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Preface

These notes were originally prepared during Fall quarter 2003 for UCSD Math 174, Numerical
Methods. In writing these notes, it was not my intention to add to the glut of Numerical Analysis
texts; they were designed to complement the course text, Numerical Mathematics and Computing,
Fourth edition, by Cheney and Kincaid [7]. As such, these notes follow the conventions of that
text fairly closely. If you are at all serious about pursuing study of Numerical Analysis, you should
consider acquiring that text, or any one of a number of other fine texts by e.g., Epperson, Hamming,

etc. [3, 4, 5].
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Figure 1: The chapter dependency of this text, though some dependencies are weak.

Special thanks go to the students of Math 174, 2003—2004, who suffered through early versions
of these notes, which were riddled with (more) errors.

Revision History

0.0 Transcription of course notes for Math 174, Fall 2003.
0.1 As used in Math 174, Fall 2004.
0.11 Added material on functional analysis and Orthogonal Least Squares.

Todo

More homework questions and example problems.

Chapter on optimization.

Chapters on basic finite difference and finite element methods?
Section on root finding for functions of more than one variable.
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Chapter 1

Introduction

1.1 Taylor’s Theorem

Recall from calculus the Taylor’s series for a function, f(x), expanded about some number, ¢, is
written as

2

f@)~ay+a(x—c)+az(x—c)+....

Here the symbol ~ is used to denote a “formal series,” meaning that convergence is not guaranteed
in general. The constants a; are related to the function f and its derivatives evaluated at c. When

¢ = 0, this is a MacLaurin series.

For example we have the following Taylor’s series (with ¢ = 0):

.Z'2 .Z'3
L - -
e _1+w+2!+3!+... (1.1)
3 5
. €T T
1'2 1'4
cos(m):1—§+z—... (1.3)

Theorem 1.1 (Taylor’s Theorem). If f(x) has derivatives of order 0,1,2,...,n+ 1 on the closed
interval [a, b], then for any x and ¢ in this interval

B n f(k) (c) (g; _ C)k f(n+1) (f) (:L' . C)n+1
f(z) —kz_% X + TESY ,

where ¢ is some number between x and ¢, and f*(z) is the k" derivative of f at z.

We will use this theorem again and again in this class. The main usage is to approximate
a function by the first few terms of its Taylor’s series expansion; the theorem then tells us the
approximation is “as good” as the final term, also known as the error term. That is, we can make
the following manipulation:
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"R () (z— o) (n+1) z— )ttt
RS o CIC YR LY e

— k! (n+1)!
f® (e m—cﬁ () (- o)
Z o (n+1)!
f% x—@ e @] o — o
' Z N (n+1)!

On the left hand side is the difference between f(z) and its approximation by Taylor’s series.
We will then use our knowledge about f(**1) (¢) on the interval [a, b] to find some constant M such
that

(n+1) _ . ntl
_ U’+(f1%!d B

Example Problem 1.2. Find an approximation for f(x) = sinz, expanded about ¢ = 0, using
n = 3.
Solution: Solving for f*¥) is fairly easy for this function. We find that

. . cos(0)z  —sin(0)2?2  —cos(0)2®  sin(¢) 2?
f(x) =sinxz = sin(0) + i') 2(! ) 3(! ) (4!)
3 sin(€)a?
R R VI
SO
3 4 4
sinx — <x—%>‘ = Sm(zi)a: §;—4,
because [sin(§)| < 1. .

Example Problem 1.3. Apply Taylor’s Theorem for the case n = 1.
Solution: Taylor’s Theorem for n = 1 states: Given a function, f(x) with a continuous derivative
on [a,b], then

fl@)=fle)+ f(§)x —c)

for some £ between x, ¢ when x, ¢ are in [a, b].
This is the Mean Value Theorem. As a one-liner, the MVT says that at some time during a trip,
your velocity is the same as your average velocity for the trip. o

Example Problem 1.4. Apply Taylor’s Theorem to expand f(z) = 2® — 2122+ 17 around ¢ = 1.
Solution: Simple calculus gives us

fO@) = 2% —212% 417,
fOx) = 32% — 42z,
) = 6z — 42,
@) = 6,

[P = o
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with the last holding for £ > 3. Evaluating these at ¢ = 1 gives

—36 (x —1)? N 6(x—1)>3
2 6

flx)=-34+-39(x —1)+

Note there is no error term, since the higher order derivatives are identically zero. By carrying out
simple algebra, you will find that the above expansion is, in fact, the function f(x). -

There is an alternative form of Taylor’s Theorem, in this case substituting x + h for x, and x
for ¢ in the more general version. This gives

Theorem 1.5 (Taylor’s Theorem, Alternative Form). If f(x) has derivatives of order 0,1,...,n+1
on the closed interval [a,b], then for any z in this interval and any h such that x + h is in this
interval,

IO @ W o
f(:”h)_kz_o L P s TR

where £ is some number between x and x + h.

We generally apply this form of the theorem with h — 0. This leads to a discussion on the
matter of Orders of Convergence. The following definition will suffice for this class

Definition 1.6. We say that a function f(h) is in the class O (h*) (pronounced “big-Oh of h*”)
if there is some constant C' such that

If(B)| < C|n|f

for all h “sufficiently small,” i.e., smaller than some h* in absolute value.
For a function f € O (hk) we sometimes write f = O (hk) . We sometimes also write O (hk),
meaning some function which is a member of this class.

Roughly speaking, through use of the “Big-O” function we can write an expression without
“sweating the small stuff.” This can give us an intuitive understanding of how an approximation
works, without losing too many of the details.

Example 1.7. Consider the Taylor expansion of In x:

(1/x) h N (—=1/x?) n? N (2/€3) w3

In(x+h) = Inz+ 1 5 5
Letting © = 1, we have
In(l4+h) = h—%2+3—é3h3.
Using the fact that £ is between 1 and 1+ h, as long as h is relatively small (say smaller than %),
the term % can be bounded by a constant, and thus
2

m(l+h) = h-=+0().

Thus we say that h — %2 isa O (h3) approximation to In(1 4 h). For example

0.012
In(1 + 0.01) =~ 0.009950331 =~ 0.00995 = 0.01 — R
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1.2 Loss of Significance

Generally speaking, a computer stores a number x as a mantissa and exponent, that is = = +r x 10¥,
where r is a rational number of a given number of digits in [0.1,1), and k is an integer in a certain
range.

The number of significant digits in r is usually determined by the user’s input. Operations
on numbers stored in this way follow a “lowest common denominator” type of rule, i.e., precision
cannot be gained but can be lost. Thus for example if you add the two quantities 0.171717 and
0.51, then the result should only have two significant digits; the precision of the first measurement
is lost in the uncertainty of the second.

This is as it should be. However, a loss of significance can be incurred if two nearly equal
quantities are subtracted from one another. Thus if I were to direct my computer to subtract
0.177241 from 0.177589, the result would be .348 x 1073, and three significant digits have been lost.
This loss is called subtractive cancellation, and can often be avoided by rewriting the expression.
This will be made clearer by the examples below.

Errors can also occur when quantities of radically different magnitudes are summed. For exam-
ple 0.1234 + 5.6789 x 1072 might be rounded to 0.1234 by a system that keeps only 16 significant
digits. This may lead to unexpected results.

The usual strategies for rewriting subtractive expressions are completing the square, factoring,
or using the Taylor expansions, as the following examples illustrate.

Example Problem 1.8. Consider the stability of v/ +1 — 1 when z is near 0. Rewrite the
expression to rid it of subtractive cancellation.
Solution: Suppose that z = 1.2345678 x 107°. Then /= + 1 ~ 1.000006173. If your computer
(or calculator) can only keep 8 significant digits, this will be rounded to 1.0000062. When 1 is
subtracted, the result is 6.2 x 1076, Thus 6 significant digits have been lost from the original.

To fix this, we rationalize the expression

ver+1+1 r+1-—-1 T
ver+1l—1 = vex+1-1 = = .
ve+14+1 ve+14+1 ve+14+1

This expression has no subtractions, and so is not subject to subtractive cancelling. When = =
1.2345678 x 1077, this expression evaluates approximately as

1.2345678 x 10~°

~ 6.17281 1076
2.0000062 0.17281995 > 10

on a machine with 8 digits, there is no loss of precision. -

Note that nearly all modern computers and calculators store intermediate results of calculations
in higher precision formats. This minimizes, but does not eliminate, problems like those of the
previous example problem.

Example Problem 1.9. Write stable code to find the roots of the equation z? + bx + ¢ = 0.
Solution: The usual quadratic formula is

—b+ Vb2 —4c

€T =
* 2

Supposing that b > ¢ > 0, the expression in the square root might be rounded to b2, giving two
roots x4 = 0, x_— = —b. The latter root is nearly correct, while the former has no correct digits.
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To correct this problem, multiply the numerator and denominator of z; by —b — v/b% — 4c to get

2c
Ty =——
T -V —4c
Now if b > ¢ > 0, this expression gives root x4 = —¢/b, which is nearly correct. This leads to the

pair:
—b—Vb% — 4c 2c
- € _ @ @@
2 T VR —dc
Note that the two roots are nearly reciprocals, and if x_ is computed, x4 can easily be computed
with little additional work. =

Tr_ =

Example Problem 1.10. Rewrite e — cosz to be stable when z is near 0.
Solution: Look at the Taylor’s Series expansion for these functions:

. _ | 2 3 ot 2P 2 ot g6
e’ —cosxr = +x+§+§+z+g+... — —§+E—a+
2 a 5
= v+ +§+(’)(x)

This expression has no subtractions, and so is not subject to subtractive cancelling. Note that we
propose calculating = + 2% + 23/6 as an approzimation of €* — cosx, which we cannot calculate
exactly anyway. Since we assume x is nearly zero, the approximate should be good. If x is very
close to zero, we may only have to take the first one or two terms. If x is not so close to zero, we
may need to take all three terms, or even more terms of the expansion; if x is far from zero we
should use some other technique. -

1.3 Vector Spaces, Inner Products, Norms

We explore some of the basics of functional analysis which may be useful in this text.

1.3.1 Vector Space

A vector space is a collection of objects together with a binary operator which is defined over an
algebraic field.! The binary operator allows transparent algebraic manipulation of vectors.

Definition 1.11. A collection of vectors, V, with a binary addition operator, 4+, defined over V,
and a scalar multiply over the real field R, forms a vector space if
1. For each u,v € V, the sum uw+ v is a vector in V. (i.e., the space is “closed under addition.”)
2. Addition is commutative: u + v = v + u for each u,v € V.
3. For each u € V, and each scalar a € R the scalar product cu is a vector in V. (i.e., the space
is “closed under scalar multiplication.”)
4. There is a zero vector 0 € V such that for any w € V, Ou = 0, where 0 is the zero of R.
. For any u € V, 1u = u, where 1 is the multiplicative identity of R.
6. For any u,v € V, and scalars o, € R, both (a+gr f)u = au+ fu and a (u + v) = au+ av
hold, where +p is addition in R. (i.e., scalar multiplication distributes in both ways.)

ot

IFor the purposes of this text, this algebraic field will always be the real field, R, though in the real world, the
complex field, C, has some currency.
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Example 1.12. The most familiar example of a vector space is R™, which is the collection of

n-tuples of real numbers. That is w € R™ is of the form [ul,u2,...,un]T, where u; € R for
i=1,2,...,n. Addition and scalar multiplication over R are defined pairwise:
T T T
[ut,ug, ..., up] + [v1,v2,...,05] = [u1 +v1,u2 +v2,...,up +v,] , and
alug,ug,. .. ,un]T = [ouy, aug, . .. ,aun]T

Note that some authors distinguish between points in n-dimensional space and wvectors in n-
dimensional space. We will use R” to refer to both of them, as in this text there is no need to
distinguish them symbolically.

Example 1.13. Let X C R” be an closed, bounded set, and let H be the collection of all functions
from X to R. Then H forms a vector space under the “pointwise” defined addition and scalar
multiplication over R. That is, for u,v € H, u + v is the function in H defined by [u+ v] (z) =
u(z) +v(x) for all z € X. And for u € H,a € R, au is the function in |[ou] (z) = a (u(zx)).

Example 1.14. Let X C R* be a closed, bounded set, and let Hy be the collection of all functions
from X to R that take the value zero on 0X. Then H forms a vector space under the “pointwise”
defined addition and scalar multiplication over R. The only difference between proving Hy is a
vector space and the proof required for the previous example is in showing that Hy is indeed closed
under addition and scalar multiplication. This is simple because if x € 0X, then [u+ v](x) =
u(z) +v(x) = 0+ 0, and thus u + v has the property that it takes value 0 on dX. Similarly for au.
This would not have worked if the functions of Hy were required to take some other value on 0.X,
like, say, 2 instead of 0.

Example 1.15. Let P,, be the collection of all ‘formal’ polynomials of degree less than or equal to
n with coefficients from R. Then P, forms a vector space over R.

Example 1.16. The collection of all real-valued m x n matrices forms a vector space over the reals
with the usual scalar multiplication and matrix addition. This space is denoted as R"*". Another
way of viewing this space is it is the space of linear functions which carry vectors of R™ to vectors
of R™.

1.3.2 Inner Products

An inner product is a way of “multiplying” two vectors from a vector space together to get a scalar
from the same field the space is defined over (e.g., a real or a complex number). The inner product
should have the following properties:

Definition 1.17. For a vector space, V), defined over R, a binary function, (,), which takes two
vectors of V to R is an inner product if

1. It is symmetric: (v,u) = (u,v).

2. It is linear in both its arguments:

(u,w) + B (v,w) and
(u,v) + B (u,w) .

(ocu + P, w) =

a
(u,av + fw) = «

A binary function for which this holds is sometimes called a bilinear form.
3. It is positive: (v,v) > 0, with equality holding if and only if v is the zero vector of V.
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Example 1.18. The most familiar example of an inner product is the L? (pronounced “L two”)
. n T T
inner product on the vector space R". If w = [uj,ug,...,u,] , and v = [v1,va,...,v,] , then

letting
(u,)y = Y uwiv;
7

gives an inner product. This inner product is the usual vector calculus dot product and is sometimes

written as u - v or u ' v.

Example 1.19. Let H be the vector space of functions from X to R from Example 1.13. Then
for u,v € H, letting

(u,0) g = /X u(a)o() de,

gives an inner product. This inner product is like the “limit case” of the L? inner product on R"
as n goes to infinity.

1.3.3 Norms

A norm is a way of measuring the “length” of a vector:

Definition 1.20. A function ||-|| from a vector space, V, to R is called a norm if
1. It obeys the triangle inequality: ||z + y|| < ||| + ||y]| -
2. Tt scales positively: ||ax|| = |a|||x]||, for scalar a.
3. It is positive: ||z| > 0, with equality only holding when @ is the zero vector.

The easiest way of constructing a norm is on top of an inner product. If (,) is an inner product
on vector space V, then letting

lull =4/ (u,u)
gives a norm on V. This is how we construct our most common norms:

Example 1.21. For vector € R”, its L? norm is defined

I, = (;:ﬁ) = (="2)

This is constructed on top of the L? inner product.

D=

Example 1.22. The L? norm on R” generalizes the L? norm, and is defined, for p > 0, as

n 1/17
]l = (Z !wi\”> :
i=1

Example 1.23. The L* norm on R” is defined as
Jall.e = maxzl.

The L*° norm is somehow the “limit” of the LP norm as p — oo.
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1.4 Eigenvalues

It is assumed the reader has some familiarity with linear algebra. We review the topic of eigenvalues.

Definition 1.24. A nonzero vector x is an eigenvector of a given matrix A, with corresponding
etgenvalue A if
Az = \x

Subtracting the right hand side from the left and gathering terms gives
(A=X)xz =0.

Since « is assumed to be nonzero, the matrix A — Al must be singular. A matrix is singular if and
only if its determinant is zero. These steps are reversible, thus we claim A is an eigenvalue if and
only if

det (A = Al) =0.

The left hand side can be expanded to a polynomial in A, of degree n where A is an n xn matrix. This
gives the so-called characteristic equation. Sometimes eigenvectors,-values are called characteristic
vectors,-values.

Example Problem 1.25. Find the eigenvalues of

i)

Solution: The eigenvalues are roots of

=(1-MN)(-2-X)-4=X+A1-6.

0 = det 1= 1 ]

4 —2-A
This equation has roots \; = —3, Ay = 2. =

Example Problem 1.26. Find the eigenvalues of AZ.
Solution: Let X\ be an eigenvalue of A, with corresponding eigenvector . Then

AZz = A (Az) = A (\x) = \Az = Nz
_|

The eigenvalues of a matrix tell us, roughly, how the linear transform scales a given matrix; the
eigenvectors tell us which directions are “purely scaled.” This will make more sense when we talk
about norms of vectors and matrices.

1.4.1 Matrix Norms

Given a norm ||-|| on the vector space, R", we can define the matrix norm “subordinate” to it, as
follows:
Definition 1.27. Given a norm |-|| on R", we define the subordinate matrix norm on R"*" by
Az
Al = max 1221

=20 x|
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We will use the subordinate two-norm for matrices. From the definition of the subordinate
norm as a max, we conclude that if x is a nonzero vector then
Az ||,

”33H2
[Az[ly < [[Allyllzll,-

< [IAlly  thus,
Example 1.28. Strange but true: If A is the set of eigenvalues of A, then

Al = N
1Al glggl |

Example Problem 1.29. Prove that

IAB]ly < [[All2]IBIl,-

Solution:
1B, _ JAlBall,

< = [IAll21IBll,-
[zlly  — =20 [l e

AB|[, =
|AB, af max
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| EXERCISES |

(1.1) Suppose f € O (R*). Show that f € O(h™) for any m with 0 < m < k. (Hint: Take
h* < 1.) Note this may appear counterintuitive, unless you remember that O (hk) is a better
approximation than O (h™) when m < k.

2) Suppose f € O (hk) ,and g € O (h™). Show that fg € O (h’”’”) .

3) Suppose f € O (h¥), and g € O (h™), with m < k. Show that f +g € O (h™).

4) Prove that f(h) = —3h° is in O (h°).

.5) Prove that f(h) = h? + 5k is in O (h?).

.6) Prove that f(h) = h? is not in O (h*) (Hint: Proof by contradiction.)

7)

8)

9)

Prove that sin(h) is in O (h).
Find a O (hg) approximation to sin h.
Find a O (h4) approximation to In(1+4h). Compare the approximate value to the actual when

h = 0.1. How does this approximation compare to the O (hg) approximate from Example 1.7
for h = 0.17

(1.10) Suppose that f € O (hk) Can you show that f' € O (hk_l)?

(1.11) Rewrite vz + 1 — /1 to get rid of subtractive cancellation when x ~ 0.

(1.12) Rewrite vz + 1 — \/x to get rid of subtractive cancellation when z is very large.

(1.13) Use a Taylor’s expansion to rid the expression 1 — cosz of subtractive cancellation for x

small. Use a O (:135) approximate.

(1.14) Use a Taylor’s expansion to rid the expression 1 — cos?x of subtractive cancellation for z
small. Use a O (:136) approximate.

(1.15) Calculate cos(m/2 + 0.001) to within 8 decimal places by using the Taylor’s expansion.

(1.16) Prove that if « is an eigenvector of A then ax is also an eigenvector of A, for the same
eigenvalue. Here « is a nonzero real number.

(1.17) Prove, by induction, that if X is an eigenvalue of A then A\* is an eigenvalue of A for integer
k > 1. The base case was done in Example Problem 1.26.

(1.18) Let B = Z?:o a;A?, where A = |. Prove that if \ is an eigenvalue of A, then Z?:o a; ¢ is
an eigenvalue of B. Thus for polynomial p(z), p()) is an eigenvalue of p(A).

(1.19) Suppose A is an invertible matrix with eigenvalue . Prove that A~! is an eigenvalue for
AL

(1.20) Suppose that the eigenvalues of A are 1,10, 100. Give the eigenvalues of B = 3A3 — 4A% +|.
Show that B is singular.

(1.21) Show that if ||x||, = r, then @ is on a sphere centered at the origin of radius r, in R™.
(1.22) If ||x||, = 0, what does this say about vector x?
(1.23) Letting @ = [3 4 12]" , what is ||z|,?
(1.24) What is the norm of
1 0 0 0
0 1/2 0 0
A_|O0 0 1/3 0 |7
0 0 0 - 1/n |

(1.25) Show that ||Al|, = 0 implies that A is the matrix of all zeros.

(1.26) Show that [[A~* H2 equals (1/|Amin|) , where Apip is the smallest, in absolute value, eigenvalue
of A.

(1.27) Suppose there is some g > 0 such that, for a given A,

1Ay > pllv]ly;



1.4. EIGENVALUES 11

for all vectors wv.
(a) Show that p < [|A]|,. (Should be very simple.)
(b) Show that A is nonsingular. (Recall: A is singular if there is some & # 0 such that
Az =0.)
(c) Show that HA_1H2 <(1/p).
(1.28) If A is singular, is it necessarily the case that [|A|, = 07
(1.29) If ||All; > 1 > 0 does it follow that A is nonsingular?
(1.30) Towards proving the equality in Example Problem 1.28, prove that if A is the set of eigen-
values of A, then

IA]l = max A,
A€A
where ||-|| is any subordinate matrix norm. The inequality in the other direction holds when

the norm is ||-||,, but is difficult to prove.
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CHAPTER 1. INTRODUCTION



Chapter 2

An Introduction to Sage

2.1 First Steps

TBD...
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| EXERCISES |

(2.1) write some exercises.



