

1
θ∗

)

triangles, as shown in (c). An
adversary’s algorithm might merely return the single triangle ∆yxz.

just return the mesh of the single triangle ∆yxz, which ultimately has the same (or better!)

minimum angle as the mesh returned by the Adaptive Delaunay Refinement Algorithm.

As was the case for the example of Subsection 5.4.1, the problem is how the algorithm

deals with conformality. There is no obvious fix.

83

CHAPTER VI

VARIATIONS

“How absolute the knave is! We must speak by the card, or equivocation will undo us.”

–Hamlet

In this chapter, two variations of the main exposition are considered, namely incorpo-

rating an augmenter with the algorithm, and Miller’s variant, which comes with a timing

analysis [28]. We prove only good grading for each of these, as the angle bounds and opti-

mality guarantees follow exactly as in Chapter 5. Either or both of these variants could have

been incorporated into the description of the Adaptive Delaunay Refinement Algorithm to

form a more general algorithm for analysis, making this chapter unnecessary. Unfortunately,

such an exposition could be painfully complicated, as this chapter illustrates. It is likely

that, having understood the analysis up to this point, even the most fervid reader would

be satisfied to merely skim this chapter.

6.1 Delaunay Refinement with an Augmenter

The analysis of Section 5.7 applies to input which has been augmented by a Bounded

Reduction Augmenter or Feature Size Augmenter, then given to the Adaptive Delaunay

Refinement Algorithm. In practice, however, using an augmenter as a preprocessor can

result in a fairly large number of Steiner Points. Ruppert’s idea of splitting on concentric

circular shells shows that the augmenting procedure can be performed on an as-needed

basis. In Figure 30, two meshes of Lake Superior are shown. In Figure 30(a), Algorithm 2

has been used as a preprocessor to make the input conform to Assumption 5.4.1. Ruppert’s

strategy was incorporated into the Adaptive Delaunay Refinement Algorithm to produce

the mesh of Figure 30(b), which has far fewer Steiner Points.

In this section we show that an augmenter can be incorporated into the Adaptive De-

launay Refinement Algorithm without sacrificing good grading. Although the grading and

optimality guarantees will be no better than those of Chapter 4 for the preprocessing aug-

menter, the observed practical performance is superior, pardon the pun, as illustrated in

Figure 30.

We consider a variation of the Adaptive Delaunay Refinement Algorithm which accepts

arbitrary input, and adaptively performs “off-center” splits as needed. This strategy avoids

the possibility of adding unnecessary augmenting points during the preprocessing step. This

84 CHAPTER 6. Variations

(a) Preprocessed by Algorithm 2

(b) Using Splitting on Concentric Circular Shells

Figure 30: In (a) a mesh of Lake Superior is shown. The mesh was generated by feeding
the input to Algorithm 2 to make it conform to Assumption 5.4.1, then to the Adaptive
Delaunay Refinement Algorithm. The mesh has 6007 vertices. The mesh in (b) is gener-
ated by the Adaptive Delaunay Refinement Algorithm using splitting on concentric circular
shells. The mesh has only 1750 vertices. The input consists of 522 vertices and 522 seg-
ments, and has minimum angle θ∗ ≈ 15.02◦. Both meshes have minimum output angle
of 14.07◦ ≈ arctan [(sin θ∗)/(2 − cos θ∗)] , though all but three triangles in each mesh have
minimum angle at least arcsin 2−7/6. Edges of the input are shown in bold.

6.1. Delaunay Refinement with an Augmenter 85

analysis will apply, for example, to Ruppert’s strategy of splitting on concentric circular

shells [39].

Again we will assume that the algorithm maintains a set of points and a set of segments,

initialized as the input. For the adaptive quality test, we assume the algorithm maintains,

for every midpoint, a pointer to the two input points which are endpoints of the input

segment containing the midpoint.

For the sake of the analysis only we imagine a PSLG being maintained during the

lifetime of the algorithm. This PSLG is initialized as the input, and is occasionally modified

by an augmenting procedure during the course of the algorithm. We call this PSLG the

“imaginary input.” We let lfs′ (x) be the local feature size with respect to the imaginary

input, but take caution that this is time dependant.

We generalize the idea of splitting a segment, where, as usual, we reserve the word

“segment” to mean a segment in the set maintained by the algorithm. We redefine what

we mean by splitting a segment. When we say the algorithm “splits” a segment s we

mean the following: If s happens to be in the imaginary input, the algorithm can decide to

break s in two subsegments not necessarily at the midpoint, but at an “off-center point.”

Alternatively, the segment s could be split regularly, at its midpoint. If s is not in the

imaginary input, it must be split at its midpoint.

Note that we allow an off-center point to actually be the midpoint of a segment. This

allows augmenters like splitting on concentric circular shells, which first splits an input

segment at its midpoint. The algorithm has to somehow know the difference between

midpoints and off-center points.

To achieve offcenter splits, the algorithm must also somehow know that a segment is

still in the imaginary input, because the imaginary input need not actually be maintained

by the algorithm. In the case of concentric shell splitting, for example, the use of a few

flags on segments suffices to achieve this. The algorithm must also know that an off-center

point is special, i.e., that it is not to be treated as a midpoint, even if it happens to be the

midpoint of a segment, with regard to the adaptive quality test.

When a current segment is split by an off-center point it is also split, in our minds, in

the imaginary input, and the off-center point is added to the imaginary input. When an

imaginary input segment is split by a midpoint, it should not be so split in the imaginary

input, rather it becomes a “finished,” a term we define shortly.

We define the radius of a segment split by an off-center point as the length of the shorter

subsegment.

We assume that there is some γ such that at any time during the course of the algorithm,

the imaginary input could be the output of a γ-Feature Size Augmenter which was fed the

86 CHAPTER 6. Variations

original input. This means that, by Theorem 4.2.2, lfs (x) ≤ 2γ+3
sin θ∗ lfs′ (x) for all x.

We also assume that the augmenter is somehow working towards putting the imaginary

input into the form of Assumption 5.4.1. To define this precisely, we say that a segment of

the imaginary input is “finished” if either it is not present in the set of segments maintained

by the algorithm, or it cannot be broken by an off-center point without violating the γ-

augmenting condition. Then Assumption 5.4.1 is adapted as the following assumption.

Assumption 6.1.1. We make the following assumption on the algorithm:

(a) If S1, S2 are two adjoining imaginary input segments which are both finished, and

which meet at angle other than π, then they have the same length modulo a power of

two, that is |S1|
|S2| = 2k for some integer k.

The algorithm then has two major operations, which are nearly the same as the Adaptive

Delaunay Refinement Algorithm, with some variation to reflect that off-center points need

to be viewed as input.

(Conformality) If s is a current segment, and there is a committed point that

encroaches s, then split s.

(Quality) If a, b, c are committed points, the circumcircle of the triangle ∆abc con-

tains no committed point, ∠acb < κ̂, the circumcenter, p, of the triangle is inside Ω

and either (i) both a, b are midpoints (not off-center points) on distinct nondisjoint

imaginary input segments, sharing input endpoint x, and ∠axb > π/3, or (ii) a, b are

not midpoints on adjoining imaginary input segments, then attempt to commit p. If,

however, the point p encroaches any current segment, then do not commit to point p,

rather in this case split one, some, or all of the current segments which are encroached

by p.

6.1.1 Good Grading

It should be clear why this variant should work: off-center splits can be blamed on the

augmenting process (with factor γ), while in the “endgame,” the algorithm should act

exactly like the Adaptive Delaunay Refinement Algorithm, so the analysis of Chapter 5

suffices. This is exactly how good grading is proven.

We start with a basic fact of the algorithm:

Claim 6.1.2. If p is an off-center point that is committed, and r is the “radius” associated

with p, i.e., the length of the shorter of two subsegments created by p, then lfs (p) ≤ γr.

If p is the first midpoint added to an imaginary input segment, thereby “finishing” the

segment, and r is the associated radius, then lfs (p) ≤ 2γr.

6.1. Delaunay Refinement with an Augmenter 87

Proof. The first follows since the off-center points are added as part of a γ-Feature Size

Augmenter, and p is a member of both of its subsegments.

The second follows since p must be the center of a segment which has the property that

the local feature size at every point on it is no greater than γ times the length of the whole

segment, which is 2r.

The difficulty with proving good grading is that the proofs of Section 5.4 rely heavily

on Assumption 5.4.1, so separate arguments are required when the algorithm splits a sub-

segment on an imaginary input segment that is not finished. These will use the assumption

that off-center splits can be seen as part of a γ-Feature Size Augmenter augmenter. Unlike

in Section 5.7, we cannot use Lemma 5.4.2 with lfs′ (·) replacing lfs (·), since there is a

problem with timestamp. So we reprove the lemma:

Lemma 6.1.3. Suppose that a circumcenter bl−1 was proposed to be committed, but rejected

in favor of splitting a subsegment sp. Suppose sp is split by midpoint or off-center point p,

and that the smaller of the two subsegments has length rp. Let η = 1 +
√

2
1−2 sin κ̂ . Then either

1. lfs (p) ≤ 2γ+3
sin θ∗ ηrp, or

2. there is a segment sq with committed midpoint q, and radius rq such that

(a) the imaginary input segments containing sp, sq are nondisjoint,

(b) rq ≤ rp,

(c) |p− q| ≤ ηrp, and

(d) if sp, sq are on the same imaginary input segment then 2rq ≤ rp; if they are on

distinct imaginary input segments sharing imaginary input point x, then |x− p| <
η

sin θ∗ rp.

Proof. We can immediately assume that p is a midpoint, as otherwise, by Claim 6.1.2,

lfs (p) ≤ γrp, which suffices.

For convenience, we say that a point q “provokes” a point p, if q is committed before p,

and p is the midpoint of a segment, s, which is encroached by q.

Let {bi}l−1
i=0 be a maximal cirumcenter sequence ending with the circumcenter bl−1 which

caused p to be committed. Recalling facts about circumcenter sequences,
√

2rp ≥ r̃l−1 > r̃0.

Now consider the identity of b0:

• If b0 is an input point, then by definition so is a0, and so lfs (p) ≤ |p− b0|∨|p− a0| . By

Corollary 5.3.4, these are both bounded above by ηrp, so lfs (p) < ηrp, which suffices.

• If b0 is a midpoint or off-center point on a real input segment disjoint from the one

containing p, then by definition of local feature size and using Corollary 5.3.4, lfs (p) ≤
|p− b0| ≤ ηrp, which suffices.

