
Delaunay Refinement by Corner Lopping

Steven E. Pav1 and Noel J. Walkington2

1 University of California at San Diego, La Jolla, CA. spav@ucsd.edu
2 Carnegie Mellon University, Pittsburgh, PA. noelw@andrew.cmu.edu

Summary. An algorithm for quality Delaunay meshing of 2D domains with curved
boundaries is presented. The algorithm uses Ruppert’s “corner lopping” heuristic
[MR96b:65137]. In addition to admitting a simple termination proof, the algorithm
can accept curved input without any bound on the tangent angle between adjoining
curves. In the limit case, where all curves are straight line segments, the algorithm
returns a mesh with a minimum angle of arcsin

�
1/2

√
2
�
, except “near” input cor-

ners. Some loss of output quality is experienced with the use of curved input, but
this loss is diminished for smaller input curvature.

Key words: unstructured, simplicial, planar, curved boundary, Delaunay, mesh.

1 Introduction

The Delaunay Refinement method is used for quality simplicial mesh generation
in two and three dimensions. A Delaunay Refinement algorithm takes an input
of points and segments (or curves) and adds Steiner Points to guarantee that the
output Delaunay Triangulation conforms to the input and has high quality simplices,
as measured by the circumradius to shortest edge length ratio. A Steiner Point is
added to “split” an input segment into subsegments if a mesh vertex forms an
obtuse angle with the segment. A Steiner Point is added at the circumcenter of a
poor triangle in the mesh. Termination of the algorithm is had by proving a lower
bound on the distance between Steiner Points, and applying compactness arguments
[MR96b:65137, Pse2003].

Ruppert was a pioneer of the Delaunay Refinement method. Ruppert’s Algo-
rithm accepts a planar straight line graph, and outputs a Delaunay mesh where no
output angle is smaller than a user-chosen parameter, which can be as large as 20.7◦.
In Ruppert’s analysis input segments have to meet at nonacute angles, otherwise
his näıve algorithm might not terminate [MR96b:65137].

Ruppert offered two heuristic solutions to this problem. The first, “concentric
shell splitting,” has been adapted to a working algorithm, and allows better output
quality guarantees [Sjr1997, Pse2003, MglPseWnj2005]. In this solution, segments
sharing a common endpoint are split at the same distance from the endpoint, i.e., on

166 Steven E. Pav and Noel J. Walkington

the same “shell.” This simple fix gives a good lower bound, and an input-independent
upper bound, on output angles. However, its analysis is involved, and does not
generalize naturally to higher dimensions or curved input (due to its reliance on
“power of two” arguments). Ruppert’s second solution, “corner lopping,” is analyzed
herein, and admits a simple proof.

Delaunay Refinement for curved input was considered by Boivin and Ollivier-
Gooch [BcOGc:2002]. Their analysis requires that input segments meet at an angle
of at least π/3. Concentric shell splitting to deal with smaller input angles was
mentioned in this context, but not shown to give a working algorithm; this fix
clearly would require further modification to the output quality guarantee.

Fig. 1. The outline of a mock air foil and output from the meshing algorithm.
Solving a fluid dynamics PDE would probably require further mesh refinement.

The Delaunay Refinement Algorithm has also been generalized to three dimen-
sions. Early analysis required input segments and faces to meet at nonacute angles
[MglPseWnj2002c]. As a fix, later work used protective regions around input points
and segments [338236, CoVeYv01, Cswetal2004, PseWnj2004]. In that way these
algorithms resemble corner lopping, which places a protective ball around acute cor-
ners in the input. Reverse from what is usually seen, these three-dimensional algo-
rithms do not appear to be the natural generalization of any known two-dimensional
algorithm.

The motivations for the present work, then, are:

Delaunay Refinement by Corner Lopping 167

1. To present an algorithm which accepts straight or curved input without a lower
bound on input angle, yet admits a simple termination proof.

2. To find an algorithm which is the “projection” into the plane of recently discov-
ered three-dimensional algorithms, and thereby to gain a better understanding
of those algorithms.

2 Preliminaries

The input to the algorithm is assumed to be a PRCC.

Definition 1 (PRCC). A set of points and a set of non-closed regular curves em-
bedded in R2, (P, C), form a Piecewise Regular Curve Complex (PRCC) if

(i) for any curve, c ∈ C, the endpoints of c are elements of P.
(ii) given two curves, c1, c2 ∈ C, their intersection is either empty or an endpoint

(or endpoints) common to both curves.
(iii) given p ∈ P, c ∈ C, either p is an endpoint of c, or p is not on c.