Chapter 3

A “Crash” Course in octave/Matlab

3.1 Getting Started

Matlab is a software package that allows you to program the mathematics of an algorithm without
getting too bogged down in the details of data structures, pointers, and reinventing the wheel.
It also includes graphing capabilities, and there are numerous packages available for all kinds of
functions, enabling relatively high-level programming. Unfortunately, it also costs quite a bit of
money, which is why I recommend the free Matlab clone, octave, available under the GPL!, freely
downloadable from http://www.octave.org.

In a lame attempt to retain market share, Mathworks continues to tinker with Matlab to make
it noncompatible with octave; this has the side effect of obsoletizing old Matlab code. I will try
to focus on the intersection of the two systems, except where explicitly noted otherwise. What
follows, then, is an introduction to octave; Matlab users will have to make some changes.

You can find a number of octave/Matlab tutorials for free on the web; many of them are
certainly better than this one. A brief web search reveals the following excellent tutorials:

e http://www.math.mtu.edu/ "msgocken/intro/intro.html

e http://www.cyclismo.org/tutorial/matlab/vector.html

e http://web.ew.usna.edu/ mecheng/DESIGN/CAD/MATLAB/usna.html

Matlab has some demo programs covering a number of topics— from the most basic functionality
to the more arcane toolboxes. In Matlab, simply type demo.

What follows is a lame demo for octave. Start up octave. You should get something like:

GNU Octave, version 2.1.44 (i686-pc-linux-gnu).

Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 John W. Eaton.
This is free software; see the source code for copying conditions.

There is ABSOLUTELY NO WARRANTY; not even for MERCHANTIBILITY or

FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘warranty’.

Please contribute if you find this software useful.
For more information, visit http://www.octave.org/help-wanted.html

Report bugs to <bug-octave@bevo.che.wisc.edu>.

octave:1>

!Gnu Public License. See http://www.gnu.org/copyleft/gpl.html.

15
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You now have a command line. The basic octavian data structure is a matrix; a scalarisa 1 x 1
matrix, a vector is an n x 1 matrix. Some simple matrix constructions are as follows:

octave:2> a = [1 2 3]
a =
1 2 3
octave:3> b = [5;4;3]
b =
5
4
3
octave:4> c = a’
c =
1
2
3
octave:5> d = bxc - 2 *x b
d =
-5
2
9

You should notice that octave “echoes” the lvalues it creates. This is either a feature or an
annoyance. It can be prevented by appending a semicolon at the end of a command. Thus the
previous becomes

octave:5> d = b*%c - 2 * b;
octave:6>

For illustration purposes, I am leaving the semicolon off. To access an entry or entries of a
matrix, use parentheses. In the case where the variable is a vector, you only need give a single
index, as shown below; when the variable is a matrix, you need give both indices. You can also
give a range of indices, as in what follows.

WARNING: vectors and matrices in octave/Matlab are indexed starting from 1, and not
from 0, as is more common in modern programming languages. You are warned! Moreover, the
last index of a vector is denoted by the special symbol end.

octave:6> a(l) = 77
a:
7 2 3

octave:7> a(end) = -400
a:
77 2 =400
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octave:8> a(2:3) = [22 333]
a:
77 22 333

octave:9> M = diag(a)

M =
7 0 0

0 22 0

0 0 333

octave:10> M(2,1) = 14

M =
7 0 0

14 22 0

0 0 333

octave:11> M(1:2,1:2) = [1 2;3 4]

M =
1 2 0
3 4 0
0 0 333

The command diag(v) returns a matrix with v as the diagonal, if v is a vector. diag(M) returns
the diagonal of matrix M as a vector.

The form c:d gives returns a row vector of the integers between a and d, as we will examine
later. First we look at matrix manipulation:

octave:12> j = M *x b
j =
13
31
999
octave:13> N = rand(3,3)

N=
0.166880 0.027866 0.087402
0.706307 0.624716 0.067067
0.911833 0.769423 0.938714

octave:14> L M+ N

L =
1.166880 2.027866 0.087402
3.706307 4.624716 0.067067

0.911833 0.769423 333.938714

octave:15> P L xM

P =
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7.2505e+00 1.0445e+01 2.9105e+01
1.7580e+01 2.5911e+01 2.2333e+01
3.2201e+00 4.9014e+00 1.1120e+05
octave:16> P =L .x M
P =
1.1669e+00 4.0557e+00 0.0000e+00
1.1119e+01 1.8499e+01 0.0000e+00
0.0000e+00 0.0000e+00 1.1120e+05

octave:17> x =M \ b
x =
-6.0000000
5.5000000
0.0090090

octave:18> err = M * x - b
err =

0

0

0

Note the difference between L * M and L .* M; the former is matrix multiplication, the latter
is element by element multiplication, i.e.,

(L Lk M)i7j == Li,j Mi,j-

The command rand(m,n) gives an m X n matrix with each element “uniformly distributed” on
[0,1]. For a zero mean normal distribution with unit variance, use randn(m,n).
In line 17 we asked octave to solve the linear system

Mx = b,

by setting
x =M\b=M'b.

Note that you can construct matrices directly as you did vectors:

octave:19> B = [1 3 4 5;2 -2 2 -2]
B =

1 3 4 5

2 -2 2 -2

You can also create row vectors as a sequence, either using the form c:d or the form c:e:d, which
give, respectively, c,c+1,...,d, and c,c+e,...,d, (or something like it if e does not divide d — c)
as follows:

octave:20> z = 1:5
Z=
1 2 3 4 5
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octave:21> z = 5:(-1):1
Z -
5 4 3 2 1

octave:22> z = 5:(-2):1
Z=

5 3 1
octave:23> z = 2:3:11

Z=
2 5 8 11

octave:24> z = 2:3:10

Z=
2 5 8

Matrices and vectors can be constructed “blockwise.” Blocks in the same row are separated by a
comma, those in the same column by a semicolon. Thus

octave:2> y=[2 7 9]

y =
2 7 9
octave:3> m = [z;y]
m =
2 5 8
2 7 9
octave:4> k = [(3:4)’, m]
Kk =
3 2 5 8
4 2 7 9

3.2 Useful Commands

Here’s a none too complete listing of useful commands in octave:

e help is the most useful command.

e floor (X) returns the largest integer not greater than X. If X is a vector or matrix, it computes
the floor element-wise. This behavior is common in octave: many functions which we normally
think of as applicable to scalars can be applied to matrices, with the result computed element-
wise.
ceil (X) returns the smallest integer not less than X, computed element-wise.
sin(X), cos(X), tan(X), atan(X), sqrt(X), returns the sine, cosine, tangent, arctangent,
square root of X, computed elementwise.
exp (X) returns e*, elementwise.
abs (X) returns |X|, elementwise.
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norm(X) returns the norm of X; if X is a vector, this is the L? norm:

1/2
1Xll; = <ZX?> :

if X is a matrix, it is the matrix norm subordinate to the L? norm.

You can compute other norms with norm(X,p) where p is a number, to get the LP norm, or
with p one of Inf, -Inf, etc.

zeros (m,n) returns an m X n matrix of all zeros.

eye(m) returns the m x m identity matrix.

[m,n] = size(A) returns the number of rows, columns of A. Similarly the functions rows (A)
and columns (A) return the number of rows and columns, respectively.

length(v) returns the length of vector v, or the larger dimension if v is a matrix.

find (M) returns the indices of the nonzero elements of N. This may not seem helpful at first,
but it can be very useful for selecting subsets of data because the indices can be used for
selection. Thus, for example, in this code

octave:1> v = round(20*randn(400,3));

octave:2> selectv = v(find(v(:,2) == 7),:)

we have selected the rows of v where the element in the second column equals 7. Now you
see why leading computer scientists refer to octave/Matlab as “semantically suspect.” It is
a very useful language nonetheless, and you should try to learn its quirks rather than resist
them.

diag(v) returns the diagonal matrix with vector v as diagonal. diag(M) returns as a vector,
the diagonal of matrix v. Thus diag(diag(v)) is v for vector v, but diag(diag(M)) is the
diagonal part of matrix M.

toeplitz(v) returns the Toeplitz matrix associated with vector v. That is

[ v(1)  v(2) v(3) .- v(n) ]
v(2)  v(1) v(i2) -+ v(n—1)
toeplitz(v) = | v(8)  v(2) v(l) o v(n-2)
| v@) v-1) v-2) - v(1)

In the more general form, toeplitz(c,r) can be used to return a assymmetric Toeplitz

matrix.

A matrix which is banded on the cross diagonals is evidently called a “Hankel” matrix:

[ u(1) u(2) u3) -+ un) |
u(2) u(3) u(4) --- v(2)

hankel(u,v) = | w(3) u(4) u(5) --- v(3)

[ u(@) v(2) v(3) -+ v(n) |
eig(M) returns the eigenvalues of M. [V, LAMBDA] = eig(M) returns the eigenvectors, and
eigenvalues of M.

kron(M,N) returns the Kronecker product of the two matrices. This is a blcok construction
which returns a matrix where each block is an element of M as a scalar multiplied by the
whole matrix N.

flipud (N) flips the vector or matrix N so that its first row is last and wvice versa. Similarly
fliplr(N) flips left/right.
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3.3 Programming and Control

If you are going to do any serious programming in octave, you should keep your commands in a
file. octave loads commands from ‘.m’ files.? If you have the following in a file called myfunc.m:

function [y1,y2] = myfunc(xl,x2)

% comments start with a ‘%’

% this function is useless, except as an example of functions.
% input:

% x1 a number

% x2 another number

% output:

% yl some output

% y2 some output

y1 = cos(x1l) .* sin(x2);
y2 = norm(yl);

then you can call this function from octave, as follows:

octave:1> myfunc(2,3)
ans = -0.058727
octave:2> [a,b]
a = -0.058727

myfunc(2,3)

b = 0.058727
octave:3> [a,b] = myfunc([1 2 3 4],[1 2 3 4])
a:

0.45465 -0.37840 -0.13971 0.49468

b = 0.78366

Note this silly function will throw an error if x1 and x2 are not of the same size.

It is recommended that you write your functions so that they can take scalar and vector input
where appropriate. For example, the octave builtin sine function can take a scalar and output a
scalar, or take a vector and output a vector which is, elementwise, the sine of the input. It is not
too difficult to write functions this way, it often only requires judicious use of .* multiplies instead
of * multiplies. For example, if the file myfunc.m were changed to read

y1 = cos(xl) * sin(x2);

it could easily crash if x1 and x2 were vectors of the same size because matrix multiplication is not
defined for an n x 1 matrix times another n x 1 matrix.

An .m file does not have to contain a function, it can merely contain some octave commands.
For example, putting the following into runner.m:

x1 rand(4,3);
x2 = rand(size(x1));
[a,b] = myfunc(x1,x2)

2The ‘m’ stands for ‘octave.’
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octave allows you to call this script without arguments:

octave:4> runner

a:
0.245936 0.478054 0.535323
0.246414 0.186454 0.206279
0.542728 0.419457 0.083917
0.257607 0.378558 0.768188
b = 1.3135

octave has to know where your .m file is. It will look in the directory from which it was called.
You can set this to something else with cd or chdir.

You can also use the octave builtin function feval to evaluate a function by name. For example,
the following is a different way of calling myfunc.m:

octave:5> [a,b] = feval("myfunc",2,3)
a = -0.058727
b = 0.058727

In this form feval seems like a way of using more keystrokes to get the same result. However, you
can pass a variable function name as well:

octave:6> fname = "myfunc"
fname = myfunc
octave:7> [a,b]
a = -0.058727
b = 0.058727

feval (fname,2,3)

This allows you to effectively pass functions to other functions.

3.3.1 Logical Forks and Control

octave has the regular assortment of ‘if-then-else’ and ‘for’ and ‘while’ loops. These take the
following form:

if expril
statements

elseif expr2
statements

elsif expr3
statements

else
statements

end

for var=vector
statements

end

while expr
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statements
end

Note that the word end is one of the most overloaded in octave/Matlab. It stands for the last
index of a vector of matrix, as well as the exit point for for loops, if statements, switches, etc. To
simplify debugging, it is also permissible to use endif to end an if statement, endfor to end a
for loop, etc..

The test expressions may use the logical conditionals: >, <, >=, <=, == “=. Do not use the
assignment operator = as a conditional, as this can lead to disastrous results, as in C.

Here are some examples:

/icompute the sign of x

if x >0

s = 1;
elseif x ==

s = 0;
else

s = -1;
end

%ha ‘regular’ for loop
for i=1:10

sm = sm + 1i;
end

%an ‘irregular’ for loop

for i=[1 2 3 5 8 13 21 34]
fsm = fsm + i;

end

while (sin(x) > 0)
X = X % pi;
end

3.4 Plotting

Plotting is one area in which there are some noticeable differences between octave and Matlab.
The commands and examples given herein are for octave, but the commands for Matlab are not
too different. octave ships its plotting commands to Gnuplot.

The main plot command is plot. You may also use semilogx, semilogy,loglog for 2D plots
with log axes, and contour and mesh for 3D plots. Use the help command to get the specific
syntax for each command. We present some examples:

n = 100;
X =pi.x ((1:n) ./ n);
Y = sin(X);

%just plot Y
plot(Y);
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%plot Y, but with the ‘right’ X axis labels
plot(X,Y);

W = sqrt(Y);

plot (W) ;

%plot W, but with the ‘right’ X axis labels
plot(Y,W);

The output from these commands is seen in Figure 3.1. In particular, you should note the
difference between plotting a vector, as in Figure 3.1c versus plotting the same vector but with the
appropriate abscissa values, as in Figure 3.1d.

1

line 1 line 1

09 B 09 [

08 B 08 [

0.7 1 07 |

06 1 06 [

05 - 1 05 [

04 i 04|

03 - 1 03 |

02+ B 02 |

01+ B 01

0 L L L L L L L L L 0 L L L
0 10 20 30 40 50 60 70 80 90 100 0 0.5 1 15 2 25 3 35

(a) Y = sin(X) (b) Y versus X

line 1

09+
08 -
07
06 -
05 -
04
03
02t

01

L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) W versus Y

Figure 3.1: Four plots from octave.

Some magic commands are required to plot to a file. For octave, I recommend the following
magic formula, which replots the figure to a file:

%call the plot commands before this line
gset term postscript color;

gset output "filename.ps";

replot;

gset term x11;

gset output "/dev/null";
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In Matlab, the commands are something like this:

%call the plot commands before this line
print(gcf,’-deps’,’filename.eps’);

25
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| EXERCISES |

(3.1)

(3.2)

What do the following pieces of octave/Matlab code accomplish?
(a) x = (0:40) ./ 40;
(b) a = 2;
b = 5;
a + (b-a) .x (0:40) ./ 40;
(¢c) x = a+ (b-a) .* (0:40) ./ 40;
y = sin(x);
plot(x,y);
Implement the naive quadratic formula to find the roots of 22 4 bz + ¢ = 0, for real b, c. Your

code should return
—b+ Vb2 —4c
—

ol
nn

Your m-file should have header line like:

function [x1,x2] = naivequad(b,c)

Test your code for (b,¢c) = (1 x 1012, 1) . Do you get a spurious root?

Implement a robust quadratic formula (cf. Example Problem 1.9) to find the roots of 2% +
bx + ¢ = 0. Your m-file should have header line like:

function [x1,x2] = robustquad(b,c)

Test your code for (b,¢c) = (1 x 1012, 1) . Do you get a spurious root?

Write octave/Matlab code to find a fixed point for the cosine, i.e., some z such that z =
cos(z). Do this as follows: pick some initial value xg, then let ;11 = cos(z;) for i =
0,1,...,n. Pick n to be reasonably large, or choose some convergence criterion (i.e., ter-
minate if |z;,1 — ;] < 1 x 10719). Does your code always converge?

The centered sigmoidal function is used in neural nets, and is defined as

_1—6_50
Cl4e®

o(x)

Implement this function in octave/Matlab. Your m-file should have header line like:
function sigx = sigmoidal(x)

Test your code on z = 0,1,100,1 x 10%,—100, —1 x 10°. Does something bad happen for
x = —1 x 10°? Is this a problem of loss of significance? Reimplement your code to make it
robust against this problem. (Hint: use the fact that o(x) is an odd function. )

Write code to implement the factorial function for integers:

function [nfact] = factorial(n)

where n factorial is equal to 1-2-3--- (n— 1) - n. Either use a ‘for’ loop, or write the function
to recursively call itself.



Chapter 4

An Introduction to Maple

4.1 First Steps

TBD...
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| EXERCISES |

(4.1) write some exercises.



Chapter 5

Solving Linear Systems

A number of problems in numerical analysis can be reduced to, or approximated by, a system of
linear equations.
5.1 Gaussian Elimination with Naive Pivoting
Our goal is the automatic solution of systems of linear equations:
annry + appxre + azry + ainn = by

+
ax1 + axry + axrz + - + awrT, = b
az1r1 —+ azexe + azzxrs + + agpx, = bs

a1 + Gp2Tz + a3z + 0+ anpp = by
In these equations, the a;; and b; are given real numbers. We also write this as
Ax = b,
where A is a matrix, whose element in the i*" row and j* column is ai;, and b is a column vector,

whose " entry is b;.
This gives the easier way of writing this equation:

ail a2 aiz - Qi 1 by

a1 G2 a3 - A2, T2 bo

asl az Az - agy 3 | = | b3 (5.1)
| Anl Gp2 Gp3 *** Gpp | | Tn | | bn ]

5.1.1 Elementary Row Operations

You may remember that one way to solve linear equations is by applying elementary row operations
to a given equation of the system. For example, if we are trying to solve the given system of
equations, they should have the same solution as the following system:

29
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a1 a2 a3 a1n 1 by
a1 azx  as3 aonp T2 bo
az1  agz  as3 asn x3 b3
Kajl Kajo Kas KQin, T; Kkb;
L Gnl an?2 an3 Ann | | Tn | L bn |

where k is some given number which is not zero. It suffices to solve this system of linear
equations, as it has the same solution(s) as our original system. Multiplying a row of the system
by a nonzero constant is one of the elementary row operations.

The second elementary row operation is to replace a row by the sum of that row and a constant
times another. Thus, for example, the following system of equations has the same solution as the
original system:

We have replaced the i*" row by the i*" row plus 3 times the j* row.

The third elementary row operation is to switch rows:

a1 a12 a13 a1ip 1 by
as a2 as3 asn T2 b2
asi as ass asn x3 b3
ai—1)1 a(;—1)2 a—1)3 AGi—1)n L(i—1) b(i—l)
a;1 + Baj1  ap + Paje a3+ Bajs Ain + Bajn ;i b; + Bb;
L Gnl an2 an3 Qnn | Tp bn

a1 a2 a3 ain 1 b1
as1 azy ass asn T2 b3
a1 a2 G23 a2, x3 bo

L Anl An2 Gp3 - Ann | | Tn | L bn |

We have here switched the second and third rows. The purpose of this e.r.o. is mainly to make
things look nice.

Note that none of the e.r.o.’s change the structure of the solution vector @. For this reason, it is
customary to drop the solution vector entirely and to write the matrix A and the vector b together
in augmented form:

ain a2 a1z - Ain | b
a1 G2 G2z -+ G2y | b2
as1 ag2 azz - a3y | b3
apl Ap2 ap3 -+ QAapp bn

The idea of Gaussian Elimination is to use the elementary row operations to put a system into
upper triangular form then use back substitution. We’ll give an example here:
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Example Problem 5.1. Solve the set of linear equations:

T+ x0— 23 =2
—3x1 — 4xg +4x3 = —7
201 + lxo + 13 =7

Solution: We start by rewriting in the augmented form:

1 1 -1] 2
-3 -4 4|7
2 1 1y 7

We add 3 times the first row to the second, and —2 times the first row to the third to get:

1 1 -1] 2
0 -1 11-1
0o -1 3| 3

We now add —1 times the second row to the third row to get:

1 1 -1] 2
0 -1 1]-1
0O 0 2| 4

The matrix is now in upper triangular form: there are no nonzero entries below the diagonal. This
corresponds to the set of equations:

T+ x9 — T3 =2
—xg + a3 =—1
2:173:4

We now solve this by back substitution. Because the matrix is in upper triangular form, we can
solve x3 by looking only at the last equation; namely x3 = 2. However, once x3 is known, the second
equation involves only one unknown, x5, and can be solved only by xo = 3. Then the first equation
has only one unknown, and is solved by z; = 1. -

All sorts of funny things can happen when you attempt Gaussian Elimination: it may turn
out that your system has no solution, or has a single solution (as above), or an infinite number
of solutions. We should expect that an algorithm for automatic solution of systems of equations
should detect these problems.

5.1.2 Algorithm Terminology

The method outlined above is fine for solving small systems. We should like to devise an algorithm
for doing the same thing which can be applied to large systems of equations. The algorithm will
take the system (in augmented form):

a1 a2 @iz - Gin | b
a1 G2 Q23 -+ G2, | b2
az; azx agz ‘- as, | b3

pl Gp2 Gp3 -+ Opp | by
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The algorithm then selects the first row as the pivot equation or pivot row, and the first element of
the first row, ayy is the pivot element. The algorithm then pivots on the pivot element to get the
system:

ain a2 a1z - Gip | by
! ! ! /
0 ajy ajy -+ ay, | bh
/ / / /
0 agy ag3 -+ ag,|bs
/ / / /
0 Apo Gpz <~ Qpy bn
Where
/ _ ail
al; =a;; — (2L ) aq;
i ij J ) .
g (2<i<n 1<j<n)

B, =b— (42)p

ail

Effectively we are carrying out the e.r.o. of replacing the i*" row by the i*" row minus (%) times

the first row. The quantity (Zﬁ) is the multiplier for the i row.