88 CHAPTER 6. Variations

• If b0 is a midpoint or off-center point on an imaginary input segment disjoint from the

one containing p at the time p is considered for commission, then lfs′ (p) ≤ |p− b0| ≤
ηrp. Using Theorem 4.2.2, then lfs (p) ≤ 2γ+3

sin θ∗ ηrp.

• Suppose that b0 is a midpoint or off-center point on an imaginary input segment

nondisjoint to the one containing p, at the time p is considered for commission. Fur-

thermore suppose that a0 did not provoke b0. Let q = b0, let rq be the radius associated

with b0. By the assumption that a0 did not provoke b0, we have r̃0 = |a0 − b0| ≥ rq.

If b0 is an off-center point, then by Claim 6.1.2, lfs (b0) ≤ γrq. In this case we bound:

lfs (p) ≤ |p− b0| + lfs (b0) ≤ ηrp + γrq ≤ ηrp + γr̃l−1 ≤
(

η +
√

2γ
)

rp,

which suffices.

So we assume b0 is a midpoint. In this case the imaginary input segments containing

p, b0 are both finished. Careful inspection of the case where a0 does not provoke b0

in Lemma 5.4.2 show that the analysis of that proof apply here. This is because

adjoining finished segments satisfy Assumption 5.4.1 locally.

• Suppose that b0 is a midpoint or off-center point on an input segment nondisjoint to

the one containing p, and a0 did provoke b0. We first consider the identity of a0 :

– If a0 is (on) a real input feature disjoint from the one containing b0, then by

definition lfs (p) ≤ |p− b0|∨ |p− a0| . By Corollary 5.3.4, these are both bounded

above by ηrp, so lfs (p) < ηrp, which suffices.

– If a0 is (on) an imaginary input feature disjoint from the one containing b0, where

we are considering the imaginary input at the time that p is committed. As above

lfs′ (p) < ηrp, so lfs (p) < 2γ+3
sin θ∗ ηrp, by Theorem 4.2.2.

– It cannot be the case that a0 is a circumcenter, as it would not have been com-

mitted before b0 if it provoked b0.

– Suppose a0 is a midpoint or off-center point which is on an imaginary input

feature nondisjoint from the one containing b0, where we are again considering

the imaginary input at the time p is committed.

Let q = a0, let rq be the radius associated with a0. By definition of circumcenter

sequences, the input segments opposite a0, b0 subtends angle φ at least π/3. Then

by Lemma 3.3.6, r̃0 = |a0 − b0| ≥ 2rq sin φ
2 ≥ rq.

If a0 is an off-center point, then by definition of our algorithm lfs (a0) ≤ γrq. We

bound

lfs (p) ≤ |p− a0| + lfs (a0) ≤ ηrp + γrq ≤ ηrp + γr̃l−1 ≤
(

η +
√

2γ
)

rp,

which suffices.

6.1. Delaunay Refinement with an Augmenter 89

So we assume a0 is a midpoint, thus the imaginary input segment containing it

is finished. What can we say about b0? If b0 is an off-center point, then it is an

imaginary input feature disjoint from the imaginary input segment containing a0.

Then by definition lfs′ (a0) ≤ |a0 − b0| = r̃0 ≤ r̃l−1 ≤
√

2rp. Using Theorem 4.2.2

and the Lipschitz condition we bound

lfs (p) ≤ |p− a0| +
2γ + 3

sin θ∗
lfs′ (a0) ≤

(

η +
2γ + 3

sin θ∗
√

2

)

rp.

Some extra work is required to show that this suffices to bound lfs (p) as desired;

this relies on γ ≥ 3.

Then we can assume that b0 is also a midpoint, as is a0, and p. Careful inspection

of the proof of Lemma 5.4.2 shows that the analysis there suffices in this case,

again using the fact that because the imaginary input segments in question are

finished, they conform to Assumption 5.4.1 locally.

We now can return to hybrid sequences to bound the local feature size on a midpoint

or off-center splits.

Lemma 6.1.4 (Adaptively Augmented Midpoint Local Feature). There is a con-

stant, µ, depending on γ, θ∗ and κ̂ such that if p is the midpoint or off-center point of a

segment, s, of radius r that is committed by the algorithm, then lfs (p) ≤ µr.

Moreover, µ = (2γ + 1)
(

η + 3η
sin θ∗

)

suffices, where, as above, η = 1 +
√

2
1−2 sin κ̂ .

Proof. First, if p is an off-center point, then Claim 6.1.2 shows that lfs (p) ≤ γr, which

suffices. So assume p is a midpoint.

As in the proof of Lemma 5.4.3, we construct a hybrid sequence. Because of the compli-

cations involved with off-center splits and imaginary input, we define the hybrid sequence

explicitly.

Recall we construct two sequences, {(Pi, Ri)}1−l
i=0 , {Xi}l−1

i=1, where each Pi will be a mid-

point of a segment of radius Ri, and Pi and Pi−1 will be on input features sharing input

point Xi. We may optionally define an X0. The point P0 may be an off-center point, but

the remaining Pi will be midpoints.

We will use Lemma 3.3.6 and Lemma 6.1.3 to establish the sequence. The sequence is

constructed backwards, so for convenience we pretend that we know how long it will be,

i.e., we know l, so that we can set Pl−1 = p,Rl−1 = r. For convenience, let Sl−1 = s.

The sequence is constructed backwards to make it analogous with encroachment sequences.

Thus we will claim that when Pi is committed, Pi−1 has already been committed, and is

somehow “responsible” for Pi being committed.

90 CHAPTER 6. Variations

Construct the sequence as follows: given segment Si with committed midpoint Pi, and

radius Ri, consider why Pi was committed:

• Suppose that Pi is an off-center point. Then we have chosen l magically so that i = 0.

In this case by Claim 6.1.2, lfs (P0) ≤ γR0.

• Suppose that Pi was a midpoint committed because an input point or a point on

a disjoint feature of the real input encroached Si. Then we let i = 0 again and

lfs (P0) ≤ R0, by definition.

• Suppose that Pi was a midpoint committed because an off-center point or a point on

a disjoint feature of the imaginary input encroached Si. Then we let i = 0 again and

lfs′ (P0) ≤ R0, so by Theorem 4.2.2, we have lfs (P0) ≤ 2γ+3
sin θ∗R0.

• Suppose that Pi was a midpoint committed because a midpoint, q, on a nondisjoint

feature of the imaginary input encroached Si. Let the input segments in question share

input point x. Because both Pi and q are midpoints, the imaginary input segments

are finished and conform to Assumption 5.4.1 locally, so we may apply Lemma 3.3.6,

which asserts that Ri ≥ rq, the radius associated with q. Since q encroaches Si we

have |Pi − q| ≤ Ri ≤ ηRi. Moreover by Claim 3.1.2, |x− Pi| < 1
sin θ∗Ri <

η
sin θ∗Ri.

If i 6= l − 1 and x 6= Xl−1 then let P0 = Pi be the first point in the sequence, and let

X0 = x. Otherwise let Xi = x = Xl−1, let Pi−1 = q, let Ri−1 = rq.

• If s was not encroached by any point, then by Lemma 6.1.3, then either lfs (Pi) ≤
2γ+3
sin θ∗ ηRi, in which case let Pi be the first element of the sequence; or there is some

midpoint, q, of some subsegment sq, with useful properties. The lemma asserts that

Si, sq are on nondisjoint segments. If they are on the same input segment, let Pi be

the first midpoint of the sequence. Note that in this case, by the lemma, R0 ≥ 2rq,

and |P0 − q| ≤ ηR0. Otherwise, let x be the single input point shared by the two input

segments. If i 6= l− 1 and x 6= Xl−1, then let Pi be the first midpoint in the sequence,

and let X0 = x, P0 = q. By the lemma |X0 − P0| < η
sin θ∗R0.

Otherwise, let Xi = x = Xl−1, let Pi−1 = q, let Ri−1 be the radius associated with q.

The lemma asserts that Ri ≥ Ri−1, |Pi − Pi−1| ≤ ηRi, and |Xi − Pi| < η
sin θ∗Ri. Let

Si−1 be the subsegment of which Pi−1 is midpoint.

We can claim the following facts about the hybrid sequence:

(1) R0 ≤ R1 ≤ . . . Rl−1;

(2) |Pi − Pi−1| ≤ ηRi;

(3) |Xi − Pi| ≤ η
sin θ∗Ri;

(4) Xi = Xl−1 for i = 1, 2, . . . , l − 2.

(5) Either

(a) lfs (P0) ≤ (2γ+3)
sin θ∗ ηR0, or

6.1. Delaunay Refinement with an Augmenter 91

(b) there is some point of the augmented input X0 6= Xl−1 such that |P0 −X0| ≤
η

sin θ∗R0; moreover, (X0,Xl−1) is a segment of the augmented input; or

(c) there is some midpoint q of radius rq such that R0 ≥ 2rq, and |P0 − q| ≤ ηR0.

As in the proof of Lemma 5.7.2, these conditions suffice to give the conclusion of the

lemma.

Theorem 6.1.5 (Adaptive Good Grading). Let µ be the constant depending on γ, θ∗, κ̂

from Lemma 6.1.4. Then there is a positive constant C such that when the algorithm,

operating with a output angle parameter κ̂ ≤ arcsin 2−7/6, commits or attempts to commit

the point p then if q is any previously committed point then

• If p is an off-center point, and q is any kind of previously committed point, then

lfs (p) ≤ µ |p− q| .
• If p is the midpoint of a segment encroached by q, which is a midpoint or off-center

point on an adjoining input segment then

lfs (p) ≤ (1 +
µ

2 sin θ
2

) |p− q| ≤ (1 +
µ

2 sin θ∗

2

) |p− q| ,

where θ is the angle subtended by the two segments.

• If p is a midpoint, and either q did not encroach the parent segment of p or is not a

midpoint on an adjoining input segment, then

lfs (p) ≤ µ |p− q| .

• If p is the circumcenter of a triangle of circumradius r, then

lfs (p) ≤ Cr.

Moreover, C = 1 + 2 sin κ̂(1 + µ) suffices.

Proof. We determine sufficient conditions on the constant C. Again, for convenience, we

say that a point q “provokes” a point p, if q is committed before p, and p is the midpoint

of a segment, s, which is encroached by q.