The goal of meshing is to produce, from input (P, C), the Delaunay Triangulation
of a set of points, P�, hereafter denoted as D (P�), such that (i) P ⊆ P�, (ii) each
input curve of C is approximated by a piecewise linear curve which is the union
of edges in D (P�), (iii) all or most of the triangles of D (P�) are “high quality.”
Absent of a specific interpolation problem, triangle “quality” is taken to be inversely
proportional to its minimum angle. When guaranteeing a large minimum angle is
not possible due to input constraints, an upper bound on the maximum angle of the
mesh is often desired [BaAz76, Ci78, MglPseWnj2005].

Given two points, p, q let pq be the line segment with these points as endpoints,
and let %pq denote a curve with p and q as endpoints. Let |p− q| denote the distance
between p and q. For a curve c, and a point p, let

|p− c| = min
x∈c

|p− x|

be the distance from p to c. We use a ∨ b to denote the maximum of quantities a
and b, and a ∧ b to represent the minimum.

The local feature size, first defined by Ruppert [MR96b:65137], is used to prove
termination and quality of the output mesh. We take the classical definition:

Definition 2 (Local Feature Size). Given a PRCC, (P, C), define lfsi (x), for
i = 0, 1, as the distance from x to two mutually disjoint features of the PRCC of
dimension no greater than i. By “feature” we mean a point in P or a curve in C.
Thus, for example, lfs0 (x) is the distance from x to the second nearest point of P.
Let lfs (x) = lfs1 (x) be the local feature size.

Note 1. The following facts about local feature size are immediate: (i) For any x,
lfs1 (x) ≤ lfs0 (x) , (ii) lfsi (x) is a Lipschitz function with constant 1, i.e., lfsi (p) ≤
lfsi (q) + |p− q| , (iii) lfsi (x) has a positive minimum value on R2.

Some authors use “local feature size” to describe a different function, the distance
of a point on the input to the medial axis of the input [AnCsKrk2001]. While both
definitions give Lipschitz functions, our definition yields a function defined in all of

168 Steven E. Pav and Noel J. Walkington

R2 with a strictly positive lower bound. The latter fact is important because our
local feature size describes, roughly, the size of triangles we expect to see nearby in
an output mesh of the given input.

In the case of straight line input, a lower bound on the angle subtended by input
segments is used to show that Steiner Points on input segments are not placed too
close together. For PRCC input, we instead use the following

Definition 3 (Curve Separation). For the sake of this definition, given curve
c = &xy, we say that a point z on c is sufficiently far from x if |x− z| ≥ lfs (x) /2C0,
where C0 = 1 +

√
2, is a “grading constant” (see Lemma 5).

Given two curves c1, c2 sharing a single endpoint x, then the separation between
them is

inf
z1,z2

|z1 − z2|
|z1 − x| ∨ |z2 − x| ,

where zi is a point on ci that is sufficiently far from x.
If curves c1, c2 share both their endpoints, say x and y, then the separation

between them is

inf
z1,z2

|z1 − z2|
|z1 − x| ∨ |z2 − x| ∨ |z1 − y| ∨ |z2 − y| ,

where zi is a point on ci that is sufficiently far from both x and y.
For a given PRCC, let σ be a lower bound on the separation between any pair

of curves with at least one common endpoint. We say σ is the “minimum curve
separation” of the PRCC.

Given that input curves are continuous and may meet at most at their endpoints, the
separation between two curves is strictly positive, and thus σ is positive as well. In
the case where all input curves are straight line segments, we have σ = 2 sin (θ∗/2) ,
where θ∗ ≤ π/3 is a lower bound on the angle subtended by the segments.

Following Boivin and Ollivier-Gooch [BcOGc:2002], we make the following

Definition 4 (Total Variation of a Curve). The total variation of curve c is�
c
| dθ| , where θ is the angle subtended by the tangent of the curve. Let Δt be an

upper bound on the total variation of every curve in an input PRCC.

For the remainder of this paper we assume Δt ≤ π/3. Such a bound can be
achieved by splitting curves in a preprocessing step.

3 The Algorithm

The Delaunay Refinement algorithm we consider maintains sets, P�, and C�, which
are initialized, respectively, as P and C. The algorithm adds Steiner Points to P�,
then returns D (P�) on termination. Throughout this work, “curve” or “subcurve”
means a member of C�, while “input curve” refers to a member of C. “Input point”
refers to a point of P. We will take lfsi (·) to be with respect to the PRCC input to
the algorithm, (P, C).