Hereafter the algorithm will not alter the first row or first column of the system. Thus, the
algorithm could be written recursively. By pivoting on the second row, the algorithm then generates
the system:

air a2 a3 - Gip | b
/ / / /
0 ayp asy - ag, | by
1/ 1/ /!
0 0 az - a3, |03
" " /!
0 0 ag -+ ap,|b
In this case )
" _ / a;o /
a’. = a..— : Ao -
1 7 2
’ R YO (3<i<n,1<j<n)
bl/ _ b/ [ Qe /
i = i ab, ) V2

5.1.3 Algorithm Problems

The pivoting strategy we examined in this section is called ‘naive’ because a real algorithm is a bit
more complicated. The algorithm we have outlined is far too rigid—it always chooses to pivot on
the k*® row during the k" step. This would be bad if the pivot element were zero; in this case all
the multipliers Zf’; are not defined.

Bad things can happen if ayy is merely small instead of zero. Consider the following example:

Example 5.2. Solve the system of equations given by the augmented form:

—0.0590  0.2372 | —0.3528
0.1080 —0.4348 | 0.6452

Note that the exact solution of this system is 1 = 10, o = 1. Suppose, however, that the algorithm
uses only 4 significant figures for its calculations. The algorithm, naively, pivots on the first
equation. The multiplier for the second row is

0.1080
— ~ —1.
—0.0590 830508...,

which will be rounded to —1.831 by the algorithm.
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The second entry in the matrix is replaced by
—0.4348 — (—1.831)(0.2372) = —0.4348 + 0.4343 = —0.0005,

where the arithmetic is rounded to four significant figures each time. There is some serious sub-
tractive cancellation going on here. We have lost three figures with this subtraction. The errors
get worse from here. Similarly, the second vector entry becomes:

0.6452 — (—1.831)(—0.3528) = 0.6452 — 0.6460 = —0.0008,
where, again, intermediate steps are rounded to four significant figures, and again there is subtrac-

tive cancelling. This puts the system in the form

—0.0590  0.2372 | —0.3528
0 —0.0005 | —0.0008

When the algorithm attempts back substitution, it gets the value

—0.0008

= —16.
~0.0005 -0

T2
This is a bit off from the actual value of 1. The algorithm now finds

21 = (—0.3528 — 0.2372 - 1.6) /—0.059 = (—0.3528 — 0.3795) /—0.059 = (—0.7323) /—0.059 = 12.41,

where each step has rounding to four significant figures. This is also a bit off.

5.2 Pivoting Strategies for Gaussian Elimination

Gaussian Elimination can fail when performed in the wrong order. If the algorithm selects a zero
pivot, the multipliers are undefined, which is no good. We also saw that a pivot small in magnitude
can cause failure. As here:

er); +ax0 =1

1+ x9 =2
The naive algorithm solves this as
21 €
€
= = 1 —

2 1-— % 1—e€
1-— ) 1

xr1 = =

! € 1—e

If € is very small, then % is enormous compared to both 1 and 2. With poor rounding, the algorithm
solves x9 as 1. Then it solves 1 = 0. This is nearly correct for o, but is an awful approximation
for z1. Note that this choice of x1, xo satisfies the first equation, but not the second.

Now suppose the algorithm changed the order of the equations, then solved:

T+ T0 =2
er) +ax0 =1
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The algorithm solves this as

1—2¢
Tro =
2 1—c¢
x1:2—x2

There’s no problem with rounding here.
The problem is not the small entry per se: Suppose we use an e.r.o. to scale the first equation,
then use naive G.E.:

1 1
T+ —x2 = =
€ €
T+ 0 =2
This is still solved as
2!
To = 1
€
xr1 = ;
€
and rounding is still a problem.
5.2.1 Scaled Partial Pivoting
The naive G.E. algorithm uses the rows 1, 2, ..., n-1 in order as pivot equations. As shown above,
this can cause errors. Better is to pivot first on row £1, then row /s, etc, until finally pivoting on
row {,,_1, for some permutation {¢;}_, of the integers 1, 2, ..., n. The strategy of scaled partial

pivoting is to compute this permutation so that G.E. works well.

In light of our example, we want to pivot on an element which is not small compared to other
elements in its row. So our algorithm first determines “smallness” by calculating a scale, row-wise:
si = max lai;|.

The scales are only computed once.
Then the first pivot, 1, is chosen to be the ¢ such that

|aia
S4

is maximized. The algorithm pivots on row ¢1, producing a bunch of zeros in the first column. Note
that the algorithm should not rearrange the matrix—this takes too much work.
The second pivot, £5, is chosen to be the i such that

|aiz]
Si
is maximized, but without choosing 5 = ¢1. The algorithm pivots on row ¢, producing a bunch of

zeros in the second column.
In the k™ step ¢, is chosen to be the i not among ¢1, s, ..., {;_1 such that

[
s
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is maximized. The algorithm pivots on row £, producing a bunch of zeros in the k™ column.
The slick way to implement this is to first set ¢; = ¢ for ¢ = 1,2,...,n. Then rearrange this
vector in a kind of “bubble sort”: when you find the index that should be ¢, swap them, ¢.e., find
the j such that ¢; should be the first pivot and switch the values of /1, ¢;.
Then at the k'™ step, search only those indices in the tail of this vector: i.e., only among ¢; for
k < j <n, and perform a swap.

5.2.2 An Example

We present an example of using scaled partial pivoting with G.E. It’s hard to come up with an
example where the numbers do not come out as ugly fractions. We’ll look at a homework question.

2 -1 3 7|15
4 4 0 7|11
2 11 3|7
6 5 4 17|31

The scales are as follows: s1 = 7,80 = 7,83 = 3,54 = 17.
We pick ¢;. It should be the index which maximizes |a;1|/s;. These values are:

242 6

TT31T
We pick #; = 3, and pivot:

-2 2 4| 8

2 -2 1|-3
1 1 3| 7
0o 2 1 8|10
We pick #5. It should not be 3, and should be the index which maximizes |a;2| /s;. These values
are:

N OO

22 2
AT
We have a tie. In this case we pick the second row, i.e., fo = 2. We pivot:
00 055
0 2 -2 1|-3
2 1 1 3|7
00 3 7|13

The matrix is in permuted upper triangular form. We could proceed, but would get a zero
multiplier, and no changes would occur.

If we did proceed we would have ¢35 = 4. Then ¢4, = 1. Our row permutation is 3,2,4,1. When
we do back substitution, we work in this order reversed on the rows, solving x4, then x3, x2, x1.

We get x4 =1, so

x3==(13-7x1)=2

xg==(-3—-1%x142%2)=0

NI RN R W|

x1==(7T—-3%x1—1%2—-1%0)=1
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5.2.3 Another Example and A Real Algorithm

Sometimes we want to solve
Ax =0

for a number of different vectors b. It turns out we can run G.E. on the matrix A alone and come up
with all the multipliers, which can then be used multiple times on different vectors b. We illustrate
with an example:

Mo =

— N S
S w e
N DN = s
=W N =

~

Il

The scale vector is s = [ 4 4 3 3 ]
Our scale choices are %, %, %, % We choose ¢1 = 2, and swap f1,f5. In the places where there

would be zeros in the real matrix, we will put the multipliers. We will illustrate them here boxed:

s 15 1

4 2 4 2

402 12 f
M = % o 32| T3

12 4

s 71

4 2 4 2

Our scale choices are g, g, %. We choose ¢35 = 4, and so swap fa, {4:

L8| o 1

10 5
4 |5 ,
4 2 1 2 p

M, = | [1 , -

5| 0 § 2 3
2] 1
s 71
4 2 4 2

Our scale choices are %, % We choose ¢35 = 1, and so swap {3, £4:

L3l 2

10 5
4 |5 ,
42 1 2 )

Ms= | [1 5] ;o |, £=

- o 1 1
1@9 ;
s 71
4242

Now suppose we had to solve the linear system for b = [ -1 8 2 1 ]T.
We scale b by the multipliers in order: ¢; = 2, so, we sweep through the first column of Ms,
picking off the boxed numbers (your computer doesn’t really have boxed variables), and scaling b
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appropriately:
-1 -3
8 N 8
2 -2
1 -1
This continues:
-3 _12 _12
5 5
8 N 8 N 8
-2 -2 ~2
-1 -1 -1
We then perform a permuted backwards substitution on the augmented system
27 1 12
00 % 5| 7%
4 2 1 2 8
17 2
Ol
03 1 3|1
This proceeds as
-29 —6
x4 = —— = —
3 17 17

(8—2%—@*3—2952) =...

Fill in your own values here.

5.3 LU Factorization

We examined G.E. to solve the system

Ax = b,
where A is a matrix: ~ _
ailr a2 a3 -+ Qain
a1 @22 @23 - Q2p
A= asz; as2 asz - a3n
L Qnl QAn2 Gp3 - Adnn |

We want to show that G.E. actually factors A into lower and upper triangular parts, that is A = LU,
where

1 0 o --- 0 U1l U2 w13 -t Ulp

by 1 0 -+ 0 0 uge wzg - U2,

L= 631 632 1 e 0 , U= 0 0 usy - U3,
| Enl €n2 £n3 e 1 | | 0 0 0 st Unn |

We call this a LU Factorization of A.
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5.3.1 An Example

We consider solution of the following augmented form:

2 1 1 317
4 4 0 7|11
6 5 4 17|31 (5-2)
2 -1 0 71|15
The naive G.E. reduces this to
2 1 1 3|7
0 2 -2 1|-3
00 3 7113
00 0 12| 18

We are going to run the naive G.E., and see how it is a LU Factorization. Since this is the naive
version, we first pivot on the first row. Our multipliers are 2,3, 1. We pivot to get

2 1 1 3|7
0 2 -2 1|-3
0 2 1 810
0 -2 -1 4| 8

Careful inspection shows that we’ve merely multiplied A and b by a lower triangular matrix My:

1 0 0
210
Mi=1 5 ¢ 1
0

-1 0

_ o O O

The entries in the first column are the negative e.r.o. multipliers for each row. Thus after the first
pivot, it is like we are solving the system

MlAac = Mlb
We pivot on the second row to get:
2 1 1 3|7
0 2 -2 1|-3
00 3 7|13
0 0 =3 5|5

The multipliers are 1, —1. We can view this pivot as a multiplication by Mj, with

My =

oo o
|
—
o~ oo
— o oo

We are now solving
MQM]_AZE = M2M1b.
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We pivot on the third row, with a multiplier of —1. Thus we get

2 1 1 3| 7
02 -2 1|-3
0 0 3 7|13
0 0 0 12| 18
We have multiplied by Mg :
1 0 00
01 00
Ms=10 01 0
00 1 1

We are now solving
M3M2M1ALE = M3M2M1b.

But we have an upper triangular form, that is, if we let

2 1 1 3
0 2 -2 1
U= 0 0 3 7
0 0 0 12
Then we have
M3MoM:A = U,

A = (M3MyM;) ™t U,
A=M; My, M3,
A= LU.

We are hoping that L is indeed lower triangular, and has ones on the diagonal. It turns out that
the inverse of each M; matrix has a nice form (See Exercise (5.6)). We write them here:

100071 000][10 00
L _|2100]]0o 1o0oo0]|[01 00
30100 110|000 10
(100 1]]0 -101][00 -1 1
1 0 0 0

12 1 00

3 1 10

1 -1 -1 1

This is really crazy: the matrix L looks to be composed of ones on the diagonal and multipliers
under the diagonal.

Now we check to see if we made any mistakes:

1 0 0o01[21 1 3
2 1 o0o0f||l02 —2 1

=13 1 10]]loo 3 7
|1 -1 -1 1[0 0 o0 12
2 11 3
4 40 7

“le 54 17| N

2 -1 0 7




40 CHAPTER 5. SOLVING LINEAR SYSTEMS

5.3.2 Using LU Factorizations

We see that the G.E. algorithm can be used to actually calculate the LU factorization. We will look
at this in more detail in another example. We now examine how we can use the LU factorization
to solve the equation

Ax = b,
Since we have A = LU, we first solve

Lz = b,
then solve

Uz = z.

Since L is lower triangular, we can solve for z with a forward substitution. Similarly, since U is
upper triangular, we can solve for  with a back substitution. We drag out the previous example
(which we never got around to solving):

2 11 3|7
4 4 0 7|11
6 5 4 17|31
2 -1 0 7|15
We had found the LU factorization of A as
1 0 00 2 1 1 3
A— 2 1 0 0 0 2 -2 1
13 1 10 00 3 7
1 -1 -1 1 00 0 12
So we solve
1 0 0 0 7
2 1 00| _ |1
3 1 10 31
1 -1 -1 1 15
We get
7
L -3
o 13
18
Now we solve
2 1 1 3 7
0 2 -2 1 -3
€Tr =
0 0 3 7 13
0 0 0 12 18
We get the ugly solution
z =
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5.3.3 Some Theory

We aren’t doing much proving here. The following theorem has an ugly proof in the Cheney &
Kincaid [7].

Theorem 5.3. If A is an n X n matrix, and naive Gaussian Elimination does not encounter a zero
pivot, then the algorithm generates a LU factorization of A, where L is the lower triangular part of
the output matrix, and U is the upper triangular part.

This theorem relies on us using the fancy version of G.E., which saves the multipliers in the
spots where there should be zeros. If correctly implemented, then, L is the lower triangular part
but with ones put on the diagonal.

This theorem is proved in Cheney & Kincaid [7]. This appears to me to be a case of something
which can be better illustrated with an example or two and some informal investigation. The proof
is an unillustrating index-chase-read it at your own risk.

5.3.4 Computing Inverses

We consider finding the inverse of A. Since
AA~L =1,
then the j™ column of the inverse A~! solves the equation
Ax = ej,

where e; is the column matrix of all zeros, but with a one in the 4" position.

Thus we can find the inverse of A by running n linear solves. Obviously we are only going
to run G.E. once, to put the matrix in LU form, then run n solves using forward and backward
substitutions.

5.4 Iterative Solutions

Recall we are trying to solve
Ax =b.

We examine the computational cost of Gaussian Elimination to motivate the search for an alter-
native algorithm.

5.4.1 An Operation Count for Gaussian Elimination

We consider the number of floating point operations (“flops”) required to solve the system Az = b.

Gaussian Elimnation first uses row operations to transform the problem into an equivalent problem

of the form Uz = b’, where U is upper triangular. Then back substitution is used to solve for x.
First we look at how many floating point operations are required to reduce

air a2 @iz - Gin | b
a1 G2 Q23 -+ G2, | b2
az; azx agz ‘- as, | b3

pl Gp2 Gp3 -+ Opp | by
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to
air a2 a3 - aip | b
! ! ! /
0 ayp ay QAopn | 02
/ / / /
0 a3z ag as, | bs
! ! ! /
0 Qg Apz Qpp bn

First a multiplier is computed for each row. Then in each row the algorithm performs n
multiplies and n adds. This gives a total of (n— 1)+ (n — 1)n multiplies (counting in the computing
of the multiplier in each of the (n — 1) rows) and (n — 1)n adds. In total this is 2n? —n — 1 floating
point operations to do a single pivot on the n by n system.

Then this has to be done recursively on the lower right subsystem, which is an (n—1) by (n—1)
system. This requires 2(n — 1) — (n — 1) — 1 operations. Then this has to be done on the next
subsystem, requiring 2(n — 2)2 — (n — 2) — 1 operations, and so on.

In total, then, we use I, total floating point operations, with

n n n
ILi=2) 7->j-> 1L
j=1 j=1 J=1

Recalling that

S =g DEat1), and Sj= @)+ 1),
j=1

We find that
1

In6

2
(An—1)n(n+1)—n~= gns.

Now consider the costs of back substitution. To solve

air v A1 p—2 a1 p—1 aip b1
0 ot Ap—2n—2 apn—2n—-1 an—2n bn—2
0 o 0 p—1n—1 Opn—1n bn—l
o --- 0 0 Ann b,

for x,, requires only a single division. Then to solve for x,,_1 we compute

1
Tpn—1—= ——— [bn—l - an—l,nﬂjn] 5
Gnp—1,n—1

and requires 3 flops. Similarly, solving for x,,_s requires 5 flops. Thus in total back substitution
requires B, total floating point operations with

n
By=Y 2j—-1=n(n—1)—n=n(n-2)~n’
j=1
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5.4.2 Dividing by Multiplying

We saw that Gaussian Elimination requires around %ng operations just to find the LU factorization,
then about n? operations to solve the system, when A is n x n. When n is large, this may take too
long to be practical. Additionally, if A is sparse (has few nonzero elements per row), we would like
the complexity of our computations to scale with the sparsity of A. Thus we look for an alternative
algorithm.

First we consider the simplest case, n = 1. Suppose we are to solve the equation

Ax =b.

for scalars A,b. We solve this by

11 1 1
SOl Loy Ll py Ry L gL

where w # 0 is some real number chosen to “weight” the problem appropriately, and r = 1 — wA.
Now suppose that w is chosen such that || < 1. This can be done so long as A # 0, which would
have been a problem anyway. Now use the geometric expansion:

1
=14+ ri
1—7
Because of the assumption |r| < 1, the terms r™ converge to zero as n — oo. This gives the
approximate solution to our one dimensional problem as

T~ [1+r—|—r2—|—r3—|—...+rk]wb
= wb+ {r+7’2+r3+...+rk}wb

:wb+r[1—|—r+r2+...—|—7‘k_1]wb

This suggests an iterative approach to solving Az = b. First let 2(0) = wb, then let

k) (k=1)

2% = b+ ra .

The iterates (%) will converge to the solution of Az = b if |r| < 1.

You should now convince yourself that because 7 — 0, that the choice of the initial iterate z(©)
was immaterial, i.e., that under any choice of initial iterate convergence is guaranteed.

We now translate this scalar result into the vector case. The algorithm proceeds as follows: first
fix some initial estimate of the solution, £(?). A good choice might be wb, but this is not necessary.
Then calculate successive approximations to the actual solution by updates of the form

2®) = wb 4+ (I — wA) 2+,

It turns out that we can consider a slightly more general form of the algorithm, one in which
successive iterates are defined implicitly. That is we consider iterates of the form

Qz Y = (Q — wA) 2™ + wb, (5.3)

for some matrix Q, and some scaling factor w. Note that this update relies on vector additions
and possibly by premultiplication of a vector by A or Q. In the case where these two matrices are
sparse, such an update can be relatively cheap.
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Now suppose that as k — oo, ¥) converges to some vector x*, which is a fixed point of the
iteration. Then

Qz* = (Q — wA)x* + wb,
Qz* = Qx* — wAZ* + wb,
wAz"* = wb,

Ax* =b.

We have some freedom in choosing Q, but there are two considerations we should keep in mind:

1. Choice of Q affects convergence and speed of convergence of the method. In particular, we
want Q to be similar to A.

2. Choice of Q affects ease of computing the update. That is, given

z2=(Q-A)z® 1,
we should pick Q such that the equation
Qac(k“) — »

is easy to solve exactly.
These two goals conflict with each other. At one end of the spectrum is the so-called “impossible
iteration,” at the other is the Richardsons.

5.4.3 Impossible Iteration

I made up the term “impossible iteration.” But consider the method which takes Q to be A. This
seems to be the best choice for satisfying the first goal. Letting w = 1, our method becomes

Az = (A - A)z® +b=b.

This method should clearly converge in one step. However, the second goal is totally ignored.
Indeed, we are considering iterative methods because we cannot easily solve this linear equation in
the first place.

5.4.4 Richardson Iteration

At the other end of the spectrum is the Richardson Iteration, which chooses Q to be the identity

matrix. Solving the system
Q:I}(k+1) = >

is trivial: we just have x(*+1) = z.

Example Problem 5.4. Use Richardson Iteration with w = 1 on the system

6 1 1 12
A=|2 40|, b=]|o0
1 2 6 6
Solution: We let
100 -5 -1 -1
Q=0 10|, @Q-A=]|-2 -3 o0
0 0 1 -1 -2 -5
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We start with an arbitrary 2(©, say 2 = [222]7 . We get 2 = [-2 —10 —10]" , and z?® =
[42 34 78] .

Note the real solution is & = [2 — 1 1]T . The Richardson Iteration does not appear to converge
for this example, unfortunately. .

Example Problem 5.5. Apply Richardson Iteration with w = 1/6 on the previous system.
Solution: Our iteration becomes

0 —1/6 —1/6 2
et = | —1/3  1/3 0z®+ |0
~1/6 —1/3 0 1

We start with the same 2(©) as previously, z(® = [222]". We get 2 = [4/300], 2?® =
[2 —4/97/9]", and finally (12 = [2 — 0.99998 0.99998] .
Thus, the choice of w has some affect on convergence. -

We can rethink the Richardson Iteration as
2® D — (1 —wA) 2™ +wb=2® 4w (b - Aw(k)> :

Thus at each step we are adding some scaled version of the residual, defined as b — Az®), to the
iterate.

5.4.5 Jacobi Iteration

The Jacobi Iteration chooses Q to be the matrix consisting of the diagonal of A. This is more
similar to A than the identity matrix, but nearly as simple to invert.