• Suppose p is an off-center point, with associated radius r. By Lemma 6.1.4, lfs (p) ≤ µr.

If q did not provoke p, then r ≤ |p− q| , which suffices. If q did provoke p, then q

could not have been a circumcenter. The points p, q cannot be on the same input

segments. Since p is an off-center point it must be a feature disjoint from the one

containing q in the imaginary input. In this case lfs′ (p) ≤ |p− q| . By Theorem 4.2.2

this gives lfs (p) ≤ 2γ+3
sin θ∗ |p− q|. By definition of µ then lfs (p) ≤ µ |p− q| .

The remaining cases for the identity of p follow as in the proof of Theorem 5.4.4, but

rely, of course, on Lemma 6.1.4 instead of Lemma 5.4.3.

92 CHAPTER 6. Variations

Corollary 6.1.6. Suppose an input (P, S) that conforms to Assumption 2.2.1 is fed to the

Adaptive Delaunay Refinement Algorithm with an adptive γ-Feature Size Augmenter, using

an output angle parameter κ̂ ≤ arcsin 2−7/6.

Then the algorithm terminates, outputting the Delaunay Triangulation of the set of

points P′, and with no angle in the triangulation less than α = min
{

κ̂, arctan
(

sin θ∗

2−cos θ∗

)}

,

and no angle is larger than max
{

π − 2κ̂, π − 2 arcsin
√

3−1
2

}

. Moreover, if there is any

triangulation on a set of points P′′ that conforms to the original input and has minimum

angle α then
∣

∣P
′∣
∣ = O

(

α−3
) ∣

∣P
′′∣
∣ .

6.2 A Runtime Analyzable Algorithm

Miller analyzed the runtime of a variant of the Delaunay Refinement Algorithm. The

changes made to the algorithm are designed to allow such an analysis [28]. Here we prove

that the algorithm does indeed terminate with good grading and bounded angle.

The main variation is that to avoid unnecessary work, the algorithm doesn’t so readily

“yield” when a circumcenter is being committed. The second change is that the algorithm

maintains a Constrained Delaunay Triangulation during its lifetime, as opposed to most

implementations of the Delaunay Refinement Algorithm, which maintain a Delaunay Tri-

angulation. To facilitate explanation of the first change, we say that a triangle ∆abc whose

circumcenter is inside the diametral circle of segment (p, q) “yields” to the segment if (a) the

midpoint of (p, q) is inside the circumcircle of ∆abc, or (b) the circumcenter of ∆abc is inside

the diametral circle of one of the two subsegments of (a, b). In this case, we also say that

the circumcenter yields to the segments, or to their midpoints. In Figure 31 the yield cases

are illustrated.

Again we will assume that the algorithm maintains a set of points and a set of segments,

initialized as the input. For the adaptive quality test, we assume the algorithm maintains,

for every midpoint, a pointer to the two input points which are endpoints of the input

segment containing the midpoint.

With respect to the given input, we say that two points are “visible” to each other if

both points are on an input segment, or if the open line segment between the two points

does not intersect any segment of the input. A triangle ∆abc is “Constrained Delaunay” if

there is no committed point inside the circumcircle of the triangle which is visible to any

of a, b, c. Two simplices are visible to one another if every point in one is visible to every

point in the other.

The algorithm has two major operations:

6.2. A Runtime Analyzable Algorithm 93

������� �	�
�

� �����
������ �����

PSfrag replacements
p

q

a

b c

(a) Midpoint in Circumcircle

�
����� �	���

� �����
�����! "�#��

PSfrag replacements
p

q

a

b c

(b) Circumcenter Encroaches Subsegment

Figure 31: The two “yield” conditions are shown. In (a), the midpoint of segment (p, q)
is inside the diametral circle of triangle ∆abc. In (b), the circumcenter of ∆abc encroaches
the diametral circle of one of the two subsegments of (p, q).

(Conformality′) If s is a current segment, and there is a committed point that

encroaches s, and the committed point is visible to s, then split s.

(Quality’) If a, b, c are committed points, the triangle ∆abc is Constrained Delaunay,

∠acb < κ̂, the circumcenter, p, of the triangle is inside Ω and either (i) both a, b

are midpoints on distinct nondisjoint input segments, sharing input endpoint x, and

∠axb > π/3, or (ii) a, b are not midpoints on adjoining input segments, then attempt

to commit p. If, however, the point p encroaches some current segments, {Si}li=0 all

of which are visible to ∆abc, then if ∆abc yields to any of these segments, then do

not commit to point p, rather in this case split one, some or all of the segments of

{Si}li=0. If however, ∆abc does not yield to any of these segments, then commit to p,

and then split every segment of {Si}li=0.

Since we’ve exchanged the (Conformality) operation for the (Conformality′) op-

eration, we may have sacrificed the guarantee that the output is truly Delaunay. A simple

argument due to Edelsbrunner and Tan [20, Lemma 4.4] shows that the output mesh is

indeed conforming: Take the segment with nonempty diametral circle which has no visible

point encroaching it, and has the global minimum number of segments of the input blocking

visibility from the segment to the encroaching point over all such segments. Then select one

of the current segments blocking visibility. Then either there is a visible point encroaching

this segment or this segment violates the minimality assumption of our choice of original

segment.

Since any triangle which is Delaunay is Constrained Delaunay, if the algorithm termi-

nates, there is no triangle in the final mesh with smallest angle less than κ̂, except those

94 CHAPTER 6. Variations

“across” from small input angles. That is, we are claiming that the minimum and maximum

angle guarantees of Section 5.5 apply.

6.2.1 Good Grading

We start with a claim that shows this algorithm is not too far different from the Adaptive

Delaunay Refinement Algorithm.

Claim 6.2.1. After the application of each major operation, if (p, q) is a current segment,

then there is no committed circumcenter visible to (p, q) which is inside its diametral circle.

Proof. We proceed by induction. At the beginning of the algorithm, this is obviously true.

If a (Conformality′) operation is performed, since the diametral circles nest, the property

is maintained. Suppose a (Quality’) operation is performed. If the circumcenter is not

committed then the property is maintained. Suppose to the contrary that the circumcenter

is committed. By the definition of the (Quality’) operation, if the committed circumcenter

would encroach on a segment, and the circumcenter is visible to the segment, then the

triangle does not yield to the segment. Thus in particular, the circumcenter is not inside

the diametral circles of the subsegments of this segment. Since the segment is split, it is no

longer current, and its subsegments are not encroached by the committed circumcenter.

We assume that the input conforms to Assumption 5.4.1. This can be enforced with

an augmenting preprocessor, or the augmenter can be integrated with the algorithm. We

follow the analysis of Section 5.4, sketching some of the proofs where a complete exposition

is counterproductive. Many of the proofs of that section go through with perhaps only

notational change, largely because they make claims about radii and local feature size, and

don’t make lower bound claims on distances between committed points. All of the work on

circumcenter sequences can be reproven without any changes.

Lemma 5.4.2 goes through with only a notational change:

Lemma 6.2.2. Let sp be a subsegment of midpoint p and radius rp. Suppose that sp was not

committed during a (Conformality′) operation, rather it was split during a (Quality’)

operation attempting to commit circumcenter bl−1. Let η = 1 +
√

2
1−2 sin κ̂ . Then either

1. lfs (p) ≤ (
√

2 + η)rp, or

2. there is a segment sq with committed midpoint q, and radius rq such that

(a) the input segments containing sp, sq are nondisjoint,

(b) rq ≤ rp,

(c) |p− q| ≤ ηrp, and

(d) if sp, sq are on the same input segment then 2rq ≤ rp; if they are on distinct

input segments sharing input point x, then |x− p| < η
sin θ∗ rp.

6.2. A Runtime Analyzable Algorithm 95

This leaves only the good grading proof. The only change comes in the case where a

segment midpoint is being committed during a (Quality’) operation in which the circum-

center does not yield.

Theorem 6.2.3 (Adaptive Good Grading). Suppose that the input to the analyzable

algorithm conforms to Assumption 5.4.1. Let µ be the constant depending on θ∗, κ̂ from

Lemma 5.4.3. Then there is a positive constant C such that when the algorithm, operating

with a output angle parameter κ̂ ≤ arcsin 2−7/6, commits or attempts to commit the point p

then if q is any previously committed point that is visible to p then

• If p is the midpoint of a segment encroached by q, which is a midpoint on an adjoining

input segment then

lfs (p) ≤ (1 +
µ

2 sin θ
2

) |p− q| ≤ (1 +
µ

2 sin θ∗

2

) |p− q| ,

where θ is the angle subtended by the two segments.

• If p is a midpoint, and either q did not encroach the parent segment of p or is not a

midpoint on an adjoining input segment, then

lfs (p) ≤ µ |p− q| .

• If p is the circumcenter of a triangle of circumradius r, then

lfs (p) ≤ Cr.

Moreover, C = 1 + 2 sin κ̂(1 + µ) suffices.

Proof. We determine sufficient conditions on the constant C. Again, for convenience, we

say that a point q “provokes” a point p, if q is committed before p, and p is the midpoint

of a segment, s, which is encroached by q.

• Suppose p is the midpoint of subsegment which is encroached by q which is a midpoint

on a nondisjoint input feature. Let θ be the angle between the two input segments.

Let rq be the radius associated with q. By Lemma 3.3.6, |p− q| ≥ 2rq sin θ
2 . By

Lemma 5.4.3, lfs (q) ≤ µrq. Then using the Lipschitz condition,

lfs (p) ≤ |p− q| + lfs (q) ≤ |p− q| + µrq ≤
(

1 +
µ

2 sin θ
2

)

|p− q| ,

as desired.

• Suppose p is the midpoint of a subsegment, and suppose this subsegment is encroached

by q which is not a midpoint on a nondisjoint input feature. If q is an input point or

on a nondisjoint input feature, then by definition lfs (p) ≤ |p− q| ≤ µ |p− q| .

96 CHAPTER 6. Variations

Suppose that the segment is encroached by q, and q is a circumcenter which is com-

mitted before p is committed. Since the triangle of q does not yield to the segment,

it must be the case that rq ≤ |p− q| , where rq is the cirumradius of the triangle

associated with q. Using this theorem inductively, lfs (q) ≤ Crq. Using the Lipschitz

condition, lfs (p) ≤ |p− q| + lfs (q) ≤ (1 + C) |p− q| . Then it suffices that

1 + C ≤ µ.