Our algorithm protects regions around the input points and (sub)curves. Follow-
ing the notation of Ruppert [MR96b:65137], a (sub)curve is said to be “encroached”
if there exists a vertex of the mesh inside its diametral circle, where the diametral

Delaunay Refinement by Corner Lopping 169

Algorithm 2: Algorithm for meshing via corner lopping.
Input: A PRCC, an angle bound, the splitting fraction
Output: A mesh

cornerLop((P, C) , κ, β)
(1) Let P� ← P, C� ← C.
(2) Construct D (P�).
(3) Use D (P�) to find lfs0 (·) for points in P’.
(4) foreach p ∈ P

(5) if p is the corner of an acute angle in C�.
(6) d(p) ← �√

2− 1
�
lfs0 (p)

(7) splitball(p, 1)
(8) else
(9) Let d(p) ← 0.
(10) while any of these rules can be executed, execute one of them, with the

rules listed in descending priority:
(11) if there are p ∈ P, q ∈ P�, with |p− q| < d(p) then splitball(p, β)
(12) if there is z ∈ P�, c ∈ C� such that z encroaches c then splitcurve(c, z)
(13) if there is Δxyz ∈ D (P�) such that ∠xyz ≤ κ and the circumcenter of

Δxyz is not closer to some q ∈ P than d(q) then splittri(Δxyz)
(14) return D (P�)

splitball(p, C)
(15) Let d(p) ← Cd(p).
(16) foreach %pt ∈ C�

(17) Let x be the point on %pt such that |p− x| = d(p)
(18) Add x to P�. Remove %pt from C�, replacing it with &px, %xt.

splitcurve(&xy, [z])
(19) if a z is given
(20) Let p be some point on &xy, perhaps based on z.
(21) else
(22) Let p be some point on &xy.
(23) Add p to P�, replace &xy in C� by subcurves &xp and &py.

splittri(Δxyz)
(24) Let p be the circumcenter of Δxyz.
(25) if p encroaches curve c ∈ C�

(26) splitcurve(c)
(27) else
(28) Add p to P�.

circle of curve %pq is the circle with pq as diameter. We denote the diametral circle
of curve c by Cd (c).

The algorithm assigns to each input point, p, a radius d(p) ≥ 0, and, by analogy
with curves, p is said to be encroached if a vertex of the mesh is in B (p), which is
defined to be the open ball of radius d(p) centered at p.

The algorithm, given as Algorithm 2, takes the input PRCC and two parameters:
κ, the desired angle bound of the output mesh, and β ∈ �

1
2
, 1

�
, the factor by which a

170 Steven E. Pav and Noel J. Walkington

radius d(p) is reduced when an input point p is encroached. Adjusting β may affect
output mesh cardinality.

To split the curve c = &xy, an intermediate point p ∈ c is selected and c is replaced
by two subcurves &xp and &py. In the case c is a segment, traditionally p is chosen as
the midpoint of the segment. Without a clear definition of the midpoint of a curve,
we assume only that the algorithm satisfies the following assumption regarding the
selection of p:

Assumption 1. Assume there are constants η ≥ 1 and μ ≥ 1 such that the algo-
rithm is implemented so that
(1) if p is selected to split curve c by a call to splitcurve(c, z), then |p− Cd (c)| ≥

|p− z|/η.
(2) if p is selected to split curve c = &xy by a call to splitcurve(c), then |p− Cd (c)| ≥

r/μ, where r is the radius of the circumcircle, i.e., |x− y| /2.

This assumption is needed to prevent a midpoint from being added too close to
the diametral circle (and any points outside this circle) of the curve it is added to
split; see Figure 2.

cor2

cor1

zp

w

(a) Case 1

cor2

cor1

z

pw

(b) Case 2

Fig. 2. For the case of segment input, as shown in (a), Assumption 1 can be satisfied
with η = μ = 1. For general curves, as in (b), a point p selected to split a curve may
be near the diametral circle of the curve, i.e., near other Steiner Points which may
lie outside the diametral circle.

4 Proof of Termination

We first consider some facts regarding curved input. The following lemma is a con-
sequence of the Mean Value Theorem:

Lemma 1 (Lens Containment). Let c be a curve with endpoints x, y, and with
total variation less than Δt. Suppose z is a point on c distinct from the endpoints.
Then

Delaunay Refinement by Corner Lopping 171

∠xzy ≥ π −Δt.