Example Problem 5.6. Use Jacobi Iteration, with w = 1, to solve the system

6 1 1 12
A=|2 40|, b=]0
126 6
Solution: We let
6 00 0 -1 -1 100
Q=04 0|, @Q-A=|-2 0 o0, Q'=|01o0
006 -1 -2 0 00 3

We start with an arbitrary x(©), say (0 = [22 2]T. We get (V) = [% -1 O]T. Then ) =
[ -2 %]T. Continuing, we find that 2® ~ [1.987 —1.019 0.981]" .
Note the real solution is & = [2 —1 1] . -

There is an alternative way to describe the Jacobi Iteration for w = 1. By considering the update
elementwise, we see that the operation can be described by

n
(k+1) _ 1 (k)
7 i=1,i#j

Thus an update takes less than 2n? operations. In fact, if A is sparse, with less than k nonzero
entries per row, the update should take less than 2nk operations.
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5.4.6 Gauss Seidel Iteration

The Gauss Seidel Iteration chooses Q to be lower triangular part of A, including the diagonal. In
this case solving the system

Q$(k+1) = 2

is performed by forward substitution. Here the Q is more like A than for Jacobi Iteration, but
involves more work for inverting.

Example Problem 5.7. Use Gauss Seidel Iteration to again solve for

6 1 1 12
A=|2 40|, b=]|o0
1 2 6 6
Solution: We let
6 0 O 0 -1 -1
Q=]2401|, @Q-A=|0 0 o0
1 2 6 0O 0 0

We start with an arbitrary x©), say x(© = [222]T. We get ) = [% — % 1]T. Then z(? =

% -21"
18 ~ 36 :
Already this is fairly close to the actual solution & =[2 —11]" . —|

Just as with Jacobi Iteration, there is an easier way to describe the Gauss Seidel Iteration. In
this case we will keep a single vector « and overwrite it, element by element. Thus for j =1,2,...,n,
we set

n
1

Z; — CL_ bj — E QA4 %;
& i=1,ij

This looks exactly like the Jacobi update. However, in the sum on the right there are some “old”
values of x; and some “new” values; the new values are those x; for which i < j.

Again this takes less than 2n? operations. Or less than 2nk if A is sufficiently sparse.

An alteration of the Gauss Seidel Iteration is to make successive “sweeps” of this redefinition,
one for j = 1,2,...,n, the next for j = n,n —1,...,2,1. This amounts to running Gauss Seidel
once with Q the lower triangular part of A, then running it with Q the upper triangular part. This
iterative method is known as “red-black Gauss Seidel.”

5.4.7 Error Analysis

Suppose that @ is the solution to equation 5.4. Define the error vector:

k)

:ZIZ( — .



5.4. ITERATIVE SOLUTIONS 47

Now notice that
2+ — Q-1 (Q —wA) ) 4 Q 'wb,
D) = Q7 1Qz® — wQ TAz® + wQ Az,
c* D) = 20 _ Q1A (w(k) - w) ,
) — g =a2® 2z — QA <m(k) - ac) )
) — o) _ ,Q 1 Ae®),

=e
ekl — (I — wQ_lA) e

Reusing this relation we find that

el (1—- wQ_lA) elt=1),
(I — wQ_lA)2 e(k_2),

(I — wQ_lA)k e,

(k+1)

We want to ensure that e is “smaller” than e*). To do this we recall matrix and vector norms

from Subsection 1.4.1.
] - -], < e,

(See Example Problem 1.29.)
Thus our iteration converges (e(*) goes to the zero vector, i.e., %) — x) if

1 —wQ'A[, < L.
This gives the theorem:

Theorem 5.8. An iterative solution scheme converges for any starting () if and only if all
eigenvalues of | — wQ A are less than 1 in absolute value, i.e., if and only if

- oA, <1

Another way of saying this is “the spectral radius of | — wQ 1A is less than 1.”

In fact, the speed of convergence is decided by the spectral radius of the matrix—convergence
is faster for smaller values. Recall our introduction to iterative methods in the scalar case, where
the result relied on w being chosen such that |1 —wA| < 1. You should now think about how
eigenvalues generalize the absolute value of a scalar, and how this relates to the norm of matrices.

Let y be an eigenvector for Q 'A, with corresponding eigenvalue . Then

(I-wQ'A)y =y —wQ Ay =y —wly = (1 —wA) y.

This relation may allow us to pick the optimal w for given A,Q. It can also show us that
sometimes no choice of w will give convergence of the method. There are a number of different
related results that show when various methods will work for certain choices of w. We leave these
to the exercises.
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Example Problem 5.9. Find conditions on w which guarantee convergence of Richardson’s Iter-
ation for finding approximate iterative solutions to the system Ax = b, where

6 1 1 12
A=|2 40|, b=]0
126 6

Solution: By Theorem 5.8, with Q the identity matrix, we have convergence if and only if
Il —wAll, <1

We now use the fact that “eigenvalues commute with polynomials;” that is if f(x) is a polynomial
and ) is an eigenvalue of a matrix A, then f(\) is an eigenvalue of the matrix f(A). In this case the
polynomial we consider is f(z) = 2°—wa!. Using octave or Matlab you will find that the eigenvalues
of A are approximately 7.7321,4.2679, and 4. Thus the eigenvalues of | — wA are approximately

1-77321w, 1 —4.2679%w, 1 — 4w.

With some work it can be shown that all three of these values will be less than one in absolute
value if and only if

O<w< ~ 0.388

3
7.7321
(See also Exercise (5.10).)

Compare this to the results of Example Problem 5.4, where for this system, w = 1 apparently did

not lead to convergence, while for Example Problem 5.5, with w = 1/6, convergence was observed.
_|

5.4.8 A Free Lunch?

The analysis leading to Theorem 5.8 leads to an interesting possible variant of the iterative scheme.
For simplicity we will only consider an alteration of Richardson’s Iteration. In the altered algorithm
we presuppose the existence, via some oracle, of a sequence of weightings, w;, which we use in each
iterative update. Thus our algorithm becomes:

1. Select some initial iterate a(©).

2. Given iterate z*~1), define

x®) = (I — wpA) 2* D + wib.
Following the analysis for Theorem 5.8, it can be shown that

e®) = (I — wyA) eV

k)

where, again, e® = z*) _ 2 with z the actual solution to the linear system. Expanding elk=1)

similarly gives

e® = (I — wpA) (w1 A) eF=2)

k
= (HI - wiA) e,
=1
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Remember that we want e*) to be small in magnitude, or, better yet, to be zero. One way to
guarantee that e(® is zero, regardless of the choice of e it to somehow ensure that the matrix

k

B:HI—wiA
=1

has all zero eigenvalues.
We again make use of the fact that eigenvalues “commute” with polynomials to claim that if

Aj is an eigenvalue of A, then
k

H 1-— wi)\j
i=1

is an eigenvalue of B. This eigenvalue is zero if one of the w; for 1 <1i < kis 1/ Aj. This suggests
how we are to pick the weightings: let them be the inverses of the eigenvalues of A.

In fact, if A has a small number of distinct eigenvalues, say m eigenvalues, then convergence to
the exact solution could be guaranteed after only m iterations, regardless of the size of the matrix.

As you may have guessed from the title of this subsection, this is not exactly a practical
algorithm. The problem is that it is not simple to find, for a given arbitrary matrix A, one, some,
or all its eigenvalues. This problem is of sufficient complexity to outweigh any savings to be gotten
from our “free lunch” algorithm.

However, in some limited situations this algorithm might be practical if the eigenvalues of A
are known a priori.
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| EXERCISES |

(5.1) Find the LU decomposition of the following matrices, using naive Gaussian Elimination

3 -1 -2 8 24 16 -3 6 0
@ | 9 -1 =4[ ® |1 121 || 1 -2 0
—6 10 13 4 13 19 -4 5 -8

(5.2) Perform back substitution to solve the equation

135 3 1
024 3| |-1
002 1|71
000 2 p

(5.3) Perform Naive Gaussian Elimination to prove Cramer’s rule for the 2D case. That is, prove

that the solution to
a b x| | f
cd|lly]| |y

is given by
det[a f] det[f b}
c g g d
S e N T
a a
det[c d} det[c d]

(5.4) Implement Cramer’s rule to solve a pair of linear equations in 2 variables. Your m-file should
have header line like:
function x = cramer2(A,b)
where A is a 2 x 2 matrix, and b and x are 2 x 1 vectors. Your code should find the x such
that Ax = b. (See Exercise (5.3))
Test your code on the following (augmented) systems:

(a) (3 -2 1 >(b) ( 1.24 —3.48‘1 >(C) < 1.24 —3.48‘ 1)
4 -3|-1 —0.744 2.088 | 2 —0.744  2.088 | —0.6
(@ <—0.0590 0.2372 —O.3528>
0.1080 —0.4348 | 0.6452

(5.5) Given two lines parametrized by f(t) = at+b, and g(s) = es+d, set up a linear 2 x 2 system
of equations to find the ¢, s at the point of intersection of the two lines. If you were going
to write a program to detect the intersection of two lines, how would you detect whether
they are parallel? How is this related to the form of the solution to a system of two linear
equations? (See Exercise (5.3))

(5.6) Prove that the inverse of the matrix

1 00 --- 0
az 1 0 --- 0
az 01 --- 0

a, 0 0 --- 1
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is the matrix

1 00 - 0
—ay 1 0 -+ 0
—az 01 -+ 0

| —an, 00 - 1

(Hint: Multiply them together.)
(5.7) Under the strategy of scaled partial pivoting, which row of the following matrix will be the
first pivot row?
10 17 —-10 0.1 0.9
-3 3 -3 03 —4
0.3 0.1 0.01 -1 0.5
2 3 4 -3 5
10 100 1 01 O

(5.8) Let A be a symmetric positive definite n x n matrix with n distinct eigenvalues. Letting
y© =b/ ||, consider the iteration

ey _ Ay
[Ay®],

(a) What is Hy(k)HZ?
(b) Show that y*) = A*b/ HAkaz'
(c) Show that as k — oo, y*) converges to the (normalized) eigenvector associated with the

largest eigenvalue of A.
(5.9) Consider the equation

1 3 5 -5
-2 2 4 |z=| -6
4 -3 -4 10

Letting z(© = 11 O]T, find the iterate (1) by one step of Richardson’s Method. And by
one step of Jacobi Iteration. And by Gauss Seidel.

(5.10) Let A be a symmetric n X n matrix with eigenvalues in the interval [«, 8], with 0 < o < f3,
and a + 8 # 0. Consider Richardson’s Iteration

c* D = (1 — wA) 2®) + wb.

Recall that e®+D = (1 — wA) e®).

(a) Show that the eigenvalues of | — wA are in the interval [1 —wf, 1 — wal].
(b) Prove that

max{|\|: 1 —wf <A< 1—-wa}
is minimized when we choose w such that 1 —wf = — (1 —wa) . (Hint: It may help to
look at the graph of something versus w.)

(c) Show that this relationship is satisfied by w =2/ (a + ).
(d) For this choice of w show that the spectral radius of | — wA is

la — f]
la+ Bl
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(e) Show that when 0 < «, this quantity is always smaller than 1.
(f) Prove that if A is positive definite, then there is an w such that Richardson’s Iteration
with this w will converge for any choice of x(©).
(g) For which matrix do you expect faster convergence of Richardson’s Iteration: A; with
eigenvalues in [10,20] or A, with eigenvalues in [1010, 1020]7 Why?
(5.11) Implement Richardson’s Iteration to solve the system Az = b. Your m-file should have
header line like:
function xk = richardsons(A,b,x0,w,k)
Your code should return ) based on the iteration

20D = 20) _ (Awm _ b) .

Let w take the place of w, and let x0 be the initial iterate x(?). Test your code for A,b for
which you know the actual solution to the problem. (Hint: Start with A and the solution x
and generate b.) Test your code on the following matrices:
e Let A be the Hilbert Matrix.
This is generated by the octave command A = hilb(10), or whatever (smallish) inte-
ger. Try different values of w, including w = 1.
e Let A be a Toeplitz matrix of the form:

—2 1 0 0

1 -2 1 0

A—| 0 1 =2 0
0 0 0 - —2]

These can be generated by the octave command A = toeplitz([-2 1 0 0 0 0 0 0]).Try
different values of w, including w = —1/2.

(5.12) Let A be a nonsingular n x n matrix. We wish to solve Az = b. Let z(©) be some starting
vector, let Dj. be span {7,(0)7 Ar©® . ,Akr(o)} , and let Py be the set of polynomials, p(z) of
degree k with p(0) = 1.

Consider the following iterative method: Let x(**1) be the a that solves

min ||b —Az|,.
w€$(0)+Dk

Let r*) = b — Az(*),
(a) Show that if € 2(©) + Dy, then b — Az = p(A)r(® for some p € Py.
(b) Prove that, conversely, for any p € Py there is some x € z(© 4+ Dy, such that b — Az =
p(A)r©).
(c) Argue that

Hr(kH)H = min
2 PEP)

PR .
2
(d) Prove that this iteration converges in at most n steps. (Hint: Argue for the existence
of a polynomial in P,, that vanishes at all the eigenvalues of A. Use this polynomial to
show that Hr(")H2 <0.)



Chapter 6

Finding Roots

6.1 Bisection

We are now concerned with the problem of finding a zero for the function f(z), i.e., some ¢ such
that f(c) =0.

The simplest method is that of bisection. The following theorem, from calculus class, insures
the success of the method

Theorem 6.1 (Intermediate Value Theorem). If f(z) is continuous on [a,b] then for any y such
that y is between f(a) and f(b) there is a ¢ € [a,b] such that f(c) =y.

The IVT is best illustrated graphically. Note that continuity is really a requirement here—a
single point of discontinuity could ruin your whole day, as the following example illustrates.

Example 6.2. The function f(z) = % is not continuous at 0. Thus if 0 € [a,b], we cannot apply
the IVT. In particular, if 0 € [a, b] it happens to be the case that for every y between f(a), f(b)
there is no ¢ € [a, b] such that f(c) = y.

In particular, the IVT tells us that if f(z) is continuous and we know a,b such that f(a), f(b)
have different sign, then there is some root in [a,b]. A decent estimate of the root is ¢ = “TH’.
We can check whether f(c) = 0. If this does not hold then one and only one of the two following
options holds:

1. f(a), f(c) have different signs.

2. f(c), f(b) have different signs.

We now choose to recursively apply bisection to either [a,c| or [c,b], respectively, depending on

which of these two options hold.

6.1.1 Modifications

Unfortunately, it is impossible for a computer to test whether a given black box function is contin-
uous. Thus malicious or incompetent users could cause a naively implemented bisection algorithm
to fail. There are a number of easily conceivable problems:
1. The user might give f,a,b such that f(a), f(b) have the same sign. In this case the function
f might be legitimately continuous, and might have a root in the interval [a,b]. If, taking
c= “TH’, (a), f(b), f(c) all have the same sign, the algorithm would be at an impasse. We
should perform a “sanity check” on the input to make sure f(a), f(b) have different signs.

93
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2. The user might give f,a,b such that f is not continuous on [a,b], moreover has no root in
the interval [a,b]. For a poorly implemented algorithm, this might lead to an infinite search
on smaller and smaller intervals about some discontinuity of f. In fact, the algorithm might
descend to intervals as small as machine precision, in which case the midpoint of the interval
will, due to rounding, be the same as one of the endpoints, resulting in an infinite recursion.

3. The user might give f such that f has no root ¢ that is representable in the computer’s
memory. Recall that we think of computers as storing numbers in the form £ x 10¥; given
a finite number of bits to represent a number, only a finite number of such numbers can be
represented. It may legitimately be the case that none of them is a root to f. In this case,
the behaviour of the algorithm may be like that of the previous case. A well implemented
version of bisection should check the length of its input interval, and give up if the length is
too small, compared to machine precision.

Another common error occurs in the testing of the signs of f(a), f(b). A slick programmer might
try to implement this test in the pseudocode:

if (£(a)f(b) > 0) then ...

Note however, that |f(a)|,|f(b)| might be very small, and that f(a)f(b) might be too small to
be representable in the computer; this calculation would be rounded to zero, and unpredictable
behaviour would ensue. A wiser choice is

if (sign(f(a)) * sign(£(b)) > 0) then ...

where the function sign (z) returns —1,0,1 depending on whether x is negative, zero, or positive,
respectively.
The pseudocode bisection algorithm is given as Algorithm 1.

6.1.2 Convergence

We can see that each time recursive bisection(f,a,b,...) is called that |b — a| is half the length
of the interval in the previous call. Formally call the first interval [ag, by|, and the first midpoint
cp. Let the second interval be [ag, b;], etc. Note that one of ay,b; will be ¢, and the other will be
either ag or by. We are claiming that

bn—l —an—-1
2
bo — ag
on

b, —a, =

Theorem 6.3 (Bisection Method Theorem). If f(x) is a continuous function on [a,b] such that

f(a)f(b) < 0, then after n steps, the algorithm run bisection will return ¢ such that |c —¢/| <
|b—al

where ¢’ is some root of f.

6.2 Newton’s Method

Newton’s method is an iterative method for root finding. That is, starting from some guess at the
root, xg, one iteration of the algorithm produces a number x1, which is supposed to be closer to a
root; guesses x2, X3, ..., I, follow identically.

Newton’s method uses “linearization” to find an approximate root. Recalling Taylor’s Theorem,
we know that

flx+h)~ f(z) + f'(2)h.
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Algorithm 1: Algorithm for finding root by bisection.
Input: a function, two endpoints, a xz-tolerance, and a y-tolerance
Output: a c such that |f(c)| is smaller than the y-tolerance.

RUN_BISECTION( f, a, b, , €)

W N =
~—

—= O — T

if fafb>0

W

if fa=0

else

a+b

Letc<—T

\)

if |fe| <e

else

e R N i R i R RN N N N s T R i R R R
== = = = = = = = O 00 =] O Ot

© 00 J O Ut = W
—_ N — DO T

return c

throw an error.
else if fafb=0

return a
return b

while b — a > 2§
Let fe«+ f(c).

return c
if sign (fa)sign (fc) <0

Let b« ¢, fb<+ fc, c+

Let a < ¢, fa + fc, c+

Let fa « sign (f(a)).
Let fb < sign (f(b)).

2

2

a+tc

ctb
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This approximation is better when f”(-) is “well-behaved” between x and x + h. Newton’s method
attempts to find some h such that

This is easily solved as

An iteration of Newton’s method, then, takes some guess zj and returns xy; defined by

0= f(z+h)=fz)+ f(x)h

_ —f@)

- @)

Th+1 = Tk —

f(zg)

flar)

(6.1)

An iteration of Newton’s method is shown in Figure 6.1, along with the linearization of f(z) at

L.

6.2.1 Implementation

Use of Newton’s method requires that the function f(z) be differentiable. Moreover, the derivative
of the function must be known. This may preclude Newton’s method from being used when f(z)
is a black box. As is the case for the bisection method, our algorithm cannot explicitly check for
continuity of f(x). Moreover, the success of Newton’s method is dependent on the initial guess
xg. This was also the case with bisection, but for bisection there was an easy test of the initial
interval—i.e., test if f(ap)f(bo) < O.
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‘,f('rkfl)

f(7g)

Figure 6.1: One iteration of Newton’s method is shown for a quadratic function f(z). The lin-
earization of f(x) at xy is shown. It is clear that x4 is a root of the linearization. It happens to
be the case that |f(xgs1)| is smaller than |f(xg)|, i.e., k41 is a better guess than xy.

Our algorithm will test for goodness of the estimate by looking at |f(z)|. The algorithm will
also test for near-zero derivative. Note that if it were the case that f’(x)) = 0 then h would be ill
defined.

Algorithm 2: Algorithm for finding root by Newton’s Method.
Input: a function, its derivative, an initial guess, an iteration limit, and a tolerance
Output: a point for which the function has small value.
RUN_NEWTON( f, f/, 20, N, tol)
(1) Let © < 20,n < 0.

(2)  whilen<N

(3) Let fx « f(x).

(4) if | fz| < tol

(5) return z.

(6) Let fpx < f'(z).

(7) if |fpz| < tol

(8) Warn “f’(z) is small; giving up.”
9) return z.

(10) Let © <z — fz/fpx.

(11) Let n <~ n+ 1.
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6.2.2 Problems

As mentioned above, convergence is dependent on f(x), and the initial estimate zp. A number of
conceivable problems might come up. We illustrate them here.

Example 6.4. Consider Newton’s method applied to the function f(r) = 27 with j > 1, and with
initial estimate xg # 0.
Note that f(z) = 0 has the single root x = 0. Now note that

J

T 1

Tp41 = Tk — jk_l = (1 - —.> T
Jjry, J

Since the equation has the single root x = 0, we find that z; is converging to the root. However,
it is converging at a rate slower than we expect from Newton’s method: at each step we have a
constant decrease of 1 —(1/7), which is a larger number (and thus worse decrease) when j is larger.

Example 6.5. Consider Newton’s method applied to the function f(z) = IHTQC, with initial estimate
o = 3.

Note that f(z) is continuous on RT. It has a single root at z = 1. Our initial guess is not too far
from this root. However, consider the derivative:

xl—lnx_ 1-Inzx

fll@) = = =

2 2

If 2 >e!, then 1 —Inz < 0, and so f/(z) < 0. However, for > 1, we know f(z) > 0. Thus taking

f(zx)

Tkt = Tk — f’(azk) > T

The estimates will “run away” from the root x = 1.

Example 6.6. Consider Newton’s method applied to the function f(x) = sin(x) for the initial
estimate xg # 0, where xy has the odious property 2z = tan .
You should verify that there are an infinite number of such zy. Consider the identity of x :

f(zo) sin(zg)

Tl =T — =z — = x¢ — tanxrg = xg — 229 = —T9.
f'(2o0) cos (o)
Now consider x5 :
Ty =T — f,(xl) = —x0 — M — sin(zo) = —x9+tanzg = —xg + 229 = Tp.
f'(x1) cos(—xp) cos(xp)

Thus Newton’s method “cycles” between the two values xg, —zg.