If q does not encroach the subsegment, then |p− q| is at least the radius of the

subsegment. r. By Lemma 5.4.3, lfs (p) ≤ µr ≤ µ |p− q| .
• If p is a circumcenter of a skinny triangle of circumradius r, then let a, b be the vertices

of the shortest edge, and θ the angle opposite this edge. By assumption θ < κ̂. Note

that by the sine rule, |a− b| = 2r sin θ < 2r sin κ̂. If a, b are both input points, then

they are disjoint and by definition lfs (p) ≤ r, so it suffices to take 1 ≤ C. Otherwise

let b be the most recently committed of the two points. We consider the possible

identities of b, a:

– Suppose b is a midpoint of a subsegment. If a is a midpoint on a nondisjoint

input segment, with the two segments subtending angle θ, by definition of the

(Quality′) operation, we know θ ≥ π/3, thus 2 sin θ
2 ≥ 1. Using the lemma

inductively, since a witnesses b, it must be the case that lfs (b) ≤ (1 + µ) |a− b| .
– If a was not such a midpoint or did not provoke b, then lfs (b) ≤ µ |a− b| .
– If b was a circumcenter, then since it was committed after a, its associated

circumradius bounds |a− b| from below, so lfs (b) ≤ C |a− b| .
Then using the Lipschitz condition,

lfs (p) ≤ r + lfs (b) ≤ r + max {1 + µ,C} |a− b| ≤ (1 + 2 sin κ̂max {1 + µ,C}) r.

And it suffices to ensure that

1 + 2 sin κ̂max {1 + µ,C} ≤ C.

Some work is required to show that both boxed constraints are satisfied by our choice

of C. This is not too difficult, given the definition of µ,η, and because κ̂ ≤ arcsin 2−7/6.

Corollary 6.2.4. Suppose an input (P, S) that conforms to Assumption 5.4.1 is fed to the

analyzable variant of the Adaptive Delaunay Refinement Algorithm, using an output angle

parameter κ̂ ≤ arcsin 2−7/6.

Then the algorithm terminates, outputting the Delaunay Triangulation of the set of

points P′, and with no angle in the triangulation less than α = min
{

κ̂, arctan
(

sin θ∗

2−cos θ∗

)}

,

6.2. A Runtime Analyzable Algorithm 97

and no angle is larger than max
{

π − 2κ̂, π − 2 arcsin
√

3−1
2

}

. Moreover, if there is any

triangulation on a set of points P′′ that conforms to the original input and has minimum

angle α then
∣

∣P
′∣
∣ = O

(

α−3
) ∣

∣P
′′∣
∣ .

98 CHAPTER 6. Variations

99

CHAPTER VII

OPTIMALITY

“The supreme misfortune is when theory outstrips performance.” –Leonardo Da Vinci

By Da Vinci’s standards, we are rather fortunate, since in practice the Delaunay Re-

finement Algorithm, and its variants, far outperform our theoretical guarantees, which all

rely on worst-case estimates. We attempt to slightly improve one aspect of the standard

optimality proof.

The goal of this chapter is to show that if T = (V,E) is a planar triangulation with

minimum angle α, then

∫

E

1

lfs
T

(z)
dz = O

(

1

α
log

(

1

α

))

|V| , (10)

where lfs
T

(z) is the distance from z to the second nearest disjoint neighbor among (V,E),

and E = ∪e∈Ee. We also present a lower bound to show that this result cannot be improved

asymptotically.

This result is similar to that of Mitchell, who proved that

∫

Ω

1

lfs2
T

(z)
dz = O

(

1

α

)

|V| ,

where Ω is the region of the plane covered by the triangulation T [31]. The new bound,

however, can be applied in situations where point density is anisotropic, and skewed along

certain predefined edges. For example, the Adaptive Delaunay Refinement Algorithm pro-

duces meshes with edges that can be comparatively short “across” small input angles, while

being more modest along input segments (cf. Theorem 5.4.4).

Throughout this chapter we will assume that T = (V,E) is a triangulation with minimum

angle α. Moreover, we assume that the triangulation is maximal, i.e., that no edge may be

added to E without crossing an existing edge.1 The following lemma is due to Mitchell.

Lemma 7.0.5 (Mitchell [31]). Let e, f ∈ E share a common endpoint in a triangulation

with minimum angle α. Then
|e|
|f | ≤ (2 cosα)

∠ef
α .

1Mitchell drops this requirement when the input domain is a polygon with polygonal holes. In this case
the holes represent regions where the output mesh is not maximal.

100 CHAPTER 7. Optimality

7.1 The Whirl

The bound of Mitchell’s lemma involves a parametric shape of some interest. We define it

precisely as follows

Definition 7.1.1 (α-whirl). Given points p, q and minimum angle α, we define the α-whirl

centered at p to be the set

W (p, q) =
{

x
∣

∣

∣ |p− x| = |p− q| (2 cosα)
−∠qpx
α

}

,

where we assume 0 ≤ ∠qpx ≤ π. Thus the α-whirl can be imagined as a parametric curve

defined in polar coordinates as

(θ, |p− q| gα(|θ|)) ,

where p is the origin of the coordinate system, q is on the positive x-axis, θ ∈ (−π, π] , and

gα(θ) = (2 cosα)
−θ
α = e−hαθ, where hα = 1

α ln 2 cosα. An α-whirl is shown in Figure 32.

The α-whirl is two pieces of an equiangular spiral of angle arctan 1
hα
, thus if z is a point

on the curve, then segment (p, z) forms angle arctan 1
hα

with the tangent to the α-whirl at

z.

PSfrag replacements

p q

x

x′

Figure 32: The α-whirl, W (p, q), with α ≈ 27.6◦ is shown. For a given point x inside
the closed curve, we wish to find the nearest point on the α-whirl, here marked as x′. We
display a circle with center at x to show that this x′ actually is the closest point on the
α-whirl to this x. We wish to find x′ in terms of the angle ∠qpx and the distance |p− x| . It
is clear that either (x, x′) is normal to the α-whirl at x′ or x′ is the point collinear with p, q,
at the “pinch point” of the α-whirl. There may be two points on the upper portion of the
α-whirl whose normals pass through x, though one will be a local maximum to distance,
the other a local minimum. The whirl becomes “flatter” as α becomes small.

Now we consider the question: what is the distance from an α-whirl to a point inside

of it? The answer will be used in establishing upper and lower bounds on the integral
∫

E
1

lfs
T
(z)dz.

We consider the α-whirl, W (p, q) .We adjust the units so that, for convenience, |p− q| =

1. We let z be the point (φ, λgα(φ)) , for φ ∈ [0, π] , λ ∈ [0, 1] . For this choice of φ, λ, we

7.1. The Whirl 101

only need to consider the distance to the “upper” half of the α-whirl, so we can restrict θ

to be in [0, π]. We consider the squared distance from z to the point (θ, gα(θ)) , which is

fλ,φ(θ) = |(φ, λgα(φ)) − (θ, gα(θ))|2

= (λgα(φ) cosφ− gα(θ) cos θ)2 + (λgα(φ) sinφ− gα(θ) sin θ)2

= λ2gα(2φ) + gα(2θ) − 2λgα(θ + φ) cos(θ − φ). (11)

We have and will continue to use ubiquitously the fact that gα(·) is an exponential function,

and thus gα(a)gα(b) = gα(a+ b).

Since gα(θ) is an exponential function, we have dgα(θ)
dθ = −hαgα(θ). We take the deriva-

tive of fλ,φ(θ) :

dfλ,φ(θ)

dθ
= −2hαgα(2θ) + 2λgα(θ + φ) [sin(θ − φ) + hα cos(θ − φ)] . (12)

Note that this derivative is continuous. To minimize fλ,φ(θ) we look for zeroes of its deriva-

tive.

Letting ψ = θ−φ, we have ψ ∈ [−φ, π − φ] ⊂ [−π, π] . We set the derivative to zero and

find a solution, assuming ψ is in this range.

0 = −2hαgα(2θ) + 2λgα(θ + φ) [sin(θ − φ) + hα cos(θ − φ)]

λgα(φ) [sin(θ − φ) + hα cos(θ − φ)] = hαgα(θ)

λ =
hαgα(θ − φ)

sin(θ − φ) + hα cos(θ − φ)
=

hαgα(ψ)

sinψ + hα cosψ
.

If λ = 0, this last equation has no solution, as the numerator on the far right hand side is

strictly positive. The denominator is positive only on (− arctanhα, π − arctanhα) .

Letting jα(ψ) = hαgα(ψ)
sinψ+hα cosψ , then

dfλ,φ(θ)
dθ = 0 if and only if λ = jα(θ − φ). So we wish

to find those λ for which there is ψ ∈ (− arctanhα, π − arctanhα) ∩ [−φ, π − φ] such that

λ = jα(ψ). To examine the behaviour of jα(·), we take its derivative. By the quotient rule

and some algebra, we have

djα(ψ)

dψ
=

−hαgα(ψ)(h2
α + 1) cosψ

(sinψ + hα cosψ)2
. (13)

This derivative has the same sign as − cosψ. Since we take ψ ∈ (− arctanhα, π − arctanhα) ,

this derivative can only have a zero at π/2, and is negative if ψ < π/2, positive if ψ > π/2.

As ψ approaches − arctanhα or π− arctanhα, jα(ψ) goes to infinity. Depending on λ, and

φ there may be zero, one, or two roots to the equation λ = jα(ψ) = jα(θ − φ) since we

restrict ψ ∈ (− arctanhα, π − arctanhα) ∩ [−φ, π − φ] . If there is only one root, it is less

than π/2. If there are two, one is less than π/2, the other is greater.

102 CHAPTER 7. Optimality

We can then determine the sign of the derivative of fλ,φ(θ). Consider the left endpoint

of the domain:

dfλ,φ(θ)

dθ

∣

∣

∣

∣

θ=0

= −2hα + 2λgα(φ) [sin(−φ) + hα cos(−φ)]

= 2hα [λgα(φ) cosφ− 1] − 2λgα(φ) sinφ.

Because hα is positive and λ and gα(φ) are in [0, 1], the first term is non-positive. Because

φ ∈ [0, π] , the second term is nonpositive, so the derivative is nonpositive, and zero only

if λ = 1, φ = 0. In this latter case, the point (φ, λgα(φ)) is actually on the α-whirl, so the

distance to the curve is zero.