This lemma claims that the worst case of a curve of total variation no more than
Δt is a circular arc. That is, a curve &xy with bounded total variation is contained
in a diametral lens of segment xy. The corollaries claim that by careful choice of p
in step 20 and step 22, the algorithm will conform to Assumption 1, with

η =
1 + tan (Δt/2)

1− tan (Δt/2)
, μ =

1

1− tan (Δt/2)
.

Corollary 1. Let c = &xy be a curve with total variation less than Δt. Let Cd (c) be
the diametral circumcircle of c, and let z be a point in this circle. Then there is a
point p on c such that

|p− Cd (c)| ≥ |p− z| 1− tan (Δt/2)

1 + tan (Δt/2)
.

Corollary 2. Let c = &xy be a curve with total variation less than Δt. Let Cd (c) be
the diametral circumcircle of c. Then there is a point p on c such that

|p− Cd (c)| ≥ r (1− tan (Δt/2)) ,

where r is the radius of the diametral circle.

Both the corollaries are proved by taking p to be the intersection of the curve with
the perpendicular bisector of segment xy, as shown in Figure 2(b).

The following lemma, which is proved by basic geometry and use of the Mean
Value Theorem, guarantees that a point encroaching a subcurve cannot be a mid-
point on the same input curve.

Lemma 2. Let c� = &xy be a subcurve of c, which is a curve with total variation less
than Δt ≤ π/2. Let z be a point on c which is not on c�. Then ∠xzy ≤ π/2.

The next lemma is needed since we protect curves with the diametral circle
of their secant segments, but add “midpoints” on the curve. Thus, in general, the
diametral circle of a curve may not wholly contain the diametral circles of its sub-
curves.

Lemma 3 (Diametral Circle Protection). Let c = &xy be a curve with total
variation less than Δt. Let p be a point which does not encroach the diametral circle
of c. Letting |p− c| be the distance from p to the curve c, then

|p− c|
|p− x| ∧ |p− y| ≥

1

ζ
,

where ζ =
√

2 sin (Δt/2)/
�√

1 + sin Δt − 1
�
.

Proof. We assume that |p− x| ≤ |p− y| . Let <1, <2 be the two arcs of points sub-
tending angle π −Δt with x, y. By Lemma 1, c is between these two arcs. Without
loss of generality, assume p is “above” <1. Let w be the center of arc <1.

We consider two cases:

172 Steven E. Pav and Noel J. Walkington

 cor2

 cor1

x y

p

w

�1

�2

p�

p��

m

(a) Case 1

 cor2

 cor1

x y

p

w

�1

�2

(b) Case 2

Fig. 3. Two cases in the proof of Lemma 3. In (a), wp intersects the arc <1, while
there is no such intersection in (b).

1. The first case is if pw and <1 intersect. Let p� be their point of intersection.
Let p�� be the intersection of pw with the diametral circle of segment xy, as in
Figure 3(a).
Then, using the sine rule,

|p− c|
|p− x| ∧ |p− y| =

|p− c|
|p− x| ≥

|p− p�|
|p− x| =

sin ∠p�xp

sin ∠pp�x
≥ sin ∠p�xp��

sin ∠p��p�x
=
|p�� − p�|
|p�� − x| .

Note that since ∠pp�x is obtuse, then ∠p�xp is acute and we can indeed conclude
that sin ∠p�xp ≥ sin ∠p�xp��. Let R = |w − x| , and let r = |m− x| , where m
is the midpoint of x and y. Because ∠xwy = Δt, then r = R sin (Δt/2) . Let
φ = ∠p��mx. Then**p�� − p�** =

w − p��−R =

!
(R cos (Δt/2) + r sin φ)2 + (r cos φ)2 −R

= R
�"

1 + sin Δt sin φ− 1
�

.

Then

|p�� − p�|
|p�� − x| =

R
√

1 + sin Δt sin φ−R

2r sin (φ/2)
=

√
1 + sin Δt sin φ− 1

2 sin (Δt/2) sin (φ/2)
.

This quantity decreases as φ increases, thus it takes minimum value when φ =
π/2. Thus

|p�� − p�|
|p�� − x| ≥

√
1 + sin Δt − 1√
2 sin (Δt/2)

.

2. The other case is that pw and <1 do not intersect, as shown in Figure 3(b). That
is, ∠mxp > π/2 + Δt/2. Looking at the circle centered at w through <1, then
|p− c| ≥ |p− <1| = |p− x| . Thus

|p− c|
|p− x| ∧ |p− y| ≥ 1 >

1√
2
≥
√

1 + sin Δt − 1√
2 sin (Δt/2)

.