Of course, Newton’s method may find some iterate xj for which f’(x) = 0, in which case, there
is no well-defined x4 1.

6.2.3 Convergence

When Newton’s Method converges, it actually displays quadratic convergence. That is, if ey, = xp—r,
where r is the root that the xj are converging to, that |egyi| < C’|ek|2. If, for example, it were
the case that C' = 1, then we would double the accuracy of our root estimate with each iterate.
That is, if eg were 0.001, we would expect e; to be on the order of 0.000001. The following theorem
formalizes our claim:
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Theorem 6.7 (Newton’s Method Convergence). If f(z) has two continuous derivatives, and r is a
simple root of f(x), then there is some D such that if |zg — 7| < D, Newton’s method will converge
quadratically to r.

The proof is based on arguments from real analysis, and is omitted; see Cheney & Kincaid for
the proof [7]. Take note of the following, though:
1. The proof requires that r be a simple root, that is that f’(r) # 0. When this does not hold
we may get only linear convergence, as in Example 6.4.
2. The key to the proof is using Taylor’s theorem, and the definition of Newton’s method to
show that

—f"(&r)e;,

€41 = 2f,(xk) )

where &, is between xp and r = xj + eg.
The proof then proceeds by showing that there is some region about r such that

(a) in this region |f”(x)| is not too large and |f’(x)]| is not too small, and

(b) if zy is in the region, then x4 is in the region.
In particular the region is chosen to be so small that if z; is in the region, then the factor
er will outweigh the factor |f” ()| /2|f/(zx)|. You can roughly think of this region as an
“attractor” region for the root.

3. The theorem never guarantees that some xj will fall into the “attractor” region of a root r of

the function, as in Example 6.5 and Example 6.6. The theorem that follows gives sufficient
conditions for convergence to a particular root.

Theorem 6.8 (Newton’s Method Convergence II [2]). If f(z) has two continuous derivatives on
[a,b], and

L. f(a)f(b) <0,

2. f'(x) #0on [a,b],

3. f"(z) does not change sign on [a, b],

4. Both | £(a)] < (b— a) |f'()] and |£(b)] < (b— a) | ()| hold,
then Newton’s method converges to the unique root of f(x) = 0 for any choice of g € [a, b].

6.2.4 Using Newton’s Method

Newton’s Method can be used to program more complex functions using only simple functions.
Suppose you had a computer which could perform addition, subtraction, multiplication, division,
and storing and retrieving numbers, and it was your task to write a subroutine to compute some
complex function g(-). One way of solving this problem is to have your subroutine use Newton’s
Method to solve some equation equivalent to g(z) — 2 = 0, where z is the input to the subroutine.
Note that it is assumed the subroutine cannot evaluate g(z) directly, so this equation needs to be
modified to satisfy the computer’s constraints.

Quite often when dealing with problems of this type, students make the mistake of using New-
ton’s Method to try to solve a linear equation. This should be an indication that a mistake was
made, since Newton’s Method can solve a linear equation in a single step:

Example 6.9. Consider Newton’s method applied to the function f(z) = ax + b. The iteration is

given as

axrp +0b
Th41 S Tk — PR

This can be rewritten simply as z;11 < —b/a.
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The following example problems should illustrate this process of “bootstrapping” via Newton’s
Method.

Example Problem 6.10. Devise a subroutine using only subtraction and multiplication that can
find the multiplicative inverse of an input number z, i.e., can find (1/z).
Solution: We are tempted to use the linear function f(z) = (1/z) — . But this is a linear equation
for which Newton’s Method would reduce to zx11 < (1/z). Since the subroutine can only use
subtraction and multiplication, this will not work.
Instead apply Newton’s Method to f(z) = z — (1/x). The Newton step is
z— (1/zk)

xk+1<—xk—7:xk—zx%—l—xk:xk@—zxk).

(1/23)

Note this step uses only multiplication and subtraction. The subroutine is given in Algorithm 3.
_|

Algorithm 3: Algorithm for finding a multiplicative inverse using simple operations.
Input: a number
Output: its multiplicative inverse

INVS(z)

(1)  if z =0 throw an error.
(2)  Let x < sign(z),n < 0.
(3)  while n <50

(4) Let z < 2 (2 — zx).
(5) Let n + n+ 1.

Example Problem 6.11. Devise a subroutine using only simple operations which computes the
square root of an input number z.

Solution: The temptation is to find a zero for f(z) = \/z — x. However, this equation is linear
in 2. Instead let f(z) = z — 22. You can easily see that if = is a positive root of f(x) = 0, then
x = /z. The Newton step becomes

2

Th41 < T — oy

after some simplification this becomes

Note this relies only on addition, multiplication and division.
The final subroutine is given in Algorithm 4.

6.3 Secant Method

The secant method for root finding is roughly based on Newton’s method; however, it is not
assumed that the derivative of the function is known, rather the derivative is approximated by
the value of the function at some of the iterates, x,. More specifically, the slope of the tangent
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Algorithm 4: Algorithm for finding a square root using simple operations.
Input: a number
Output: its square root
SQRT(2)
(1)  if 2 < 0 throw an error.
2 Let x < 1,n < 0.
3 while n < 50
4 Let x < (z + z/x) /2.
Let n < n+ 1.

A~~~
(@)
o — —

Figure 6.2: One iteration of the Secant method is shown for some quadratic function f(z). The
secant line through (zx_1, f(zk—1)) and (xg, f(xg)) is shown. It happens to be the case that
| f(xgy1)| is smaller than |f(xk)|, i.e., zx11 is a better guess than x.

line at (xg, f(zx)), which is f’(z) is approximated by the slope of the secant line passing through
(zk—1, f(z-1)) and (zy, f(zx)) , which is

fxy) = flop—1)

Lk — Tk—1

Thus the iterate zjy1 is the root of this secant line. That is, it is a root to the equation

far) = flor—1)

Tl — Tk—1

(x —x1) =y — f(ar).
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Since the root has a y value of 0, we have

— (Trt1 — k) = —f(@8),
Tk — Tp—1
- T) — Tp—1 .
Tl ~ T = <f<:sk> - f<:ck_1>> few),
o Lk — Tk-1 ). )
P < o f(a:k_n) f (o) (6.2)

You will note this is the recurrence of Newton’s method, but with the slope f/(z) substituted
by the slope of the secant line. Note also that the secant method requires two initial guesses, zg, 1,
but can be used on a black box function. The secant method can suffer from some of the same
problems that Newton’s method does, as we will see.

An iteration of the secant method is shown in Figure 6.2, along with the secant line.

Example 6.12. Consider the secant method used on 23 + 22 — x — 1, with zg = 2,21 = %
Note that this function is continuous and has roots 1. We give the iterates here:

k T f(xk)

0 2 9

1 0.5 —1.125

2 0.666666666666667 —0.925925925925926

3 1.44186046511628 2.63467367653163

4 0.868254072087394 —0.459842466254495

5 0.953491494113659 —0.177482458876898

6 1.00706900811804 0.0284762692197613

7 0.999661272951803 —0.0013544492875992

8 0.999997617569723 —9.52969840528617 x 10~%
9 1.0000000008072  3.22880033820638 x 10~%
10  0.999999999999998 —7.43849426498855 x 1015

6.3.1 Problems

As with Newton’s method, convergence is dependent on f(x), and the initial estimates xg, z1. We
illustrate a few possible problems:

Example 6.13. Consider the secant method for the function f(x) = lr‘Tx, with g = 3,21 = 4.
As with Newton’s method, the iterates diverge towards infinity, looking for a nonexistant root. We
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give some iterates here:

Tk
3
4
21.6548475770851
33.9111765137635

CHAPTER 6. FINDING ROOTS

flxy)

0.366204096222703
0.346573590279973
0.142011128224341
0.103911011441661

67.3380435135758
117.820919458675
210.543986613847
366.889164762149
637.060241341843
1096.54125113444
10 1878.34688714646
11 3201.94672271613
12 5437.69020766155
13 9203.60222260594
14 15533.1606791089
15 26149.7196085218
16 43924.8466075548
17 73636.673898472

0.0625163004418104
0.0404780904944712
0.0254089165873003
0.0160949419231219
0.010135406045582
0.00638363233543847
0.00401318169994875
0.0025208146648422
0.00158175793894727
0.000991714984152597
0.000621298692241343
0.000388975250950428
0.000243375589137882
0.000152191807070607

CO O Ui Wi~ O

Ne)

Example 6.14. Consider Newton’s method applied to the function f(x) = ﬁ —

estimates g = —1, 21 = 1.
You can easily verify that f(z¢) = f(x1), and thus the secant line is horizontal. And thus z is not
defined.

L, with initial

Algorithm 5: Algorithm for finding root by secant method.
Input: a function, initial guesses, an iteration limit, and a tolerance
Output: a point for which the function has small value.
RUN_SECANT(f, 20, z1, N, tol)
(1)  Let @ < al,ap < 20, fh < f(x1), fp < f(20),n < 0.
) whilen <N
) if |fh| < tol
) return z.
) Let fpx < (fh — fp)/(z — zp).
) if | fpz| < tol
) Warn “secant slope is too small; giving up.”
) return z.
) Let zp <+ z, fp «+ fh.
0) Let <z — fh/fpx.
1) Let fh + f(x).
2) Let n <—n + 1.

AN AN AN AN AN AN N N N N

6.3.2 Convergence

We consider convergence analysis as in Newton’s method. We assume that r is a root of f(x), and
let e, = r — x,,. Because the secant method involves two iterates, we assume that we will find some
relation between ep; and the previous two errors, ey, ex_1.
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Indeed, this is the case. Omitting all the nasty details (see Cheney & Kincaid [7]), we arrive at
the imprecise equation:

(.
k+1 ~ 2f’(7")

erep—1 = Cepen_1.

Again, the proof relies on finding some “attractor” region and using continuity.
We now postulate that the error terms for the secant method follow some power law of the
following type:
lex+1| ~ Alex|*.

Recall that this held true for Newton’s method, with o = 2. We try to find the « for the secant
method. Note that
lex| = Alex—1|",

S0 1 1
]ek_l\ =A< ]ekla .
Then we have ) )
Aler|® = lexs1] = Clex |ex—1] = CA™a || T,

Since this equation is to hold for all eg, we must have

1
a=1+—.
o
This is solved by a = % (1 + \/5) ~ 1.62. Thus we say that the secant method enjoys superlinear
convergence; This is somewhere between the convergence rates for bisection and Newton’s method.
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| EXERCISES |

(6.1) Consider the bisection method applied to find the zero of the function f(z) = 2? — 5z + 3,
with ag = 0,b9 = 1. What are aq,b1? What are ag, by ?

(6.2) Approximate v/10 by using two steps of Newton’s method, with an initial estimate of 2y = 3.
(¢f. Example Problem 6.11) Your answer should be correct to 5 decimal places.

(6.3) Consider bisection for finding the root to cosz = 0. Let the initial interval Iy be [0, 2]. What
is the next interval considered, call it 13?7 What is 1,7 Ig?

(6.4) What does the sequence defined by

Tog = 1, Tht1 = §$k + l’ik
converge to?

(6.5) Devise a subroutine using only simple operations that finds, via Newton’s Method, the cubed
root of some input number z.

(6.6) Use Newton’s Method to approximate v/9. Start with 2o = 2. Find 5.

(6.7) Use Newton’s Method to devise a sequence zg, 1, . . . such that 25 — In 10. Is this a reasonable
way to write a subroutine that, given z, computes In 2?7 (Hint: such a subroutine would require
computation of €. Is this possible for rational x; without using a logarithm? Is it practical?)

(6.8) Give an example (graphical or analytic) of a function, f(x) for which Newton’s Method:

(a) Does not find a root for some choices of z.
(b) Finds a root for every choice of zg.

(c) Falls into a cycle for some choice of xy.

(d) Converges slowly to the zero of f(z).

(6.9) How will Newton’s Method perform for finding the root to f(z) = /[z] = 07

(6.10) Implement the inverse finder described in Example Problem 6.10. Your m-file should have
header line like:
function ¢ = invs(z)
where z is the number to be inverted. You may wish to use the builtin function sign. As
an extra termination condition, you should have the subroutine return the current iterate if
zx is sufficiently close to 1, say within the interval (0.9999,0.0001). Can you find some z for
which the algorithm performs poorly?

(6.11) Implement the bisection method in octave/Matlab. Your m-file should have header line like:
function ¢ = run_bisection(f, a, b, tol)
where f is the name of the function. Recall that feval(f,x) when f is a string with the
name of some function evaluates that function at x. This works for builtin functions and

m-files.
(a) Run your code on the function f(x) = cosz, with ag = 0,by = 2. In this case you can
set £ = "cos".

(b) Run your code on the function f(x) = 2% — 5x + 3, with ag = 0,by = 1. In this case you
will have to set £ to the name of an m-file (without the “.m”) which will evaluate the
given f(x).
(¢) Run your code on the function f(x) = x — cosx, with ag = 0,by = 1.
(6.12) Implement Newton’s Method. Your m-file should have header line like:
function x = run_newton(f, fp, x0, N, tol)
where f is the name of the function, and fp is its derivative. Run your code to find zeroes of
the following functions:
(a) f(z) =tanz — x.
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(b) f(z) =22~ (2+ €)x + 1 +e¢, for € small.
(c) f(x) =a" — 720+ 212° — 352 + 352 — 2122 + 72 — 1.
(d) fl@)=(@-1)".
(6.13) Implement the secant method Your m-file should have header line like:

function x = run_secant(f, x0, x1, N, tol)

where f is the name of the function. Run your code to find zeroes of the following functions:
(a) f(z) =tanz — x.
(b) f(x) = 2% + 1. (Note: This function has no zeroes.)
(¢) f(z) =2+ sinz. (Note: This function also has no zeroes.)
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Chapter 7

Interpolation

7.1 Polynomial Interpolation

We consider the problem of finding a polynomial that interpolates a given set of values:

yllwolw] | wn

where the x; are all distinct. A polynomial p(x) is said to interpolate these data if p(z;) = y; for
i =20,1,...,n. The xz; values are called “nodes.”

Sometimes, we will consider a variant of this problem: we have some black box function, f(z),
which we want to approximate with a polynomial p(z). We do this by finding the polynomial
interpolant to the data

x ‘ x ‘ T “ Tn

\ 1
f@) || flxo) | fl@r) | ... | flzn)

for some choice of distinct nodes x;.

7.1.1 Lagranges Method

As you might have guessed, for any such set of data, there is an n-degree polynomial that interpo-
lates it. We present a constructive proof of this fact by use of Lagrange Polynomials.

Definition 7.1 (Lagrange Polynomials). For a given set of n+1 nodes z;, the Lagrange polynomials
are the n 4+ 1 polynomials ¢; defined by

s _J O ifi#y
€,(x])_5,j_{1 ifi=y
Then we define the interpolating polynomial as

() = Z yili(x).
=0

If each Lagrange Polynomial is of degree at most n, then p,, also has this property. The Lagrange
Polynomials can be characterized as follows:

Ly =[] “_wi_. (7.1)

Ty — X
§=0,j#i "

67
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By evaluating this product for each x;, we see that this is indeed a characterization of the Lagrange
Polynomials. Moreover, each polynomial is clearly the product of n monomials, and thus has degree
no greater than n.

This gives the theorem

Theorem 7.2 (Interpolant Existence and Uniqueness). Let {z;};, be distinct nodes. Then for
any values at the nodes, {y;};_, there is exactly one polynomial, p(x) of degree no greater than n
such that p(z;) =y; for i =0,1,...,n.

Proof. The Lagrange Polynomial construction gives existence of such a polynomial p(x) of degree
no greater than n.

Suppose there were two such polynomials, call them p(x), ¢(z), each of degree no greater than
n, both interpolating the data. Let r(x) = p(x) — ¢(x). Note that r(z) can have degree no greater

than n, yet it has roots at xg, z1,...,z,. The only polynomial of degree < n that has n+ 1 distinct
roots is the zero polynomial, i.e., 0 = r(z) = p(x) — g(x). Thus p(x),q(x) are equal everywhere,
i.e., they are the same polynomial. U

Example Problem 7.3. Construct the polynomial interpolating the data

z|1] 5 |3
y|[3]-10]2

by using Lagrange Polynomials.
Solution: We construct the Lagrange Polynomials:

o) = B R ——e= a )
=D e
lo() = ((z - 32; - %%)) = -1 3)
Then the interpolating polynomial, in “Lagrange Form” is
pa(a) = ~3(z — )&~ 3) ~ 8z~ V(z ~ 3 + 2z ~ )z~ 3)

7.1.2 Newton’s Method

There is another way to prove existence. This method is also constructive, and leads to a different
algorithm for constructing the interpolant. One way to view this construction is to imagine how
one would update the Lagrangian form of an interpolant. That is, suppose some data were given,
and the interpolating polynomial calculated using Lagrange Polynomials; then a new point was
given (Zp+1,Yn+1), and an interpolant for the augmented set of data is to be found. Each Lagrange
Polynomial would have to be updated. This could take a lot of calculation (especially if n is large).

So the alternative method constructs the polynomials iteratively. Thus we create polynomials
pr(z) such that pg(z;) = y; for 0 < i < k. This is simple for & = 0, we simply let

po(x) = Yo,
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15

-05

Figure 7.1: The 3 Lagrange polynomials for the example are shown. Verify, graphically, that these

polynomials have the property ¢;(x;) = ;; for the nodes 1, %, 3.

the constant polynomial with value yy. Then assume we have a proper py(z) and want to construct
pr+1(z). The following construction works:

Pri1 () = pr(@) + c(x — wo) (2 — 21) - -~ (& — ),

for some constant c. Note that the second term will be zero for any z; for 0 < ¢ < k, so pgt1(z)
will interpolate the data at zq,z1,...,zg. To get the value of the constant we calculate ¢ such that

Ykt1 = Pk1(@ht1) = Pr(@h1) + (@hg1 — 20) (T — 1) -+ (Thg1 — Tp)-

This construction is known as Newton’s Algorithm, and the resultant form is Newton’s form of
the interpolant

Example Problem 7.4. Construct the polynomial interpolating the data

by using Newton’s Algorithm.
Solution: We construct the polynomial iteratively:

po(x) =3
pi(x) =3+ c(x—1)

We want —10 = p1(3) = 3 + ¢(—3), and thus ¢ = 26. Then

pa(a) =3+ 26(z — 1) + el ~ 1)(x — )
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15

Pl

10

210

215 +

20

25 |

230 +

-35

Figure 7.2: The interpolating polynomial for the example is shown.

We want 2 = pa(3) = 3+ 26(2) + ¢(2)(3), and thus ¢ = =23. Then we get

o) = 3+ 26(z — 1) + _753(90 ) - %).

_|

Does Newton’s Algorithm give a different polynomial? It is easy to show, by induction, that
the degree of p,(x) is no greater than n. Then, by Theorem 7.2, it must be the same polynomial
as the Lagrange interpolant.

The two methods give the same interpolant, we may wonder “Which should we use?” Newton’s
Algorithm seems more flexible-it can deal with adding new data. There also happens to be a way
of storing Newton’s form of the interpolant that makes the polynomial simple to evaluate (in the
sense of number of calculations required).

7.1.3 Newton’s Nested Form

Recall the iterative construction of Newton’s Form:
Pr+1(z) = pr(z) + ck(z — o) (@ — 1) -+ (2 — ).
The previous iterate pi(z) was constructed similarly, so we can write:
Pr+1() = [pr-1(@) + co—1(x — zo)(x — 21) -+ (@ — @p—1)] + k(@ — wo)(x — @1) -+ (& — @)

Continuing in this way we see that we can write

pn(z) = ch H (x —xj) |, (7.2)
k=0

0<i<k
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where an empty product has value 1 by convention. This can be rewritten in a funny form, where
a monomial is factored out of each successive summand:

pn(x) = co + (. —z0)[c1 + (z — 1)[c2 + (z — 22) [..]]]

Supposing for an instant that the constants c; were known, this provides a better way of
calculating p,(t) at arbitrary t. By “better” we mean requiring few multiplications and additions.
This nested calculation is performed iteratively:

Vo = Cp,
V1 = Cp—1 + (t — Tp—1)v0

Vg = Cp—o + (t — Tp—2)v1

Up = ¢o + (t — xo)vp—1

This requires only n multiplications and 2n additions. Compare this with the number required
for using the Lagrange form: at least n? additions and multiplications.

7.1.4 Divided Differences

It turns out that the coefficients ¢, for Newton’s nested form can be calculated relatively easily by
using divided differences. We assume, for the remainder of this section, that we are considering
interpolating a function, that is, we have values of f(x;) at the nodes x;.