Assuming otherwise, the derivative of fλ,φ(θ) is negative at the left end of the domain,

and has either zero, one or two roots (i.e., the valid solutions to λ = jα(θ−φ).) If there are

zero roots, then the derivative stays negative and fλ,φ(θ) is minimized at θ = π. If there is a

single root, say θ1, and it is of multiplicity one (i.e., θ1 6= π/2), then it must be a minimum,

so fλ,φ(θ) is minimized at θ1. If there are two roots, with θ1 being the one smaller than π/2,

then fλ,φ(θ) is minimized either at θ1, or at π.

Since jα(ψ) is minimized at π/2, then the derivative of fλ,φ(θ) clearly has no roots if

λ < jα(π/2) = hαgα(π/2); the derivative has a double root when λ = jα(π/2). So assume

jα(π/2) < λ ≤ 1. Let ψ1 < π/2 < ψ2 be the roots to λ = jα(ψ). These roots may or may not

be in [−φ, π − φ]. Only if φ is sufficiently small will both roots be in this range. Otherwise,

zero or one of these roots is in the range, and fλ,φ(θ) will be minimized at θ = π∧ (φ+ψ1).

If both roots are in the range, then π/2 < ψ2 < π − φ, so then

fλ,φ(π) = λ2gα(2φ) + gα(2π) − 2λgα(π + φ) cos(π − φ)

≥ λ2gα(2φ), (14)

because λ, gα(·) are positive and cos(π − φ) is negative. However

fλ,φ(φ+ ψ1) = λ2gα(2φ) + gα(2φ)gα(2ψ1) − 2λgα(2φ)gα(ψ1) cosψ1

= λ2gα(2φ) + gα(2φ)gα(2ψ1) −
2hαgα(ψ1)gα(2φ)gα(ψ1) cos(ψ1)

sinψ1 + hα cosψ1

= λ2gα(2φ) + gα(2φ)gα(2ψ1)
sinψ1 − hα cosψ1

sinψ1 + hα cosψ1
. (15)

Given that ψ1 is a root to λ = jα(ψ), the denominator of the fraction in equation 15 is

positive. However, the numerator may be nonpositive; this will hold if ψ1 ≤ arctanhα.

Thus if φ < π/2, and

λ ≥ jα(arctanhα) =
hαgα(arctanhα)

sin arctanhα + hα cos arctanhα
= gα(arctanhα)

√

h2
α + 1

2
,

7.1. The Whirl 103

λ ≤ jα(π/2) jα(π/2) < λ ≤ jα(arctanhα) jα(arctanhα) < λ ≤ 1

π π or φ+ ψ1 φ+ ψ1

Table 1: The θ which minimizes fλ,φ(θ) for the given values of λ, φ is shown. We assume
that φ ≤ π/2. For λ > jα(π/2), ψ1 is the root of λ = jα(ψ) which is less than π/2. In
the second column, there is some ambiguity as to which of π, φ + ψ1 minimizes fλ,φ(θ),
due to limitations of the analysis. These results will be used in the establishment of both
upper and lower bounds on the integral of interest. We note that jα(π/2) = hαgα(π/2),

and jα(arctanhα) = gα(arctanhα)

√
h2
α+1

2 .

then fλ,φ(θ) is minimized at θ = φ+ ψ1.

We collect these results in Table 1, which shows the value of θ which minimizes fλ,φ(θ)

given various values of λ, φ, with φ ≤ π/2. In this table, ψ1 is the root of λ = jα(ψ) less

than π/2 if there is such a root. If there is such a root then, starting from equation 15,

fλ,φ(φ+ ψ1) = λ2gα(2φ) + gα(2φ)gα(2ψ1)
sinψ1 − hα cosψ1

sinψ1 + hα cosψ1
.

=
gα(2ψ1)h

2
αgα(2φ)

(sinψ1 + hα cosψ1)
2 + gα(2φ)gα(2ψ1)

sinψ1 − hα cosψ1

sinψ1 + hα cosψ1
.

= gα(2φ)gα(2ψ1)
h2
α + sin2 ψ1 − h2

α cos2 ψ1

(sinψ1 + hα cosψ1)
2

=
gα(2φ)gα(2ψ1)(h

2
α + 1) sin2 ψ1

(sinψ1 + hα cosψ1)
2 . (16)

We will be interested, at times, in the “inverse” of the function jα(·), that is j−1
α (λ). By

inverse, we mean the unique 0 ≤ ψ1 ≤ π/2 such that λ = jα(ψ1). The following claim gives

a lower bound sufficient for our analysis. It assumes that hα 6= 0, as otherwise, jα(ψ) is

identically zero.

Claim 7.1.2. Suppose hα 6= 0, and let jα(π/2) ≤ λ ≤ 1; then

j−1
α (λ) ≥ − lnλ

hα + 1
hα

. (17)

Proof. First we compare sinψ+hα cosψ
hα

to e
ψ
hα . Both functions take the value 1 when ψ = 0.

The first derivative (with respect to ψ) of both functions takes value 1
hα

at ψ = 0. The

latter has positive derivative everywhere, the former has a derivative which experiences

sign change. The second derivative of the former is nonpositive for ψ ∈ [0, π/2] , while the

latter function has positive curvature. Thus the first derivative of sinψ+hα cosψ
hα

is less than

that of e
ψ
hα in this range. And thus the former function is less than the latter in this range.

Taking the reciprocals of these functions gives

e
−ψ
hα ≤ hα

sinψ + hα cosψ
= jα(ψ)ehαψ.

104 CHAPTER 7. Optimality

Thus e−ψ(hα+ 1
hα

) ≤ jα(ψ). Note that e−ψ(hα+ 1
hα

) takes the same value as jα(ψ) when

ψ = 0, (namely 1), and bounds it below. Moreover it is monotone decreasing. Thus if

λ = e−ψ
∗(hα+ 1

hα
), and 0 ≤ ψ1 ≤ π/2 is a root to λ = jα(ψ), then ψ∗ ≤ ψ1.

We consider the maximum value of jα(π/2) for α ∈ [0, π/3] . We know that

jα(π/2) = hαgα(π/2) = hαe
−π
2
hα .

Since hα can take all values in [0,∞), it suffices to maximize xe
−π
2
x on [0,∞). Simple

calculus shows this is maximized when x = 2
π , and there has value 2

πe
−1 < 1

4 .

We also consider the maximum value of jα(arctanhα) for appropriate α. Again, hα

can take any nonnegative value, so it suffices to maximize e−x arctanx
√
x2+1
2 for positive x.

Calculus shows this function is monotone, and decreasing on [0,∞). Thus it has maximum

value at 0, where it has value 1
2 .

7.2 An Upper Bound

We now focus on using the results concerning the α-whirl to find an upper bound for the

integral
∫

E
1

lfs
T
(z)dz. The analysis is fairly involved, although none of it would be beyond

an advanced student of calculus. We present an overview here to guide the reader: First

we show that if x is a point on a segment (p, q) of a mesh, and x is closer to p than q (or x

is the midpoint of the segment), then there is some point q′ on the segment such that the

distance from x to the α-whirl W (p, q′) is a lower bound on lfs (x). This is done simply in

Lemma 7.2.1 by showing that no edge or point of the mesh disjoint from (p, q) or the point

p is inside this α-whirl. Then in Theorem 7.2.2, the distance from a point to a α-whirl is

used to bound the integral.

Lemma 7.2.1. Let e = (p, q) be an edge of a triangulation with minimum angle α. Let

q′ be the point on (p, q) such that |p− q′| =
√

3
2 |p− q| . Then there is no edge or vertex of

the triangulation which is disjoint from e or from p and contained inside the closed curve

W (p, q′).

Proof. Let {qi}n−1
i=0 be the set of vertices of the triangulation such that (p, qi) is an edge of

the triangulation; moreover, assume q0 = q, and the vertices qi are ordered counterclockwise

around p. All the triangles in the triangulation which have p as a corner are of the form

∆pqiqi+1 for some 0 ≤ i < n, where qn is read to be q0.

Then it suffices to show that if ∆pqiqi+1 is a triangle of the triangulation then no point

of (qi, qi+1) is inside W (p, q′). Let θ be the counterclockwise angle ∠q0pqi; without loss

of generality we assume this is less than the counterclockwise angle ∠q0pqi+1, and that

θ ∈ [0, π) , as otherwise we look from the other side of the plane.

7.2. An Upper Bound 105

Let z be a point on (qi, qi+1) . Again, without loss of generality we can assume that

∠q0pz ∈ [θ, π] , as otherwise we look from the other side of the plane. It suffices to show

that |p− z| ≥
√

3
2 |p− q0| gα(∠q0pz).

Let φ = ∠qipz. By assumption, 0 ≤ φ ≤ π − 2α. Let ψ = ∠pqiqi+1. Using the sine rule

on the triangle ∆pqiz, we have

|p− z|
sinψ

=
|p− qi|

sin(φ+ ψ)
.

By Lemma 7.0.5, |p− qi| ≥ |p− q0| gα(θ), and so

|p− z| ≥ |p− q0| gα(θ) sinψ

sin(φ+ ψ)
.

Since ∠q0pz = θ+φ, it suffices to prove that sinψ
sin(φ+ψ) ≥

√
3

2 gα(φ). So we attempt to minimize

kψ (φ) = sinψ
sin(φ+ψ)gα(−φ).

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0 0.2 0.4 0.6 0.8 1

P
S
frag

rep
lacem

en
ts

√

h2
α

+ 1 tan α

2
gα(− arctan 1

hα
)

α

Figure 33: The function
√

h2
α + 1 tanα

2 gα(− arctan 1
hα

) takes its minimal value of
√

3
2 at

α = π/3.

We take the derivative, which is

dkψ (φ)

dφ
= gα(−φ) sinψ

hα sin(φ+ ψ) − cos(φ+ ψ)

sin2(φ+ ψ)
.

The derivative is zero when tanφ+ ψ = 1
hα
. Note that φ, ψ are angles of ∆pqiz so φ < π−ψ,

and thus there is at most one extreme point for the function kψ (φ). If it happens to be

106 CHAPTER 7. Optimality

the case that arctan 1
hα

≤ ψ, then there is no extreme point, but in this case it is simple to

show that
dkψ(φ)
dφ

∣

∣

∣

φ=0
is positive, so the function has minimal value kψ (0) = 1.

Otherwise ψ < arctan 1
hα
, and there is an extreme point which is a minimum. The value

of kψ (φ) at this minimum is

kψ

(

arctan
1

hα
− ψ

)

=
√

h2
α + 1 sinψgα(ψ)gα(− arctan

1

hα
).