Definition 7.5 (Divided Differences). For a given collection of nodes {z;};-, and values { f(x;)}o_,s
a k' order divided difference is a function of k + 1 (not necessarily distinct) nodes, written as

f[xi()axila o 7xik]

The divided differences are defined recursively as follows:
e The 0" order divided differences are simply defined:

[l = flai).
e Higher order divided differences are the ratio of differences:

f[xipxizu"' 7‘Tik] - f [‘Ti(nxila"' 7‘Tik,1]

— xZO

f[xioaxilw” 7xik] =

We care about divided differences because coefficients for the Newton nested form are divided
differences:

‘ ck = flro, z1,. .. 2] ‘ (7.3)

Because we are only interested in the Newton method coefficients, we will only consider divided
differences with successive nodes, i.e., those of the form f [z, 2j41,...,2;4%]. In this case the
higher order differences can more simply be written as

flrjsnmive, - xipn] — fl25 @i, - Tjap—1]
Ljt+k = Zj

flej, zjpr, -, Tjpk) =
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The graphical way to calculate these things is a “pyramid scheme”!, where you compute the
following table columnwise, from left to right:

|| fl] flL ] flL,] flss]
wo || flwo]

flxo, x1]
z1 || fla] flzo, 1, 2]

flz1, 22 flxo, x1, x2, 23]
za || flxal flar, @2, 3]

flxe, x2]
w3 || flos]

Note that by definition, the first column just echoes the data: flz;] = f(z;).
We drag out our example one last time:

Example Problem 7.6. Find the divided differences for the following data

z_|

L] 3

|3

f@)][3]-10]2

Solution: We start by writing in the data:

Then we calculate:

flzo, 1] =

Adding these to the table, we have

Then we calculate

So we complete the table:

E

T fH f[?] f[??]
1 3
2| 10
3 2
%:267 and flxy,z0) =
LI
1 3
26
2| 10
24
5
3 2
floo. 51,25] — 24é5_—126 _ 53
T fH f[?] f[??]
1 3
26
% 10 24 _Tg’g
5
3 2

That’s supposed to be a joke.
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You should verify that along the top line of this pyramid you can read off the coefficients for
Newton’s form, as found in Example Problem 7.4.

7.2 Errors in Polynomial Interpolation

T
runge - -

73

_4

3 nodes
7 nodes --------
10 nodes -~
0.8 4
0.6 4
04 B
0.2 4
0+ -
0.2 4
0.4 1 1 1 1 1
-6 -4 -2 0 2 4 6
(a) 3,7,10 equally spaced nodes
8 . 100000 .
runge - runge -
15 nodes 50 nodes
T A i 0 2
(" [l o [ T
| ‘\ | | | |
6 ‘ | | | | |
| e‘ -100000 |- |
N [
‘ \ J ‘ -200000 | ‘ ‘
|
4t ‘\ [
‘ \ | -300000
T | |
| -400000 -
2+ ‘ |
|
|
| | ‘ -500000 - ‘
ir K T |
| “L e T S N | ‘ -600000 -
of - X
\ /
A% \
4 . . . 700000 . . . . .
6 4 2 0 2 6 4 2 0 2 4 6

(b) 15 equally spaced nodes

(c) 50 equally spaced nodes

Figure 7.3: The Runge function is poorly interpolated at n equally spaced nodes, as n gets large.
At first, the interpolations appear to improve with larger n, as in (a). In (b) it becomes apparent
that the interpolant is good in center of the interval, but bad at the edges. As shown in (c), this

gets worse as n gets larger.
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We now consider two questions:
1. If we want to interpolate some function f(z) at n + 1 nodes over some closed interval, how
should we pick the nodes?
2. How accurate can we make a polynomial interpolant over a closed interval?
You may be surprised to find that the answer to the first question is not that we should make
the z; equally spaced over the closed interval, as the following example illustrates.

Example 7.7 (Runge Function). Let

fa)=(1+a%)7"

(known as the Runge Function), and let p,(x) interpolate f on n equally spaced nodes, including
the endpoints, on [—5,5]. Then

li () — = .
Jim. xé?_agf51|p (z) — f(z)| =00

This behaviour is shown in Figure 7.3.

It turns out that a much better choice is related to the Chebyshev Polynomials (“of the first
kind”). If our closed interval is [—1, 1], then we want to define our nodes as

2i+1
xi:cos[<2;i2>7r}, 0<?1<n.

Literally interpreted, these Chebyshev Nodes are the projections of points uniformly spaced on
a semi circle; see Figure 7.4. By using the Chebyshev nodes, a good polynomial interpolant of the
Runge function of Example 7.7 can be found, as shown in Figure 7.5.

T T
_
/

Figure 7.4: The Chebyshev nodes are the projections of nodes equally spaced on a semi circle.

7.2.1 Interpolation Error Theorem

We did not just invent the Chebyshev nodes. The fact that they are “good” for interpolation
follows from the following theorem:
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runge -
17 nodes ——

0.8 -

0.6

0.4 -

0.2

02|

04 L L L L L 0

(a) 3,7,10 Chebyshev nodes (b) 17 Chebyshev nodes

Figure 7.5: The Chebyshev nodes yield good polynomial interpolants of the Runge function. Com-
pare these figures to those of Figure 7.3. For more than about 25 nodes, the interpolant is indis-
tinguishable from the Runge function by eye.

Theorem 7.8 (Interpolation Error Theorem). Let p be the polynomial of degree at most n inter-
polating function f at the n + 1 distinct nodes zg,x1,...,2z, on [a,b]. Let f(+1) be continuous.
Then for each x € [a,b] there is some £ € [a,b] such that

F@)=p(@) = g /O [ @

=0

You should be thinking that the term on the right hand side resembles the error term in Taylor’s
Theorem.

Proof. First consider when «x is one of the nodes z;; in this case both the LHS and RHS are zero.
So assume z is not a node. Make the following definitions

w(t) =11 t—2a),
i=0
_f@) —p)

w(z)

o(t) = f(t) — p(t) — cw(?).

9

Since x is not a node, w(x) is nonzero. Now note that ¢(z;) is zero for each node x;, and that by
definition of ¢, that ¢(z) = 0 for our z. That is ¢(t) has n + 2 roots.

Some other facts: f,p, w have n 4+ 1 continuous derivatives, by assumption and definition; thus
¢ has this many continuous derivatives. Apply Rolle’s Theorem to ¢(t) to find that ¢'(t) has n+1
roots. Then apply Rolle’s Theorem again to find ¢ (t) has n roots. In this way we see that ¢("+1 (¢)
has a root, call it £. That is

0= " (g) = I (€) — prTD(¢) — cw™ TV (¢).
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But p(t) is a polynomial of degree < n, so p(®*1) is identically zero. And w(t) is a polynomial

of degree n + 1 in t, so its n + 1 derivative is easily seen to be (n + 1)! Thus
0= f ) = cln+1)!

e(n+ 1= fr ()
fl) —plx) 1

(n+1)
w(x)  (n+ 1)!f O
1
@) =p(@) = e/ Oute),
which is what was to be proven. O

Thus the error in a polynomial interpolation is given as

@) =) = g/ "V [

=0

We have no control over the function f(x) or its derivatives, and once the nodes and f are fixed, p
is determined; thus the only way we can make the error |f(z) — p(x)| small is by judicious choice
of the nodes z;.

The Chebyshev nodes on [—1, 1] have the remarkable property that

n

H(t— LL’Z)

=0

<o

for any ¢t € [—1, 1] . Moreover, it can be shown that for any choice of nodes z; that

n

|V ICGED

1=0

max > 27",

te[—1,1]

Thus the Chebyshev nodes are considered the best for polynomial interpolation.
Merging this result with Theorem 7.8, the error for polynomial interpolants defined on Cheby-
shev nodes can be bounded as

_ 1 (n+1)
1) =) < gy [ 1040 @)]

The Chebyshev nodes can be rescaled and shifted for use on the general interval [« 5]. In this
case they take the form

-« 20+ 1 a—+ .
xi:ﬁ2 COS|:<2TL+2>7T:|+ 25, 0<1<n.

In this case, the rescaling of the nodes changes the bound on [[(t — z;) so the overall error bound
becomes

(5 - a)n-i-l (nt1)
17() = P(@)| < g (g e £ 00

)

for x € [, 8] .
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Example Problem 7.9. How many Chebyshev nodes are required to interpolate the function
f(x) = sin(x) + cos(x) to within 1078 on the interval [0, 7]?
Solution: We first find the derivatives of f

f'(z) = cos(x) — sin(x)
f"(z) = —sin(x) — cos(x)

" (z) = — cos(x) + sin(z)

As a crude approximation we can assert that
‘f(k)(az)‘ < |coszx| + [sinz| < 2.

Thus it suffices to take n large enough such that

7.‘.n—l—l

———2<107°
220+l (n 4 1)1 —

By trial and error we see that n = 10 suffices. o

7.2.2 Interpolation Error for Equally Spaced Nodes

Despite the proven superiority of Chebyshev Nodes, and the problems with the Runge Function,
equally spaced nodes are frequently used for interpolation, since they are easy to calculate?. We
now consider bounding
n
max T — x;
x€la,b] E) | Z| ’
where

(b-a), i =0,1,.

ri=a+ hi=a+-—=i, 1= coy T
n

Start by picking an x. We can assume z is not one of the nodes, otherwise the product in
question is zero. Then x is between some x;, ;11 We can show that
h2
| = zjl |z = 2j1] < 7

by simple calculus.
Now we claim that | — z;| < (j —i+ 1) hfor i < j, and |x — x;| < (i — j) h for j+1 < i. Then

n 2
Ile— i < hz [+ 1)) [(n — )1
=0

It can be shown that (5 + 1)!(n — j)! < n!, and so we get an overall bound

ﬁ hr i
|lx — 2] < .
=0 4

2Never underestimate the power of laziness.
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The interpolation theorem then gives us

hn+1

£(@) ~ pl)] < 4 FanlGIf

(n+ 1) éclay

where h = (b — a)/n.
The reason this result does not seem to apply to Runge’s Function is that f() for Runge’s
Function becomes unbounded as n — oc.

Example Problem 7.10. How many equally spaced nodes are required to interpolate the function
f(x) = sin(x) + cos(x) to within 1078 on the interval [0, 7]?
Solution: As in Example Problem 7.9, we make the crude approximation

‘f(k)(x)‘ < |cos x| + [sinz| < 2.

Thus we want to make n sufficiently large such that

hn+1

———2<107®

dn+1) — ’

where h = (m — 0)/n. That is we want to find n large enough such that

7.‘.n—i-l

— <108

2n"tl(n+1) — ’

By simply trying small numbers, we can see this is satisfied if n = 12. -
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| EXERCISES

(7.1) Find the Lagrange Polynomials for the nodes {—1,1}.
(7.2) Find the Lagrange Polynomials for the nodes {—1,1,5}.
(7.3) Find the polynomial of degree no greater than 2 that interpolates

z|-1]1]5
yll 3 [3]-2
(7.4) Complete the divided differences table:
z SOOI
1] 3
1 3
5 || -2

Find the Newton form of the polynomial interpolant.
(7.5) Find the polynomial of degree no greater than 3 that interpolates
z|-1]1] 5 |-3
vl 3 [3[-2]4

(Hint: reuse the Newton form of the polynomial from the previous question.)
(7.6) Find the nested form of the polynomial interpolant of the data

w1 |3]4]6
y|-3]13]21]1
by completing the following divided differences table:

e | SOV LT L]
1] -3
3| 13
4 21
6| 1

(7.7) Find the polynomial of degree no greater than 3 that interpolates
z|1]0]3/2]2
y|3[2]37/8]8
(7.8) Complete the divided differences table:

e \SOLSLTAL TS

-1 6
0 3
1 2

79
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(Something a little odd should have happened in the last column.) Find the Newton form of
the polynomial interpolant. Of what degree is the polynomial interpolant?

(7.9) Let p(z) interpolate the function cos(z) at n equally spaced nodes on the interval [0, 2]. Bound
the error

(ax, [p(x) — cos(z)]
as a function of n. How small is the error when n = 10?7 How small would the error be if
Chebyshev nodes were used instead? How about when n = 10?7
(7.10) Let p(z) interpolate the function 272 at n equally spaced nodes on the interval [0.5,1].
Bound the error
ma Ip(x) — :E_2|

X
0.5<z<1

as a function of n. How small is the error when n = 107
(7.11) How many Chebyshev nodes are required to interpolate the function % to within 107¢ on
the interval [1,2]?
(7.12) Write code to calculate the Newton form coefficients, by divided differences, for the nodes
x; and values f(z;). Your m-file should have header line like:
function coefs = newtonCoef (xs,fxs)
where xs is the vector of n + 1 nodes, and fxs the vector of n + 1 values. Test your code on
the following input:
octave:1> xs = [1 -1 2 -2 3 -3 4 -4];
octave:2> fxs = [1 1 2 3 5 8 13 21];
octave:3> newtonCoef (xs,fxs)
ans =

1.00000 -0.00000 0.33333 -0.08333 0.05000 0.00417 -0.00020 -0.00040

(a) What do you get when you try the following?
octave:4> xs = [1 4 5 9 14 23 37 60];
octave:5> fxs = [3 1415 9 2 6];
octave:6> newtonCoef (xs,ys)
(b) Try the following:
octave:7> xs = [1 34 2 8 -2 0 14 23 15];
octave:8> fxs = xs.*xs + xs .+ 4;
octave:9> newtonCoef (xs,fxs)
(7.13) Write code to calculate a polynomial interpolant from its Newton form coefficients and the
node values. Your m-file should have header line like:
function y = calcNewton(t,coefs,xs)
where coefs is a vector of the Newton coefficients, xs is a vector of the nodes z;, and y is
the value of the interpolating polynomial at t. Check your code against the following values:
octave:1> xs = [1 3 4];
octave:2> coefs = [6 5 1];
octave:3> calcNewton (5,coefs,xs)

ans = 34
octave:4> calcNewton (-3,coefs,xs)
ans = 10

(a) What do you get when you try the following?
octave:5> xs = [31 4592687 0];
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octave:6> coefs = [1 -1 2 -2 3 -3 4 -4 5 -5];
octave:7> calcNewton(0.5,coefs,xs)

(b) Try the following
octave:8> xs = [3145 92687 0];
octave:9> coefs = [1 -1 2 -2 3 -3 4 -4 5 -5];
octave:10> calcNewton(1l,coefs,xs)
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Chapter 8

Spline Interpolation

Splines are used to approximate complex functions and shapes. A spline is a function consisting of
simple functions glued together. In this way a spline is different from a polynomial interpolation,
which consists of a single well defined function that approximates a given shape; splines are normally
piecewise polynomial.

8.1 First and Second Degree Splines

Splines make use of partitions, which are a way of cutting an interval into a number of subintervals.

Definition 8.1 (Partition). A partition of the interval [a,b] is an ordered sequence {¢;};" , such
that
a=tg<t1 < - - <th1<t,=0b
The numbers t; are known as knots.
A spline of degree 1, also known as a linear spline, is a function which is linear on each subinterval
defined by a partition:

Definition 8.2 (Linear Splines). A function S is a spline of degree 1 on [a, b] if
1. The domain of S is [a, b].
2. S is continuous on [a, b].
3. There is a partition {t;};_, of [a,b] such that on each [t;,t;41], S is a linear polynomial.

A linear spline is defined entirely by its value at the knots. That is, given
tlto]ta]| - | tn
yllwl w] - Tum

there is only one linear spline with these values at the knots and linear on each given subinterval.
For a spline with this data, the linear polynomial on each subinterval is defined as

).

Yirl 7 i
tit1 —ti
Note that if x € [t;,t;4+1], then x —¢; > 0, but « — t;_1 < 0. Thus if we wish to evaluate S(z), we
search for the largest ¢ such that x — ¢; > 0, then evaluate S;(x).

Si(z) =y +

Example 8.3. The linear spline for the following data

t]0.0]0.1]04]0.5]0.75] 1.0
y|13]45]20[21]50( 3

is shown in Figure 8.1.

83
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0 ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1

Figure 8.1: A linear spline. The spline is piecewise linear, and is linear between each knot.

8.1.1 First Degree Spline Accuracy

As with polynomial functions, splines are used to interpolate tabulated data as well as functions. In
the latter case, if the spline is being used to interpolate the function f, say, then this is equivalent
to interpolating the data

t| to | 1 | ] ta

y | flto) [ F(t) |- ] ftn)

A function and its linear spline interpolant are shown in Figure 8.2. The spline interpolant in
that figure is fairly close to the function over some of the interval in question, but it also deviates
greatly from the function at other points of the interval. We are interested in finding bounds on
the possible error between a function and its spline interpolant.

To find the error bound, we will consider the error on a single interval of the partition, and use
a little calculus.! Suppose p(t) is the linear polynomial interpolating f(¢) at the endpoints of the
subinterval [t;, t;11], then for ¢t € [t;,t;41],

[£(#) = ()] < max{|f(t) — f(t)],[f(#) = F{Eira)]} -

That is, |f(t) — p(t)| is no larger than the “maximum variation” of f(t) on this interval.
In particular, if f/(t) exists and is bounded by M;j on [t;,t;11], then

Similarly, if f”(t) exists and is bounded by Ms on [t;,t;41], then

M,

F(8) = p(t)] < == (tig1 — t)* .

Over a given partition, these become, respectively

! Although we could directly claim Theorem 7.8, it is a bit of overkill.
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6 -
' function !

spline interpolant — o

55 | 4

2 ! ! ! ! ! !
0 0.2 0.4 0.6 0.8 1

Figure 8.2: The function f(¢) = 4.1 + sin(1/(0.08¢ + 0.5)) is shown, along with the linear spline
interpolant, for the knots 0,0.1,0.4,0.6,0.75,0.9,1.0 For some values of ¢, the function and its
interpolant are very close, while they vary greatly in the middle of the interval.

M
|f() —p()] < —= max (tiy1 —ti),
2 0<i<n (8.1)

M,
|f(t) —p(t)] < R JLax (tiy1 — tz')2 .

If equally spaced nodes are used, these bounds guarantee that spline interpolants become better
as the number of nodes is increased. This contrasts with polynomial interpolants, which may get
worse as the number of nodes is increased, ¢f. Example 7.7.

8.1.2 Second Degree Splines

Piecewise quadratic splines, or splines of degree 2, are defined similarly:

Definition 8.4 (Quadratic Splines). A function @ is a quadratic spline on |[a, b] if
1. The domain of @ is [a, b].
2. @ is continuous on [a, b].
3. @' is continuous on (a,b).
4. There is a partition {t;}; of [a,b] such that on [¢;,t;11], @ is a polynomial of degree at most
2.

Example 8.5. The following is a quadratic splne:

—x x <0,
Qz) = -z 0<x<2,
2247 -8 2<u.
Unlike linear splines, quadratic splines are not defined entirely by their values at the knots. We
consider why that is. The spline Q(z) is defined by its piecewise polynomials,

Qz(az) = CLi.Z'2 + bzx +¢;.
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Thus there are 3n parameters to define Q(x).
For each of the n subintervals, the data
tlto|ta] . | tn
yllwl lw] -

give two equations regarding @;(z), namely that @Q;(¢;) must equal y; and Q;(¢;+1) must equal y;41.
This is 2n equations. The condition on continuity of @)’ gives a single equation for each of the n — 1
internal nodes. This totals 3n — 1 equations, but 3n unknowns. This system is underdetermined.

Thus some additional user-chosen condition is required to determine the quadratic spline. One
might choose, for example, Q'(a) = 0, or Q”(a) = 0, or some other condition.

8.1.3 Computing Second Degree Splines
Suppose the data
tltolta]| - | tn
yllw lw] - um
are given. Let z; = Q}(¢;), and suppose that the additional condition to define the quadratic spline

is given by specifying zo. We want to be able to compute the form of Q;(z).
Because Q;(t;) = yi, Qi(ti) = 2, Q(tix1) = zit+1, we see that we can define

Zi+1l — %5
Qi(x) = =z —t;)? + 2 (. — t;) + us.

2(tiy1 — ;)
Use this at ;41 :
Zi+1 — %5
Yir1 = Qi(tiy1) = Sk B I (tis1 — ti)2 + 2 (tig1 — ti) + i,
2 (tig1 — t;)
Zi+1 — %5
Yitl = Yi = % (tiv1 — i) + 2i (tis1 — i) ,
Zi+1 + %
Yirl — Yi = % (tig1 —ts).

Thus we can determine, from the data alone, z;11 from z;:

SSDS T1E ek
tiv1 — 1t

8.2 (Natural) Cubic Splines

If you recall the definition of the linear and quadratic splines, probably you can guess the definition
of the spline of degree k:

Definition 8.6 (Splines of Degree k). A function S is a spline of degree k on [a, b] if
1. The domain of S is [a, b].
2. 8,8,8", ...,8% =1 are continuous on (a,b).
3. There is a partition {t;};_, of [a,b] such that on [t;,;+1], S is a polynomial of degree < k.

You would also expect that a spline of degree k has k — 1 “degrees of freedom,” as we show
here. If the partition has n + 1 knots, the spline of degree k is defined by n(k + 1) parameters. The
given data

tlto]ta]| - |tn
yllw [w] - T
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provide 2n equations. The continuity of 7, S”,...,S®* =D at the n — 1 internal knots gives (k —
1)(n — 1) equations. This is a total of n(k + 1) — (k — 1) equations. Thus we have k — 1 more
unknowns than equations. Thus, barring some singularity, we can (and must) add k£ — 1 constraints
to uniquely define the spline. These are the degrees of freedom.

Often k is chosen as 3. This yields cubic splines. We must add 2 extra constraints to define the
spline. The usual choice is to make

S"(to) = S"(tn) = 0.

This yields the natural cubic spline.