We note that sinψgα(ψ) is increasing on
[

0, arctan 1
hα

)

, so we may assume ψ takes its

minimum value, α. Thus kψ (φ) is bounded below by
√

h2
α + 1 tanα

2 gα(− arctan 1
hα

). We

claim that this function takes a minimum value of
√

3
2 when α = π/3, which establishes the

lemma.

To verify this claim, most readers will be satisfied to look at the graph of the function

versus α, as shown in Figure 33. The skeptic (or masochist), however, may insist on a

purely analytic demonstration of the monotonicity of this function. The analysis is fairly

difficult and not easily forthcoming, so we omit it; the interested reader is encouraged to

verify that the derivative of this function is indeed negative.

The idea of Lemma 7.2.1 is illustrated in Figure 34 for two different triangulations.

The lemma becomes tight for triangulations which have many angles of size α, as shown in

Figure 34(b), otherwise it can be a severe overestimate, as shown in Figure 34(a).

� ����� ��� �

	 ��� � ��
�� �����

PSfrag replacements

p
qq′

(a) “Normal” Triangulation

����� � ����� � �����

� ����� � � �

PSfrag replacements

p
qq′

(b) “Pathological” Triangulation

Figure 34: Lemma 7.2.1 is illustrated. In (a), a “normal” triangulation is shown, with the

α-whirl, W (p, q′), where |p− q′| =
√

3
2 |p− q| . In (b), a more pathological triangulation is

shown; all but one triangle are isosceles with two angles equal to α, which is around 32◦ in
this figure.

Theorem 7.2.2. Let e = (p, q) be an edge of a triangulation with minimum angle α. Let

m be the midpoint of the edge. Let lfsT (z) be the local feature size with respect to the

7.2. An Upper Bound 107

triangulation. Then

∫ m

p

1

lfs
T

(z)
dz ≤ ln

3

2
+ hαπ +

√

h2
α + 1

[

ln(hα + 1/hα) − ln(2 sin
ln 3

8
)

]

, (18)

and
∫ m

p

1

lfs
T

(z)
dz ≤ ln

3

2
+ hαπ +

√

h2
α + 1

[

h2
α + 1

2 sin ln 3
4

− hα

]

. (19)

Note that inequality 18 is a tighter approximation when α is small, while inequality 19

is more appropriate for larger α. The tradeoff point of these two approximations occurs

when α is approximately 37.59◦.

Proof. Let q′ be the point on segment (p, q) such that |p− q′| =
√

3
2 |p− q| . By Lemma 7.2.1,

if Γ is the α-whirl, W (p, q′), there is no edge or vertex of the triangulation which is disjoint

from the edge e or the point p, and which intersects the region interior to the closed curve

Γ. Thus if z is a point on the line segment (p,m), then lfs
T

(z) is at least the distance from

z to Γ.

Let λ = 2√
3

|p−z|
|p−q| . Then

I =df

∫ m

p

1

lfs
T

(z)
dz ≤

√
3 |p− q|

2

∫ 1√
3

0

1

|p− q′|
√

fλ,0(mn(λ))
dλ,

where mn(λ) is that θ which minimizes fλ,0(θ), which is the squared distance from the point

(0, λ) , (in polar coordinates) to the unit-length α-whirl centered on the origin and running

along the x-axis.

We now use the results tabulated in Table 1 to find the values of mn(λ). Since there is

some ambiguity in the second column, we “double-up” the difference. That is if l = a ∧ b,
for positive quantities a, b, then 1

l ≤ 1
a + 1

b . Thus

I ≤
∫ jα(arctanhα)

0

1
√

fλ,0(π)
dλ+

∫ 1√
3

jα(π/2)

1
√

fλ,0(ψ1)
dλ,

where, again, ψ1 is the root of λ = jα(ψ) which is less than π/2. We have shown in the pre-

vious section that jα(π/2) < 1
4 <

1√
3
, thus the second integral does not have inverted limits.

We have also noted that jα(arctanhα) ≤ 1
2 <

1√
3
, so we have not made an overestimate in

the first integral.

We substitute the value of fλ,0(π) in the first integral, and make a change of variables

to the second; every λ ∈
[

jα(π/2), 1√
3

]

has some associated root ψ1, given by λ = jα(ψ1).

108 CHAPTER 7. Optimality

By equation 13, we can find dλ in terms of dψ1, and ψ1. Thus, using equation 16,

I ≤
∫ jα(arctanhα)

0

1

λ+ gα(π)
dλ

+

∫ j−1
α (1√

3
)

π/2

(sinψ1 + hα cosψ1)

gα(ψ1)
√

h2
α + 1 sinψ1

−hαgα(ψ1)(h
2
α + 1) cosψ1

(sinψ1 + hα cosψ1)2
dψ1,

= ln

∣

∣

∣

∣

jα(arctanhα) + gα(π)

gα(π)

∣

∣

∣

∣

− hα
√

h2
α + 1

∫ j−1
α (1√

3
)

π/2

cosψ1

sinψ1(sinψ1 + hα cosψ1)
dψ1,

≤ ln

∣

∣

∣

∣

3

2gα(π)

∣

∣

∣

∣

+ hα
√

h2
α + 1

∫ π/2

j−1
α (1√

3
)

cosψ1

sinψ1(sinψ1 + hα cosψ1)
dψ1,

where in the last line we have used the fact that jα(arctanhα) ≤ 1
2 , and gα(π) ≤ 1. Since

ln gα(π) = −hαπ, the first term on the right hand side above becomes ln 3
2 + hαπ, which is

the common term of inequality 18 and inequality 19. The analysis for the two inequalities

diverges here, so we consider them separately.

• For inequality 18, it suffices to prove that

J =df hα

∫ π/2

j−1
α (1√

3
)

cosψ1

sinψ1(sinψ1 + hα cosψ1)
dψ1 ≤

[

ln(hα + 1/hα) − ln(2 sin
ln 3

8
)

]

.

The integral splits conveniently as

J = hα

∫ π/2

j−1
α (1√

3
)

1

hα sinψ1
− 1

hα(sinψ1 + hα cosψ1)
dψ1,

≤
∫ π/2

j−1
α (1√

3
)

1

sinψ1
dψ1,

= ln tan
ψ1

2

∣

∣

∣

∣

∣

π/2

j−1
α (1√

3
)

=

[

ln
(

tan
π

4

)

− ln

(

tan
j−1
α (1√

3
)

2

)]

,

≤ ln

(

cot
− ln 1√

3

2(hα + 1
hα

)

)

,

≤ ln

(

csc
ln 3

4(hα + 1
hα

)

)

.

In the second line we have thrown away the negative term in the integral; we flipped

the sign of the term by inverting tangent to cotangent, then used the lower bound of

Claim 7.1.2, i.e., j−1
α (λ) ≥ − lnλ

hα+ 1
hα

. We then bounded the cosine and manipulated the

inner log to get the last line.

We now bound the cosecant. For admissible values of α, hα may assume any nonneg-

ative value. Then ln 3
4(hα+1/hα) can assume any value in

(

0, ln 3
8

]

. In this range, sinx is

bounded from below by (sin ln 3
8)x/(ln 3

8). Thus the cosecant is bounded above:

csc
ln 3

4(hα + 1/hα)
≤ ln 3

8 sin ln 3
8

1

(ln 3)/(4(hα + 1/hα))
=
hα + 1/hα

2 sin ln 3
8

.

7.3. A Lower Bound 109

This establishes the inequality.

• For inequality 19, it suffices to prove that

J =df hα

∫ π/2

j−1
α (1√

3
)

cosψ1

sinψ1(sinψ1 + hα cosψ1)
dψ1 ≤

[

h2
α + 1

2 sin ln 3
4

− hα

]

.

Since hα is nonnegative, and cosψ1 is positive in the given range, we can bound

1
sinψ1+hα cosψ1

≤ 1
sinψ1

, to get

J ≤ hα

∫ π/2

j−1
α (1√

3
)

cosψ1

sin2 ψ1
dψ1,

= hα

 − cscψ1

∣

∣

∣

∣

∣

π/2

j−1
α (1√

3
)

 = hα

(

csc j−1
α (

1√
3
) − 1

)

,

≤ hα

(

csc
ln 3

2(hα + 1
hα

)
− 1

)

,

≤ hα

(

hα + 1/hα

2 sin ln 3
4

− 1

)

.

As above we have used the lower bound on j−1
α (·) and bounded the cosecant, estab-

lishing the desired inequality.

Corollary 7.2.3. Let T = (V,E) be a triangulation with minimum angle α, where α ≤ π/6.

Let lfs
T

(z) be the local feature size of a point z with respect to the triangulation, and let

E = ∪e∈Ee. Then
∫

E

1

lfs
T

(z)
dz = O

(

1

α
log

(

1

α

))

|V| .

Proof. Let e = (p, q) be an edge of the triangulation. By the theorem
∫ q

p

1

lfs
T

(z)
dz < 2

[

ln
3

2
+ hαπ +

√

h2
α + 1

(

ln(hα +
1

hα
) − ln 2 sin

ln 3

8

)]

.

Since α ∈ (0, π/6] , hα > 1, and hα = O
(

1
α

)

. Then
∫ q
p

1
lfs

T
(z)dz = O

(

1
α ln 1

α

)

. Thus

∫

E

1

lfs
T

(z)
dz = O

(

1

α
log

(

1

α

))

|E| .

By Euler’s formula |E| ≤ 3 |V| , which suffices.

7.3 A Lower Bound

We now show that the upper bound of the previous section is optimal by demonstrating

an example where the integral is large. The example consists of a triangulation where the

local feature size is bounded from above by the distance to an α-whirl.

110 CHAPTER 7. Optimality

Definition 7.3.1. Let n ≥ 4 be some large even integer, and let α = π/n. Let Vn =

{p} ∪ {qi}ni=0 , where p is the origin of a polar coordinate system, and qi is the point, in

polar coordinates, (αi, gα(αi)) . Let En = {(p, qi)}i=ni=0 ∪ {(qi, qi+1)}n−1
i=0 .

Then the spiral mesh on n is the triangulation Tn = (Vn,En) . The spiral mesh is a

triangulation with minimum angle α. We illustrate such a triangulation, for a small n, in

Figure 35.