8.2.1 Why Natural Cubic Splines?

It turns out that natural cubic splines are a good choice in the sense that they are the “inter-
polant of minimal H? seminorm.” The corollary following this theorem states this in more easily
understandable terms:

Theorem 8.7. Suppose f has two continuous derivatives, and S is the natural cubic spline inter-
polating f at knots a =tg <t; < ... <t, =b. Then

/ @) dr < / @) d

Proof. We let g(x) = f(x) — S(z). Then g(z) is zero on the (n + 1) knots ¢;. Derivatives are linear,
meaning that

f//(x) — S//(x) +g//(f1f)
Then

/ b [f"(2)]? do = / b (8" (2)]? da + / ’ [¢" ()] dz + / bQS"(:E)g"(:E) dz.

a a a a

We show that the last integral is zero. Integrating by parts we get

/ S// // dﬂ) _ S// / / S///g/ d;U — / S///g/ d;U

because S”(a) = S”(b) = 0. Then notice that S is a polynomial of degree < 3 on each interval, thus
S"(x) is a piecewise constant function, taking value ¢; on each interval [¢;, t;+1]. Thus

/ S" ¢ dx = Z/ c;g do =

with the last equality holding because g(z) is zero at the knots. O

TL
tz+1

=0,

1
ng

Corollary 8.8. The natural cubic spline is best twice-continuously differentiable interpolant for a
twice-continuously differentiable function, under the measure given by the theorem.

Proof. Let f be twice-continuously differentiable, and let S be the natural cubic spline interpolating
f(x) at some given nodes {t;};",. Let R(x) be some twice-continuously differentiable function
which also interpolates f(z) at these nodes. Then S(x) interpolates R(x) at these nodes. Apply
the theorem to get

/ab [S"(m)]z dz < /ab [R”(:E)]2 dz
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8.2.2 Computing Cubic Splines
First we present an example of computing the natural cubic spline by hand:

Example Problem 8.9. Construct the natural cubic spline for the following data:

t] -1
vl 3 1-1]3
Solution: The natural cubic spline is defined by eight parameters:

S(z) = az® + bz’ +ecr+d z€[-1,0
Tl et + fat+gr+h x€(0,2

We interpolate to find that d = h = —1 and
—a+b—c—1=3
8e+4f +2g—-1=3
We take the derivative of S:

, 3ax® 4+ 2bx +c x € [~1,0]
S'(x) =
ez’ +2fr+g x€]0,2]

Continuity at the middle node gives ¢ = g. Now take the second derivative of S:

n, | 6ax+2b xe[-1,0]
S(x)_{66x+2f z €]0,2]

Continuity at the middle node gives b = f. The natural cubic spline condition gives —6a 4+ 2b = 0
and 12e + 2f = 0. Solving this by “divide and conquer” gives

S(x) = 23+ 322 — 22 -1 x € [—1,0]
= —323 4322 —22 -1 z€]0,2]

_|

Finding the constants for the previous example was fairly tedious. And this is for the case of
only three nodes. We would like a method easier than setting up the 4n equations and unknowns,
something akin to the description in Subsection 8.1.3. The method is rather tedious, so we leave it
to the exercises.

8.3 B Splines

The B splines form a basis for spline functions, whence the name. We presuppose the existence of
an infinite number of knots:

Lol <1 <tg<thi <t < ...,

with limg_,_ ot = —o0 and limg_,o t = 00.
The B splines of degree 0 are defined as single “blocks”:

1 t,<z<
0 _ i > i+1
Bi(x) = { 0 otherwise
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The zero degree B splines are continuous from the right, are nonzero only on one subinterval
[ti,ti+1), sum to 1 everywhere.

We justify the description of B splines as basis splines: If S is a spline of degree 0 on the given
knots and is continuous from the right then

S@) =Y S(ai)BY(x).

That is, the basis splines work in the same way that Lagrange Polynomials worked for polynomial
interpolation.
The B splines of degree k are defined recursively:

B (z) = <Ltl> BFLl(2) + <M> B ().
Livk — Ui Litk+1 — it

Some B splines are shown in Figure 8.3.

The B splines quickly become unwieldy. We focus on the case k = 1. The B spline Bll(a;) is

e Piecewise linear.

e Continuous.

e Nonzero only on (t;,t;12).

o 1 at ti+1.
These B splines are sometimes called hat functions. Imagine wearing a hat shaped like this! What-
ever.

The nice thing about the hat functions is they allow us to use analogy. Harken back to polyno-
mial interpolation and the Lagrange Functions. The hat functions play a similar role because

1 t+1)=y
Bil(tj) = 5(z’+1)j = { 0 E;Ilg #j

Then if we want to interpolate the following data with splines of degree 1:

ttolta]|-. | ta
ylwo |- wm

We can immediately set

@)= yiBLy ().
=0
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25 1 25

15 1 15 |

05 B 05

-05 — -05 |

L L L L L R L L L L L
0 1 2 3 4 5 6 [ 1 2 3 4 5 6

(a) Degree 0 B spline (b) Degree 1 B spline
3 T T T T T Bé(.l) _
By (x)
Bg(a) ........
25 | b
2 - .
15| b

-05 —

1 1 1 1 1 1
0 1 2 3 4 5 6

(c) Degree 2 B spline, with 2 Degree 1 B splines

Figure 8.3: Some B splines for the knots ty = 1,t; = 2.5,ty = 3.5,t3 = 4 are shown. In (a), one of
the degree 0 B splines; in (b), a degree 1 B spline; in (c), two of the degree 1 B splines and a degree
2 B spline are shown. The two hat functions “merge” together to give the quadratic B spline.
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| EXERCISES

(8.1) Is the following function a linear spline on [0,4]?7 Why or why not?

S(z) =

3z + 2 0<zr <1
—2r+4 1<zx</4

(8.2) Is the following function a linear spline on [0,2]?7 Why or why not?

S(z) =

r+3 :0<zx<1
3 1< <2

(8.3) Is the following function a linear spline on [0,4]?7 Why or why not?

(8.4) Find constants, «, 8 such that the following is a linear spline on [0, 5].

4 — 2 0<x<1
S(z)=R azx+ 1< <3
—2x+10 :3<x<5h

(8.5) Is the following function a quadratic spline on [0,4|? Why or why not?

Q(x):{x2+3 0<z<3

S50 —6 :3<zx<4
(8.6) Is the following function a quadratic spline on [0,2]? Why or why not?

22 +3z+2 :0<zx<l1
-]

202 +z+3 1<z <2
(8.7) Find constants, «, 3,7 such that the following is a quadratic spline on [0, 5].

%:E2+23:—|—% 0<x <1
Qr)=Qar?+pr+vy :1<2<3
322 —Tzx+12 :3<x<5

(8.8) Find the quadratic spline that interpolates the following data:

tfol 1|
y[1]-2]1
To resolve the single degree of freedom, assume that Q'(0) = —Q’(4). Assume your solution

takes the form
() (-1 4+ (@—-1)—2 :0<z<1
S la (@ -1 4 —1)—2 1<z<4

Find the constants «q, 51, oo, Bo.
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(8.9) Find the natural cubic spline that interpolates the data

z||0]1]3
yll412|7
It may help to assume your answer has the form

(@) Az3 + Bz +Cx +4 0<zx<1
xTr) =
Dxz—1P2+E@x—-1?2?+Fxz-1)+2 :1<z<3



Chapter 9

Approximating Derivatives

9.1 Finite Differences

Suppose we have some blackbox function f(z) and we wish to calculate f’(x) at some given z. Not
surprisingly, we start with Taylor’s theorem:

fa+ 1) = f(a) + S+ L

Rearranging we get
fy _ FE W = f@) O
h 2

Remember that & is between = and x + h, but its exact value is not known. If we wish to calculate
f'(x), we cannot evaluate f”(£), so we approximate the derivative by dropping the last term. That
is, we calculate [f(z + h) — f(z)] /h as an approximation® to f/(z). In so doing, we have dropped
the last term. If there is a finite bound on f”(z) on the interval in question then the dropped term
is bounded by a constant times h. That is,

fla) = 1EEWZIE 4 o) (0.1

The error that we incur when we approximate f’(z) by calculating [f(x + h) — f(z)] /h is called
truncation error. It has nothing to do with the kind of error that you get when you do calculations
with a computer with limited precision; even if you worked in infinite precision, you would still
have truncation error.

The truncation error can be made small by making h small. However, as h gets smaller, precision
will be lost in equation 9.1 due to subtractive cancellation. The error in calculation for small A
is called roundoff error. Generally the roundoff error will increase as h decreases. Thus there is
a nonzero h for which the sum of these two errors is minimized. See Example Problem 9.5 for an
example of this.

The truncation error for this approximation is O (h). We may want a more precise approxima-
tion. By now, you should know that any calculation starts with Taylor’s Theorem:

(@) 1) s
5 h* + al h
2,2 1"(&)

fle—h) = £ - Fans Dy L

flx+h) = f(@)+ f(x)h+

!This approximation for f’(x) should remind you of the definition of f’(z) as a limit.
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By subtracting these two lines, we get

P& + 1) s

flx+h)—f(x—h) = 2f(x)h+ 3l
Thus

2@ = flaoth)— fa ) - LI G

flat+h)—flz—h) [f"E€)+f"(&)] P
2h 2 6

If f”(x) is continuous, then there is some ¢ between &1, &y such that f”(£) = w (This
is the MVT at work.) Assuming some uniform bound on f"”(-), we get

f/(:E) _ f(l’ + h)2_hf($ B h) +0 (h2) (9‘2)

In some situations it may be necessary to use evaluations of a function at “odd” places to
approximate a derivative. These are usually straightforward to derive, involving the use of Taylor’s
Theorem. The following examples illustrate:

Example Problem 9.1. Use evaluations of f at 2+ h and =+ 2h to approximate f'(x), assuming
f(x) is an analytic function, i.e., one with infintely many derivatives.

Solution: First use Taylor’s Theorem to expand f(z+h) and f(z+2h), then subtract to get some
factor of f'(x):

flx+2n) = f@)+2nf(x)+ 2% f"(2) +'83L!3f”’( z) + 185 O (2) +
flat+h) = f@)+ hf’( )+ B f" (@) + B (@) + G f () +
Fla+2h) = fle+h) = hf'(@)+ 20" (x) + L2 (2) + B O () +.
(fl@+2h) = f@+h)/h = fl()+ 3 f" (@) + D (@) + 59 f (@) + .
Thus (f(z 4+ 2h) — f(x+h)) /h= f'(z) + O (h) —
Example Problem 9.2. Show that
Af(x+ h) — f(x +2h) — 3f(x)
2h
for f with sufficient number of derivatives
Solution: In this case we do not have to find the approximation scheme, it is given to us. We only
have to expand the appropriate terms with Taylor’s Theorem. As before:
fla+h) = fl@)+hf' (@) +5%F" @) + 5" @) +
Af(e+h) = Af(z) +4hf'(2) + %ﬁf”(m) + 41 (@) +
fla+2h) = f(z)+2nf (@) + % " (x) + B 7 (2) +
)
)

=f(x)+0O (h2) )

Af(+h) = flz+2h) = 3f(z)+2nf'(z) +0f"(z )+_§.h3f’”($)+
Af(x+h) = f(z+2h) =3f(x) = 2hf'(z)+=H=f"(z)+
(4f (@ +h) = f(x +2h) = 3f(x)) /2h = f’(w)+% "’($)+---
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9.1.1 Approximating the Second Derivative

Suppose we want to approximate the second derivative of some blackbox function f(x). Again,
start with Taylor’s Theorem:

faan) = S+ et L8 L@y SO

2 3! 4!
fa-h) = @)= pan+ L L0y SR

Now add the two series to get

flx+h)+ flz—h) = 2f(x)+h2f”(x)+2f(4i( )h4+2f(6;( Vs 4
Then let

¢(h):f(x+h)_2];(2x)+f($_h) _ f”(ﬂ:)—l—?

FO@) o O,
R

_ f”(.Z') + Z bgkhzk.
k=1

Thus we can use Richardson Extrapolation on ¥(h) to get higher order approximations.
This derivation also gives us the centered difference approximation to the second derivative:

Py = L2 TG ) 03

9.2 Richardson Extrapolation

The centered difference approximation gives a truncation error of O (h2), which is better than
O (h). Can we do better? Let’s define

6(h) = 5 [+ h) — f(z — W)

Had we expanded the Taylor’s Series for f(z + h), f(z — h) to more terms we would have seen
that

o(h) = f'(z)+ ash® + ash® + agh® + agh® +

AR €))
(i+1)! )

The constants a; are a function of f@+1(z) only. (In fact, they should take the value of
What happens if we now calculate ¢ (h/ 2)?
p(h/2) = f()+ B2t a1+ Laght + L agh® +
- e T 7 T

But we can combine this with ¢(h) to get better accuracy. We have to be a little tricky, but we
can get the O (hz) terms to cancel by taking the right multiples of these two approximations:

p(h) —4¢(h/2) = —=3f'(z)+ §4h4 + 1—2%}1‘5 2—ia8h8
4¢(h/2) —¢(h) 4D e _2Lons
3 = f (IIJ‘) — Z4h — 1—606}1 — 6—4a8h
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This approximation has a truncation error of O (h4) .

This technique of getting better approximations is known as the Richardson Extrapolation, and
can be repeatedly applied. We will also use this technique later to get better quadrature rules—that
is, ways of approximating the definite integral of a function.

9.2.1 Abstracting Richardson’s Method

We now discuss Richardson’s Method in a more abstract framework. Suppose you want to calculate
some quantity L, and have found, through theory, some approximation:

¢(h) =L+ ash™.

k=1

Let
bnoy=o().
Now define
D(n,m) = 4" D(n,m — 14)m—_D1(n —1,m— 1). (9.4)

We will be interested in calculating D(n,n) for some n. We claim that
D(n,n) =L+ 0O (h2<"+1>) .

First we examine the recurrence for D(n, m). As in divided differences, we use a pyramid table:

D(0,0)
D(1,0) D(1,1)
D(2,0) D(2,1) D(2,2)

D(n,0) D(n.1) D(m.2) --- D(mn)

By definition we know how to calculate the first column of this table; every other entry in the table
depends on two other entries, one directly to the left, and the other to the left and up one space.
Thus to calculate D(n,n) we have to compute this whole lower triangular array.

We want to show that D(n,n) = L+O (h2<n+1)) , that is D(n,n) isa O (h2(”+1)) approximation
to L. The following theorem gives this result:

Theorem 9.3 (Richardson Extrapolation). There are constants ay,,, such that

0 h 2k
D(n,m) =L+ k_Z:H ak,m <2—n> (0<m<mn).

The proof is by an easy, but tedious, induction. We skip the proof.
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9.2.2 Using Richardson Extrapolation

We now try out the technique on an example or two.

Example Problem 9.4. Approximate the derivative of f(z) = logz at x = 1.
Solution: The real answer is f/(1) = 1/1 = 1, but our computer doesn’t know that. Define

log 0
¢W%=%ﬂﬂl+m—fu_hﬂz i;m

Let’s use h = 0.1. We now try to find D(2,2), which is supposed to be a O (h6) approximation to
) =1

n\m H 0 ‘ 1 ‘ 2

0 | 282 ~ 1003353477

1| 205 ~ 1000834586 | ~ 0999994954

o || 5055 ~ 1.000208411 | ~ 0999999686 | ~ 1.000000002

This shows that the Richardson method is pretty good. However, notice that for this simple
example, we have, already, that ¢(0.00001) =~ 0.999999999. =

Example Problem 9.5. Consider the ugly function:

f(z) = arctan(z).
Attempt to find f'(v/2). Recall that f'(z) H—lxz, so the value that we are seeking is .

Solution:  Let’s use h = 0.01. We now try to find D(2,2), which is supposed to be a O (h6)
approximation to %:

n\m | 0 \ 1 \ 2

0 [ 0-333339506181068

1 [/ 0.333334876543723 | 0.333333333331274

2 | 0.33333371913582 | 0.333333333333186 | 0.333333333333313

Note that we have some motivation to use Richardson’s method in this case: If we let

then making h small gives a good approximation to f’ (\/5) until subtractive cancelling takes over.

o) = 57 [F(VE+ ) = SV 0]

The following table illustrates this:
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h | ¢(h)
1.0 0.39269908169872408
0.1 0.33395069677431943
0.01 0.33333950618106845
0.001 | 0.33333339506169679
0.0001 | 0.33333333395058062
1 x107° | 0.33333333334106813
1 x 1076 | 0.33333333332441484
1 x 1077 | 0.33333333315788138
1 x 1078 | 0.33333332760676626
1 x 1079 | 0.33333336091345694
1 x 10719 | 0.333333360913457
1 x 107 | 0.333333360913457
1 x 10712 | 0.33339997429493451
1 x 10713 | 0.33306690738754696
1 x 107 | 0.33306690738754696
1 x 1071% | 0.33306690738754691
1x10°16 0

The data are illustrated in Figure 9.1. Notice that ¢(h) gives at most 10 decimal places of
accuracy, then begins to deteriorate; Note however, we get 13 decimal places from D(2,2). .

total errdr

1 T T T T T T T T T T T T

0.01

0.0001

le-06

1le-08

le-10

le-12 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L
le-16 le-14 le-12 le-10 1le-08 le-06 0.0001 0.01 1

Figure 9.1: The total error for the centered difference approximation to f’(1/2) is shown versus
h. The total error is the sum of a truncation term which decreases as h decreases, and a roundoff
term which increases. The optimal h value is around 1 x 107°. Note that Richardson’s D(2,2)
approximation with A = 0.01 gives much better results than this optimal A.
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| EXERCISES

(9.1) Derive the approximation

Af(x + h) —3f(x) — f(x — 2h)

@) = o

using Taylor’s Theorem.
(a) Assuming that f(z) has bounded derivatives, give the accuracy of the above approxi-
mation. Your answer should be something like O (h?).
(b) Let f(z) = x%. Approximate f'(0) with this approximation, using h = .
(9.2) Let f(z) be an analytic function, i.e., one which is infinitely differentiable. Let 1(h) be the
centered difference approximation to the first derivative:

fl+h) - flz—h)
2h

(a) Show that ¢(h) = f'(z) + g—?f’”(x) + ’é_ff(5) (z) + f;_?f(ﬂ () + ...

(b) Show that
8 (¥ (h) — ¥(h/2))
2

P(h) =

= f"(z) + O (h?).
(9.3) Derive the approximation

A4f(x + 3h) +5f(x) — 9f(x — 2h)

fi(2) = 300

using Taylor’s Theorem.
(a) What order approximation is this? (Assume f(z) has bounded derivatives of arbitrary
order.)
(b) Use this formula to approximate f’(0), where f(z) = 2%, and h = 0.1

(9.4) Suppose you want to know quantity @), and can approximate it with some formula, say ¢(h),
which depends on parameter h, and such that ¢(h) = Q + a1h + ash?® + agh® + ash* + ...
Find some linear combination of ¢(h) and ¢(—h) which is a O (h2) approximation to Q.

(9.5) Assuming that ¢(h) = Q + ash® 4 ash* + agh® ..., find some combination of ¢(h),d(h/3)
which is a O (h4) approximation to Q.

(9.6) Let A be some number in (0,1). Assuming that ¢(h) = Q + azh? + ash* +agh® ..., find some
combination of ¢(h), ¢(Ah) which is a O (h4) approximation to ). To make the constant
associated with the h* term small in magnitude, what should you do with A? Is this practical?
Note that the method of Richardson Extrapolation that we considered used the value A = 1/2.

(9.7) Assuming that ¢(h) = Q + ash® 4 ash* + agh® ..., find some combination of ¢(h),d(h/4)
which is a O (h4) approximation to Q.

(9.8) Suppose you have some great computational approximation to the quantity ¢ such that
¥(h) = Q + azh® + agh® + agh? ... Can you find some combination of v(h), v (h/2) which is
a O (hﬁ) approximation to Q7

(9.9) Complete the following Richardson’s Extrapolation Table, assuming the first column consists
of values D(n,0) for n =0,1,2:

n\m| 0 |1]2
0 2
1 1.5 |7
2 1.25 [ 7|7

(See equation 9.4 if you’ve forgotten the definitions.)
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(9.10) Write code to complete a Richardson’s Method table, given the first column.
Your m-file should have header line like:
function Dnn = richardsons(col0Q)
where Dnn is the value at the lower left corner of the table, D(n,n) while col0 is the column
of n + 1 values D(3,0), for i = 0,1,...,n. Test your code on the following input:
octave:1> col0 = [1 0.5 0.25 0.125 0.0625 0.03125];
octave:2> richardsons(col0)
ans = 0.019042
(a) What do you get when you try the following?
octave:5> col0 = [1.5 0.5 1.5 0.5 1.5 0.5 1.5];
octave:6> richardsons(col0)
(b) What do you get when you try the following?
octave:7> co0l0 = [0.9 0.99 0.999 0.9999 0.99999];
octave:8> richardsons(col0)



Chapter 10

Integrals and Quadrature

10.1 The Definite Integral

Often enough the numerical analyst is presented with the challenge of finding the definite integral

of some function: ,
/ f(z)dz.

In your golden years of Calculus, you learned the Fundamental Theorem of Calculus, which claims
that if f(x) is continuous, and F(x) is an antiderivative of f(z), then

b
/ f@)dz = F(b) — Fla).

What you might not have been told in Calculus is there are some functions for which a closed
form antiderivative does not exist or at least is not known to humankind. Nevertheless, you may
find yourself in a situation where you have to evaluate an integral for just such an integrand. An
approximation will have to do.

10.1.1 Upper and Lower Sums

We will review the definition of the Riemann integral of a function. A partition of an interval [a, b]
is a finite, ordered collection of nodes x;:

a=x9<x1 <X <" < xTp =b.

Given such a partition, P, define the upper and lower bounds on each subinterval [z;,z;1] as
follows:

m; =inf{f(z)| z; <z <xig1}
M; = sup{f(z)| z; <2 < i1 }

Then for this function f and partition P, define the upper and lower sums:
n—1
L(f,P) = Zmz (Tig1 — x7)
i=0
n—1
U(f,P) =Y M (xis1 — ;)
i=0

101
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We can interpret the upper and lower sums graphically as the sums of areas of rectangles defined
by the function f and the partition P, as in Figure 10.1.