PSfrag replacements

p
q0

q1q2

q3

q4

q5
q6

x

x′

Figure 35: The spiral mesh on n = 6 is shown. We use small n for visualization purposes,
as the triangulation becomes flattened along the segment (p, q0) for large n. We also show
the top half of the α-whirl, W (p, q0), for α = π/6. For the point x shown on the segment
(p, q1), the distance from x to W (p, q0) is greater than the local feature size of x with respect
to the mesh, which is the distance from x to (q1, q2). This holds when ∠xpx′ ≥ α, where x′

is the closest point to x on W (p, q0).

Given an edge (p, qi) of a spiral mesh, for many points on the edge, the local feature size

of the point with respect to the mesh is approximately the distance from the point to the

α-whirl, W (p, q0). This is shown in Figure 35, and holds for any x on an edge such that

∠xpx′ ≥ α, where x′ is the point on W (p, q0) closest to x. Thus the following lower bound

proof uses much of the same technology as the upper bound proof.

Theorem 7.3.2. Let ε > 0 be given. Then there is some N ≥ 4 such that for n ≥ N, if

lfs
T

(z) is the local feature size with respect to the spiral mesh on n, and 0 ≤ i ≤ n/2, then

∫ qi

p

1

lfs
T

(z)
dz ≥ (1 − ε) ln 2

[

1

α
ln

1

α

]

,

where α = π/n.

Proof. We determine sufficient conditions on N. Assume that n ≥ N ≥ 4. Let φ = αi. Let

z be a point on the segment (p, qi) such that |p− z| = λgα(φ). We claim that lfs
T

(z) ≤
√

fλ,φ(θ) for any θ ∈ [φ+ α, π] . This is the case because the line segment from z to the

point, in polar coordinates, (θ, gα(φ)) , will cut through a line segment of the form (qj , qj+1)

for i < j < n if α ≤ θ. This line segment is disjoint from (p, qi) , giving the upper bound on

local feature size.

7.3. A Lower Bound 111

We make a change of variables from z to λ, then use this upper bound. We let ~vi be the

vector from p to qi.

I =

∫ qi

p

1

lfs
T

(z)
dz = gα(φ)

∫ 1

0

1

lfs
T

(p+ λ~vi)
dλ ≥ gα(φ)

∫ jα(α)

jα(π/2)

1
√

fλ,φ(mn(λ))
dλ,

where, again, mn(λ) is the point on the α-whirl closest to (φ, λgα(φ)) . We have made the

domain smaller, which suffices as the integrand is positive, to ensure that the closest point

is on the α-whirl for an angle θ ≥ φ+ α. We’ve also truncated the lower end of the domain

for simplicity of calculation.

Over the given range of λ, fλ,φ(mn(λ)) ≤ fλ,φ(φ+ψ1), where ψ1 is the root to λ = jα(ψ)

which is less than π/2. Here the ambiguity in the second column of Table 1 is no matter to

us, since we need only an upper bound on fλ,φ(mn(λ)). Note also that since i ≤ n/2, that

φ ≤ π/2, and thus that the results of Table 1 really do apply.

We now make a change of variables again, to ψ1. By equation 13, we can find dλ in

terms of dψ1, and ψ1. Thus, using equation 16,

I ≥ gα(φ)

∫ α

π/2

(sinψ1 + hα cosψ1)

gα(φ)gα(ψ1)
√

h2
α + 1 sinψ1

−hαgα(ψ1)(h
2
α + 1) cosψ1

(sinψ1 + hα cosψ1)2
dψ1,

= hα
√

h2
α + 1

∫ π/2

α

1

hα sinψ1
− 1

hα(sinψ1 + hα cosψ1)
dψ1,

=
√

h2
α + 1 ln tan

ψ1

2

∣

∣

∣

∣

∣

π/2

α

−
√

h2
α + 1

∫ π/2

α

1

(sinψ1 + hα cosψ1)
dψ1.

We now find a simple lower bound on sinx+ hα cosx on (0, π/2]. Since this function is

concave (down) on this domain, we can bound it from below by the linear which interpolates

its endpoints. This is the line y = 1−hα
π/2 x+ hα. Thus we can bound

I ≥ −
√

h2
α + 1 ln tan

α

2
−
√

h2
α + 1

∫ π/2

α

1

hα + 1−hα
π/2 ψ1

dψ1,

=
√

h2
α + 1 ln cot

α

2
−
√

h2
α + 1

π/2

1 − hα
ln

(

hα +
1 − hα
π/2

ψ1

)

∣

∣

∣

∣

∣

π/2

α

,

≥ hα ln cot
α

2
+
√

h2
α + 1

π/2

1 − hα
ln

(

hα +
1 − hα
π/2

α

)

(20)

We examine the first term of inequality 20. Since n ≥ N ≥ 4, we have cos α2 > 0.923.

112 CHAPTER 7. Optimality

We then bound the sine of x from above by x to get the following bound:

hα ln cot
α

2
= hα ln cos

α

2
− hα ln sin

α

2
,

≥ hα ln 0.923 − hα ln
α

2
,

= hα ln 0.923 + hα ln 2 + hα ln
1

α
,

= hα ln 1.846 + hα ln
1

α
≥ hα ln

1

α
. (21)

Now we suppose that N ≥ 10. This insures that hα ≥ 2, and the second term from

inequality 20 has a leading negative factor (its denominator). Thus we bound the log part

from above.

ln

(

hα +
1 − hα
π/2

α

)

= ln

(

hα +
2

n
− 2

π
ln 2 cosα

)

,

≤ ln

(

hα +
2

n

)

≤ ln

(

hα +
hα
n

)

≤ ln

(

hα +
hα
10

)

,

= ln

(

11

10
ln 2 cosα

)

+ ln
1

α
,

≤ ln 0.763 + ln
1

α
≤ ln

1

α
. (22)

We now bound the leading part of the second term. Clearly
√

h2
α + 1 ≤ hα + 1. Since

we supposed that hα ≥ 2, then
√

h2
α + 1

1 − hα
≥ hα + 1

1 − hα
= −1 +

2

1 − hα
.

Given the bound on hα, the right hand side is greater than −3. Thus
√

h2
α + 1

1 − hα
π/2 ≥ −5.

Combining this with inequalities (20)-(22) gives

I ≥ (hα − 5) ln
1

α
(23)

Now we assume that

N ≥ max

{

10π

ε ln 2
,

π

arccos(2−
ε
2)

}

.

The first bound on N insures that 5α ≤ 5π/N ≤ ε ln 2
2 . The second insures that ln cosα ≥

− ε ln 2
2 . Then

hα − 5 = [ln 2 cosα− 5α]
1

α
= [ln 2 + ln cosα− 5α]

1

α
≥
[

ln 2 − ε ln 2

2
− ε ln 2

2

]

1

α
,

and thus hα − 5 ≥ [(1 − ε) ln 2] 1
α . Combining with inequality 23 gives the theorem.

We note that the chosen N is not optimal, but suffices for a rough analysis. Thus for

example, for all ε < 1, we require N > 46, but a less general analysis can show that, for

example, if N ≥ 30, then I ≥ 2
5

[

1
α ln 1

α

]

.

7.4. Using the Upper Bound 113

Corollary 7.3.3. For sufficiently small α, there exist triangulations, (V,E) with minimum

angle α such that
∫

E

1

lfs
T

(z)
dz = Ω

(

1

α
log

(

1

α

))

|V| ,

where lfs
T

(z) is the local feature size of point z with respect to the triangulation, and E =

∪e∈Ee.

Proof. We apply the theorem for ε = 1
2 , getting an appropriate N . We let α = π/N, then

consider the spiral mesh on N. We can bound the integral by the value on the N
2 +1 spokes

for which the theorem applies:

∫

E

1

lfs
T

(z)
dz ≥

N/2
∑

i=0

∫ qi

p

1

lfs
T

(z)
dz ≥ (1 +N/2)

ln 2

2

1

α
ln

1

α
=

ln 2

4

(

1

α
ln

1

α

)

|V| .

7.4 Using the Upper Bound

The upper bound was used in Corollary 5.6.1 to get asymptotic improvements in the op-

timality constants of the Adaptive Delaunay Refinement Algorithm. As discussed in Sec-

tion 5.8, the improvements from using this upper bound are tangible, but the optimality

constants are ultimately too large to be of any real value.

We briefly consider the improvements in optimality that can be stated for Ruppert’s

Algorithm under the non-acute input condition. Ruppert proved [39] the following grading

constants for the case where input meet at non-acute angles:

CT =
1 + 2 sinα

1 − 2
√

2 sinα
, CS =

1 +
√

2

1 − 2
√

2 sinα
,

where α < arcsin 1
2
√

2
is the output angle parameter, and minimum angle in the output

mesh. Using Mitchell’s work, the optimality constant for Ruppert’s Algorithm is

ζ ′ (α) =
2

π
(2CS + 3)2

(

21.5

α
+ 11.9

)

,

The improved optimality constant is

ζ (α) = 1 + ζm (α) + ζt (α) ,

where

ζm (α) =
6

2 log
∣

∣

∣1 + 1
2(CS+1)

∣

∣

∣

(

ln
3

2
+ hαπ +

√

h2
α + 1

[

ln(hα + 1/hα) − ln(2 sin
ln 3

8
)

])

,

ζt (α) =
1

π
(2CT + 3)2

(

21.5

α
+ 11.9

)

.

114 CHAPTER 7. Optimality

1000

10000

100000

1e+06

1e+07

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
S
frag

rep
lacem

en
ts

ζ (α)
ζ ′ (α)

α

ζ
(α

)

Figure 36: The improvements in the optimality constant for Ruppert’s algorithm are
shown. The improved constant is ζ (α) . The improvement is approximately an order of
magnitude.

The constants ζ (α) , ζ ′ (α) are plotted in Figure 36. The results of this chapter only

yield improvements of one order of magnitude or less for moderate values of α.

In Figure 37, the separate grading constants with respect to midpoints and circum-

centers, i.e., ζm (α) and ζt (α) , are plotted. For α between 8◦ and 16◦, note that ζm (α)

takes values less than 1000. Considering that this optimality constant relies on a number

of worst-case assumptions, a value as small as 1000 is nearly practical.

7.4. Using the Upper Bound 115

100

1000

10000

100000

1e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

P
S
frag

rep
lacem

en
ts

ζm (α)
ζt (α)

α

ζ
(α

)

Figure 37: The two constants associated with the optimality of the Steiner circumcenters,
and Steiner midpoints, respectively ζt (α) and ζm (α) are plotted versus α, for Ruppert’s
Algorithm. Note that ζm (α) takes values as small as 1000 for some α.

116 CHAPTER 7. Optimality

117

REFERENCES

[1] Th. Apel, M. Berzins, P. K. Jimack, G. Kunert, A. Plaks, I. Tsukerman and M. Walkley.
Mesh shape and anisotropic elements: theory and practice. In The mathematics of finite
elements and applications, X, MAFELAP 1999 (Uxbridge), pages 367–376. Elsevier,
Oxford, 2000. URL citeseer.nj.nec.com/373015.html.

[2] I. Babuška and A. K. Aziz. On the angle condition in the finite element method. SIAM
Journal on Numerical Analysis, 13(2):214–226, 1976.

[3] Brenda S. Baker, Eric Grosse and Conor S. Rafferty. Nonobtuse triangulation of poly-
gons. Discrete Comput. Geom., 3(2):147–168, 1988. ISSN 0179-5376.

[4] Eric B. Becker, Graham F. Carey and J. Tinsley Oden. Finite elements. Vol. I . The
Texas Finite Element Series, I. Prentice Hall Inc., Englewood Cliffs, NJ, 1981. ISBN
0-13-317057-8. An introduction.

[5] M. Bern, S. Mitchell and J. Ruppert. Linear-size nonobtuse triangulation of polygons.
Discrete Comput. Geom., 14(4):411–428, 1995. ISSN 0179-5376. ACM Symposium on
Computational Geometry (Stony Brook, NY, 1994).

[6] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In
Ding Zhu Du and Frank Hwang, editors, Computing in Euclidean geometry , volume 1
of Lecture Notes Series on Computing , pages 23–90. World Scientific Publishing Co.
Inc., River Edge, NJ, 1992. ISBN 981-02-0966-5.

[7] Marshall Bern, David Eppstein and John Gilbert. Provably good mesh generation. J.
Comput. System Sci., 48(3):384–409, 1994. ISSN 0022-0000. 31st Annual Symposium
on Foundations of Computer Science (FOCS) (St. Louis, MO, 1990).

[8] Charles Boivin and Carl F. Ollivier-Gooch. Guaranteed-quality triangular mesh genera-
tion for domains with curved boundaries. International Journal for Numerical Methods
in Engineering , 55(10):1185–1213, 2002.

[9] A. Bowyer. Computing Dirichlet tessellations. Comput. J., 24(2):162–166, 1981. ISSN
0010-4620.

[10] Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello and Shang-
Hua Teng. Sliver exudation. J. ACM , 47(5):883–904, 2000. ISSN 0004-5411.

[11] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–108, 1989.
ISSN 0178-4617. Computational geometry (Waterloo, ON, 1987).

[12] L. Paul Chew. Guaranteed-quality triangular meshes. CS 89-983 , Computer Science
Department, Cornell University, 1989.

[13] L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. In Proceedings
of the Ninth Annual Symposium on Computational Geometry (San Diego, California,
1993), pages 274–280. ACM, New York, 1993.

118 REFERENCES

[14] H. S. M. Coxeter and S. L. Greitzer. Geometry Revisited . The Mathematical Associa-
tion of America, Washington, DC, 1967. ISBN 0-88385-600-X.

[15] Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried Schwarzkopf. Compu-
tational geometry . Springer-Verlag, Berlin, revised edition, 2000. ISBN 3-540-65620-0.
Algorithms and applications.

[16] Tamal K. Dey, Kōkichi Sugihara and Chandrajit L. Bajaj. Delaunay triangulations
in three dimensions with finite precision arithmetic. Comput. Aided Geom. Design,
9(6):457–470, 1992. ISSN 0167-8396.

[17] H. Edelsbrunner, X. Li, Miller, G. Stathopoulos, D. A. Talmor, S. Teng,
A Ungor and N. J. Walkington. Smoothing and cleaning up slivers. In
ACM Symposium on Theory of Computing , pages 273–277. 2000. URL
citeseer.nj.nec.com/edelsbrunner00smoothing.html.

[18] Herbert Edelsbrunner. Geometry and topology for mesh generation, volume 7 of Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, Cambridge, 2001. ISBN 0-521-79309-2.

[19] Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. In Proceedings of the Fourth
Annual Symposium on Computational Geometry (Urbana, IL, 1988), pages 118–133.
ACM, New York, 1988.

[20] Herbert Edelsbrunner and Tiow Seng Tan. An upper bound for conforming Delaunay
triangulations. Discrete Comput. Geom., 10(2):197–213, 1993. ISSN 0179-5376.

[21] David A. Field. Qualitative measures for initial meshes. International Journal For
Numerical Methods In Engineering , 47:887–906, 2000.

[22] Steven Fortune. A sweepline algorithm for Voronŏı diagrams. Algorithmica, 2(2):153–
174, 1987. ISSN 0178-4617.

[23] Stephen Guattery, Gary L. Miller and Noel Walkington. Estimating interpolation error:
a combinatorial approach. In Proceedings of the Tenth Annual ACM-SIAM Symposium
on Discrete Algorithms (Baltimore, MD, 1999), pages 406–413. ACM, New York, 1999.

[24] Claes Johnson. Numerical solution of partial differential equations by the finite element
method . Cambridge University Press, Cambridge, 1987. ISBN 0-521-34514-6; 0-521-
34758-0.

[25] Clark Kimberling. Triangle centers and central triangles. Congr. Numer.,
129:xxvi+295, 1998. ISSN 0384-9864.

[26] D. T. Lee and A. K. Lin. Generalized Delaunay triangulation for planar graphs. Dis-
crete Comput. Geom., 1(3):201–217, 1986. ISSN 0179-5376.

[27] G. L. Miller, D. Talmor, S. Teng and N. J. Walkington. A Delaunay based numerical
method for three dimensions: generation, formulation and partition. In Proceedings
of the 27th Annual ACM Symposium on Theory of Computing , pages 683–692. ACM
Press, 1995.

REFERENCES 119

[28] Gary L. Miller. A timing analysis of a Delaunay refinement mesh generation algorithm,
December 2002. In preparation.

[29] Gary L. Miller, Steven E. Pav and Noel J. Walkington. Fully incremental 3d Delaunay
mesh generation. In Proceedings of the 11th International Meshing Roundtable, pages
75–86. Sandia National Laboratory, September 2002.

[30] Gary L. Miller, Steven E. Pav and Noel J. Walkington. An incremental Delaunay
meshing algorithm. Technical Report 02-CNA-011 , Center for Nonlinear Analysis,
Carnegie Mellon University, 2002. URL http://www.math.cmu.edu/cna.

[31] Scott A. Mitchell. Cardinality bounds for triangulations with bounded minimum angle.
In Sixth Canadian Conference on Computational Geometry , pages 326–331. 1994.

[32] Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation in higher dimen-
sions. SIAM J. Comput., 29(4):1334–1370 (electronic), 2000. ISSN 1095-7111.

[33] David M. Mount and Alan Saalfeld. Globally-equiangular triangulations of co-circular
points in O(n logn) time. In Proceedings of the Fourth Annual Symposium on Compu-
tational Geometry (Urbana, IL, 1988), pages 143–152. ACM, New York, 1988.

[34] Ernst P. Mücke. A robust implementation for three-dimensional Delaunay triangula-
tions. Internat. J. Comput. Geom. Appl., 8(2):255–276, 1998. ISSN 0218-1959.

[35] Aleksandar Nanevski, Guy Blelloch and Robert Harper. Automatic generation of
staged geometric predicates. In International Conference on Functional Programming ,
pages 217–228. Florence, Italy, September 2001.

[36] J. T. Oden and J. N. Reddy. An introduction to the mathematical theory of finite
elements. Wiley-Interscience [John Wiley & Sons], New York, 1976. Pure and Applied
Mathematics.

[37] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara and Sung Nok Chiu. Spatial tes-
sellations: concepts and applications of Voronoi diagrams. John Wiley & Sons Ltd.,
Chichester, second edition, 2000. ISBN 0-471-98635-6. With a foreword by D. G.
Kendall.

[38] Carl F. Ollivier-Gooch and Charles Boivin. Guaranteed-quality simplicial mesh gener-
ation with cell size and grading control. Engineering with Computers, 17(3):269–286,
2001.

[39] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh genera-
tion. J. Algorithms, 18(3):548–585, 1995. ISSN 0196-6774. Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA) (Austin, TX, 1993).

[40] Michael Ian Shamos and Dan Hoey. Closest-point problems. In 16th Annual Symposium
on Foundations of Computer Science (Berkeley, Calif., 1975), pages 151–162. IEEE
Computer Society, Long Beach, Calif., 1975.

[41] Jonathan Richard Shewchuk. Delaunay Refinement Mesh Generation. Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
May 1997. Available as Technical Report CMU-CS-97-137.

120 REFERENCES

[42] Jonathan Richard Shewchuk. Constrained Delaunay tetrahedralizations and proba-
bly good boundary recovery. In Proceedings of the Eleventh International Meshing
Roundtable (Ithaca, New York), pages 193–204. Sandia National Labs, September 2002.

[43] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh gen-
eration. Comput. Geom., 22(1-3):21–74, 2002. ISSN 0925-7721. 16th ACM Symposium
on Computational Geometry (Hong Kong, 2000).

[44] Jonathan Richard Shewchuk. What is a good linear element? interpolation, condi-
tioning, and quality measures. In Proceedings of the Eleventh International Meshing
Roundtable (Ithaca, New York), pages 115–126. Sandia National Labs, September 2002.

[45] K. Sugihara, M. Iri, H. Inagaki and T. Imai. Topology-oriented implementation—
an approach to robust geometric algorithms. Algorithmica, 27(1):5–20, 2000. ISSN
0178-4617. Implementation of geometric algorithms.

[46] Monique Teillaud. Towards dynamic randomized algorithms in computational geome-
try . Springer-Verlag, Berlin, 1993. ISBN 3-540-57503-0.

[47] D. F. Watson. Computing the n-dimensional Delaunay tessellation with application to
Voronŏı polytopes. Comput. J., 24(2):167–172, 1981. ISSN 0010-4620.

[48] Chee-Keng Yap. A geometric consistency theorem for a symbolic perturbation scheme.
In Proceedings of the Fourth Annual Symposium on Computational Geometry (Urbana,
IL, 1988), pages 134–142. ACM, New York, 1988.