(a) The Lower Sum (b) The Upper Sum

Figure 10.1: The (a) lower, and (b) upper sums of a function on a given interval are shown. These
approximations to the integral are the sums of areas of rectangles. Note that the lower sums are
an underestimate, and the upper sums an overestimate of the integral.

Notice a few things about the upper, lower sums:
(i) L(f,P)<U(f, P).
(ii) If we switch to a “better” partition (i.e., a finer one), we expect that L(f,-) increases and
U(f,-) decreases.
The notion of integrability familiar from Calculus class (that is Riemann Integrability) is defined
in terms of the upper and lower sums.

Definition 10.1. A function f is Riemann Integrable over interval [a,b] if

sup L(f, P) =inf U(f, P),
P P

where the supremum and infimum are over all partitions of the interval [a,b]. Moreover, in case
f(x) is integrable, we define the integral

b
[ty ds=igu(s.p)

You may recall the following

Theorem 10.2. Every continuous function on a closed bounded interval of the real line is Riemann
Integrable (on that interval).

Continuity is sufficient, but not necessary.
Example 10.3. Consider the Heaviside function:

0 <0

r@={1 650

This function is not continuous on any interval containing 0, but is Riemann Integrable on every
closed bounded interval.



10.1. THE DEFINITE INTEGRAL 103

Example 10.4. Consider the Dirichlet function:

0 =z rational
1 xz irrational

)= {

For any partition P of any interval [a, b], we have L(f, P) = 0, while U(f, P) =1, so

sup L(f, P) =0 # 1 = inf U(f, P),
P
so this function is not Riemann Integrable.

10.1.2 Approximating the Integral

The definition of the integral gives a simple method of approximating an integral f; f(z)dz. The
method cuts the interval [a, b] into a partition of n equal subintervals z; = a+b_T“, fori =0,1,...,n.
The algorithm then has to somehow find the supremum and infimum of f(x) on each interval
[, 2;+1]. The integral is then approximated by the mean of the lower and upper sums:

/abf(w)d

Because the value of the integral is between L(f, P) and U(f, P), this approximation has error at
most

(L(f, P) +U(f, P)).

l\DI»—\

1
Note that in general, or for a black box function, it is usually not feasible to find the suprema

and infima of f(x) on the subintervals, and thus the lower and upper sums cannot be calculated.
However, if some information is known about the function, it becomes easier:

Example 10.5. Consider for example, using this method on some function f(x) which is monotone
increasing, that is x < y implies f(z) < f(y). In this case, the infimum of f(z) on each interval
occurs at the leftmost endpoint, while the supremum occurs at the right hand endpoint. Thus for
this partition, P, we have

Z m; |[Tpy1 — k| =

Z

=0
rb a] = b — ay
ZM ’xk-i-l - xk‘ f(xk—l—l Zf wk
k=0
Then the error of the approximation is
1 16— b— b) —
5 U, P)~ L(f.P)) = 5’ na’ [F(an) — flao)] = b —d [f2(n) fla)]

10.1.3 Simple and Composite Rules

For the remainder of this chapter we will study “simple” quadrature rules, i.e., rules which approx-
imate the integral of a function, f(z) over an interval [a, b] by means of a number of evaluations of
f at points in this interval. The error of a simple quadrature rule usually depends on the function
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f, and the width of the interval [a,b] to some power which is determined by the rule. That is we
usually think of a simple rule as being applied to a small interval.

To use a simple rule on a larger interval, we usually cast it into a “composite” rule. Thus the
trapezoidal rule, which we will study next becomes the composite trapezoidal rule. The means of
extending a simple rule to a composite rule is straightforward: Partition the given interval into
subintervals, apply the simple rule to each subinterval, and sum the results. Thus, for example if
the interval in question is [a, f], and the partition is @ = g < x1 < 22 < ... < 2, = 3, we have

n—1
composite rule on [a, 5] = Z simple rule applied to [x;, zi11].
i=0

10.2 Trapezoidal Rule

Suppose we are trying to approximate the integral

/abf(a:)dx

for some unpleasant or black box function f(x).
The trapezoidal rule approximates the integral

/ab f(z)dx

by the (signed) area of the trapezoid through the points (a, f(a)), (b, f(b)), and with one side the
segment from a to b. See Figure 10.2.

Figure 10.2: The trapezoidal rule for approximating the integral of a function over [a,b] is shown.

By old school math, we can find this signed area easily. This gives the (simple) trapezoidal rule:

/f = 4 o) LEEL0)
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The composite trapezoidal rule can be written in a simplified form, one which you saw in your
calculus class, if the interval in question is partitioned into equal width subintervals. That is if you
let [a, B] be partitioned by

a=z)g<T1<To<T3<...<TYp =P,

with z; = a + ih, where h = (8 — «)/n, then the composite trapezoidal rule is

B n-l gy 172=
[ r@a=3 [ e §§j:mﬂ P+ ). (100)
« i=0 v i =0

Since each subinterval has equal width, ;11 — x; = h, and we have

n—1

b
[ 1o~ 33 ) + i)l (10.2)
a i=0

In your calculus class, you saw this in the less comprehensible form:

l/f

Note that the composite trapezoidal rule for equal subintervals is the same as the approximation
we found for increasing functions in Example 10.5.

Example Problem 10.6. Approximate the integral

2
1
/—da:
0 1+l’2

by the composite trapezoidal rule with a partition of equally spaced points, for n = 2.
Solution: ~ We have h = 2% = 1, and f(z¢) = 1, f(z1) = 3, f(z2) = 1. Then the composite
trapezoidal rule gives the value
1 1 1 11
— =—|14+14+=-|=—.
3 o) + Fo) + S + e = 5 |14 14 3] = 15
The actual value is arctan 2 =~ 1.107149, and our approximation is correct to two decimal places. -

10.2.1 How Good is the Composite Trapezoidal Rule?

We consider the composite trapezoidal rule for partitions of equal subintervals. Let p;(x) be the
polynomial of degree < 1 that interpolates f(x) at z;,x;+1. Let

I = /%M f(x)dz, T;= /Ii+1 pi(r)dz = (zit1 — ;) pi(@:) Zpi(miﬂ) = g (f(zs) + f(zit1)) -

That’s right: the composite trapezoidal rule approximates the integral of f(x) over [x;, ;1] by
the integral of p;(x) over the same interval.
Now recall our theorem on polynomial interpolation error. For z € [z;, z;1+1], we have

@) (@ 2) (2 — wig1).
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for some &, € [z;,x;41]. Recall that £, depends on z. To make things simpler, call it £(x).
Now integrate:

1

h—ﬂz/éHﬂ@—m@ﬁwz§/éHﬂ@®D®—%ﬂw—mmd%

We will now attack the integral on the right hand side. Recall the following theorem:

Theorem 10.7 (Mean Value Theorem for Integrals). Suppose f is continuous, g is Riemann
Integrable and does not change sign on [, 5]. Then there is some ¢ € [, 5] such that

[ffwwg@»dx::fK>[fg@»dm

We use this theorem on our integral. Note that (z — z;) (¢ — 2;4+1) is nonpositive on the interval
of question, [z;,z;11]. We assume continuity of f”(x), and wave our hands to get continuity of
" (&(x)). Then we have

L., Titt
E=T=5"@) [ (o) (o= o) do,
z;

for some &; € [z, x;+1]. By boring calculus and algebra, we find that

Ti41 h3
/ (r — ;) (r — xi41) dz = 5

This gives
L= e
(2 1T 12 1/

for some &; € [x;, Tit1]-
We now sum over all subintervals to find the total error of the composite trapezoidal rule

n—1

E=Y 1, TZ———Zf”éz—— [ Zf”&]-

1=0

On the far right we have an average value, % E?:_Ol 1" (&), which lies between the least and greatest
values of f” on the inteval [a, b], and thus by the IVT, there is some & which takes this value. So

(b — a) h?
12

E=— A3

This gives us the theorem:

Theorem 10.8 (Error of the Composite Trapezoidal Rule). Let f”(x) be continuous on [a, b]. Let
T be the value of the trapezoidal rule applied to f(x) on this interval with a partition of uniform
spacing, h, and let I = f; f(z) dx. Then there is some £ € [a,b] such that

(b—a)h?
12

I-T=- 1(©).

Note that this theorem tells us not only the magnitude of the error, but the sign as well. Thus
if, for example, f(z) is concave up and thus f” is positive, then I — T will be negative, i.e., the
trapezoidal rule gives an overestimate of the integral I. See Figure 10.3.
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Figure 10.3: The trapezoidal rule is an overestimate for a function which is concave up, i.e., has
positive second derivative.

10.2.2 Using the Error Bound

Example Problem 10.9. How many intervals are required to approximate the integral

|
n2=1= / dz
0 1 +x
to within 1 x 107107

Solution: ~ We have f(x) = Hiz, thus f/(z) = —ﬁ. And f"(z) = ﬁ Thus f”(&) is

continuous and bounded by 2 on [0,1]. If we use n equal subintervals then Theorem 10.8 tells us

the error will be )
1-0/1-0 " _ f”(f)
12 ( n )f(g)_ 12n2°

To make this smaller than 1 x 10719, in absolute value, we need only take

1
——_<1x10719,
6n2 —

and so n > \/g x 10° suffices. Because f”(x) is positive on this interval, the trapezoidal rule will
be an overestimate. .

Example Problem 10.10. How many intervals are required to approximate the integral

2
/ 25— 1dx
0
to within 1 x 10767

Solution: We have f(x) = 23 — 1, thus f/(z) = 322, and f”(x) = 6z. Thus f”(£) is continuous
and bounded by 12 on [0, 2]. If we use n equal subintervals then by Theorem 10.8 the error will be

2-0/2-0 2 /] o 2f”(£)
S () o=
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To make this smaller than 1 x 1075, in absolute value, it suffices to take

24
= <1x10°¢
3n2 — ’

and so n > /8 x 103 suffices. Because f”(x) is positive on this interval, the trapezoidal rule will
be an overestimate. —|

10.3 Romberg Algorithm

Theorem 10.8 tells us, approximately, that the error of the composite trapezoidal rule approximation
is O (hz). If we halve h, the error is quartered. Sometimes we want to do better than this. We’ll
use the same trick that we did from Richardson extrapolation. In fact, the forms are exactly the
same.

Towards this end, suppose that f, a, b are given. For a given n, We are going to use the trapezoidal

rule on a partition of 2" equal subintervals of [a,b]. That is h = °22. Then define
21
1b—a
¢(n) =5 > @)+ flaemn)
=0

_b—a
=

271
fla) | f(b) b—a
st T Z fletim )|
The intervals used to calculate ¢(n + 1) are half the size of those for ¢(n). As mentioned above,
this means the error is one quarter.

It turns out that if we had proved the error theorem differently, we would have proved the
relation:

b
:/ f(z)dz + agh? + aght + agh® + agh® + ...,

where h,, = b2_—n“. The constants a; are a function of f()(z) only. This should look just like something
from Chapter 9. What happens if we now calculate ¢(n + 1)? We have

b
p(n+1) = / f(@)dz + agh?, | + ashpy +aghd | +aghs i +...,

1 1 1
d h: + ht + —aghS + ——agh® +

/f Jdo+ a2 6a4 T 506"t 55608

b—a

a

This happens because hy11 = 5751 = 5757 = %” As with Richardon’s method for approximating

derivatives, we now combine the right multiples of these:

N[

p(n) —4p(n+1) = -3 / f(z)dz + 4h4 E%hﬁ g—iaghS
4p(n) — p(n+1) a5 s 2L s
3 = / f(z)dz — —4h ~ 1% 6h, — 6—4a8h

This approximation has a truncation error of O (hfl) .

Like in Richardson’s method, we can use this to get better and better approximations to the
integral. We do this by constructing a triangular array of approximations, each entry depending
on two others. Towards this end, we let

R(H,O) = (b(n),
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then define, for m > 0

R(n,m) — 4"R(n,m—1)— R(n—1,m — 1). (10.3)

The familiar pyramid table then is:

R(1,0) R(1,1
R(2,0) R(2,1) R(2,2)
R(m.0) R(m1) R(m2) - R(nn)

Even though this is exactly the same as Richardon’s method, it has another name: this is called
the Romberg Algorithm.

Example Problem 10.11. Approximating the integral

2
/’_i_dx
0 1+ 1’2

by Romberg’s Algorithm; find R(1,1).

Solution: The first column is calculated by the trapezoidal rule. Successive columns are found by
combining members of previous columns. So we first calculate R(0,0) and R(1,0). These are fairly
simple, the first is the trapezoidal rule on a single subinterval, the second is the trapezoidal rule on
two subintervals. Then

2-01 6
R(0,0) = I 5 [f(0)+ f(2)] = 5
2-01 1
R(1,0) = =5 [f(0) + f() + F) + F(2)] = 5
Then, using Romberg’s Algorithm we have
44 12
R = BLO-ROO 5w B

4-1 3 30
_|

At this point we are tempted to use Richardson’s analysis. This would claim that R(n,n) is a
@) (hg("ﬂ)) approximation to the integral. However, hg = b — a, and need not be smaller than 1.

This is a bit different from Richardson’s method, where the original h is independently set before
starting the triangular array; for Romberg’s algorithm, hg is determined by a and b.
We can easily deal with this problem by picking some k& such that I’z_—ka is small enough, say

smaller than 1. Then calculating the following array:

R(k,0)
R(k+1,0) R(k+1,1
R(k+2,0) R(k+21

~— —

R(k+2,2)

R(k+n,0) R(k+n,1) R(k+n,2) --- R(k+n,n)
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Quite often Romberg’s Algorithm is used to compute columns of this array. Subtractive can-
celling or unbounded higher derivatives of f(z) can make successive approximations less accurate.
For this reason, entries in ever rightward columns are usually not calculated, rather lower entries
in a single column are calculated instead. That is, the user calculates the array:

R(k,0)
R(k+1,0) R(k+1,1)
R(k +2,0) R(k+2,1) R(k+2,2)

R(k+n,0) R(k +n,1) R(k+n,2) -+ R(k+n,n)

R(k+n+1,0) R(k+n+1,1) R(k+n+1,2) --- R(k+n+1,n)
R(k+n+2,0) Rk+n+21) Rk+n+22) --- Rk+n+2n)

R(k+n+3,0) Rk+n+3,1) R(k+n+3,2) --- R(k+n+3,n)

Then R(k +n + [,n) makes a fine approximation to the integral as [ — co. Usually n is small,
like 2 or 3.

10.3.1 Recursive Trapezoidal Rule

It turns out there is an efficient way of calculating R(n + 1,0) given R(n,0); first notice from the
above example that

R0,0) = "Z02 (@) + 7).
ROL0) = 55 | 1)+ H5 )+ 150 + ).

It would be best to calculate R(1,0) without recalculating f(a) and f(b). It turns out this is possible.
Let h, = I’z_—na, and recall that

2" —1

fla)+ f(b .
R(n,0) = ¢(n) = hy, M + ; fa+ihy)|.
Thus
antl_g
R(n+1,0)=¢(n+1) = hps1 M—F Z fla+ihy1) |,
=1
2n—1
= ohy |TETO) > f(a+ @ Do)+ f (w(%)ém)] ,
-1 M+2ff(a+m )+2nz_:1f(a+(2z'—1)h )
- 2 n 2 - n - n+1 )
1 2"—1
= S R(0,0) + hnpa ; fla+ (2 —1)hper).

Then calculating R(n + 1,0) requires only 2" — 1 additional evaluations of f(x), instead of the
27+1 1 1 usually required.
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10.4 Gaussian Quadrature

The word quadrature refers to a method of approximating the integral of a function as the linear
combination of the function at certain points, i.e.,

b
/ Flx) da ~ Ao f(x0) + As f(21) + - Anf(zn), (10.4)

for some collection of nodes {z;};_, and weights {A4;}""_ ;. Normally one finds the nodes and weights
in a table somewhere; we expect a quadrature rule with more nodes to be more accurate in some
sense-the tradeoff is in the number of evaluations of f(-). We will examine how these rules are
created.

10.4.1 Determining Weights (Lagrange Polynomial Method)

Suppose that the nodes {z;};, are given. An easy way to find “good” weights {A4;}!" , for these
nodes is to rig them so the quadrature rule gives the integral of p(x), the polynomial of degree < n
which interpolates f(x) on these nodes. Recall

p(z) = Z f(@i)ti(z),
i=0

where £;(x) is the i*" Lagrange polynomial. Thus our rigged approximation is the one that gives

b , . i
/a f(x)d:r:%/a p(x) da::;f(xi)/a 0i(z) da.
If we let b
Ai:/a () du,

then we have a quadrature rule.
If f(x) is a polynomial of degree < n then f(x) = p(x), and the quadrature rule is exact.

Example Problem 10.12. Construct a quadrature rule on the interval [0, 4] using nodes 0, 1, 2.
Solution: The nodes are given, we determine the weights by constructing the Lagrange Polyno-
mials, and integrating them.

(z-1)(xz—-2)
(z-0)(xz—2)
(z-0)(z—-1) 1

Then the weights are
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Thus our quadrature rule is

8

4 16 20
| @210 - 0+ Zr.

We expect this rule to be exact for a quadratic function f(x). To illustrate this, let f(z) = 22 +1.
By calculus we have

4 4

1 64 76

/x2+1d$:—$3—|—az =—4+4=—.

0 3 o 3 3

The approximation is
4
8 16 20 76
2

lde~=-[0+1]——[1+1]+—=[4+1]=—.
| et +rae~ ey - g+ Fusn=g

10.4.2 Determining Weights (Method of Undetermined Coefficients)

Using the Lagrange Polynomial Method to find the weights A; is fine for a computer, but can
be tedious (and error-prone) if done by hand (say, on an exam). The method of undetermined
coefficients is a good alternative for finding the weights by hand, and for small n.

The idea behind the method is to find n+ 1 equations involving the n+1 weights. The equations
are derived by letting the quadrature rule be exact for f(x) = 2/ for j = 0,1,...,n. That is, setting

b n
/ ol dr =) Ai(w).
a i=0
For example, we reconsider Example Problem 10.12.

Example Problem 10.13. Construct a quadrature rule on the interval [0,4] using nodes 0, 1, 2.
Solution: The method of undetermined coefficients gives the equations:

4
/ lde =4=Ap+ A1 + Ay
0
4
/ rdr=8=A; + 24,
0

4
/ 22 de = 64/3 = A; + 4A,.
0

We perform Naive Gaussian Elimination on the system:

11 1] 4
01 2| 8
0 1 4]64/3
We get the same weights as in Example Problem 10.12: As = %,Al = —%,Ao = %. -

Notice the difference compared to the Lagrange Polynomial Method: undetermined coefficients
requires solution of a linear system, while the former method calculates the weights “directly.”
Since we will not consider n to be very large, solving the linear system may not be too burdensome.

Moreover, the method of undetermined coefficients is useful in more general settings, as illus-
trated by the next example:
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Example Problem 10.14. Determine a “quadrature” rule of the form

1
/0 Flz)da ~ AF(1) + BF(1) + CF"(1)

that is exact for polynomials of highest possible degree. What is the highest degree polynomial for
which this rule is exact?

Solution: Since there are three unknown coefficients to be determined, we look for three equations.
We get these equations by plugging in successive polynomials. That is, we plug in f(z) =1, =, 22
and assuming the coefficients give equality:

1
/1dx:1:A1+BO+CO:A
0
1
/$d$:1/2:A1+Bl+C'0:A+B
0
1
/:1:2d:z::1/3:A1+B2+02:A+23+20
0

This is solved by A =1, B = —1/2, C = 1/6. This rule should be exact for polynomials of degree
no greater than 2, but it might be better. We should check:

1
/ wdder=1/4#1/2=1-3/2+1=A1+B3+C6,
0
and thus the rule is not exact for cubic polynomials, or those of higher degree. o

10.4.3 Gaussian Nodes

It would seem this is the best we can do: using n + 1 nodes we can devise a quadrature rule that is
exact for polynomials of degree < n by choosing the weights correctly. It turns out that by choosing
the nodes in the right way, we can do far better. Gauss discovered that the right nodes to choose
are the n + 1 roots of the (nontrivial) polynomial, ¢(x), of degree n 4+ 1 which has the property

/bxkq(a:)dx:O (0<k<n).

(If you view the integral as an inner product, you could say that ¢(x) is orthogonal to the polyno-
mials " in the resultant inner product space, but that’s just fancy talk.)

Suppose that we have such a ¢(z)-we will not prove existence or uniqueness. Let f(x) be a
polynomial of degree < 2n + 1. We write

f(@) = p(x)q(z) + r(z).

Both p(x),r(z) are of degree < n. Because of how we picked ¢(z) we have

Thus
/ab f(z)dz = /abp(:v)Q(:L") dz + /abr(:n)dzn = /abr(x)dx.



114 CHAPTER 10. INTEGRALS AND QUADRATURE

Now suppose that the A; are chosen by Lagrange Polynomials so the quadrature rule on the
nodes x; is exact for polynomials of degree < n. Then

Yo Aif(xi) =Y Ailp(ei)a(z:) +r(z)] =Y Agr(i).
=0 1=0 1=0

The last equality holds because the x; are the roots of ¢(x). Because of how the A; are chosen we

then have
n n b b
ZAif(:Ei) = ZAZ'T‘(:EZ') = / r(x)dr = / f(x)de.
i=0 i=0 a a

Thus this rule is exact for f(z). We have (or rather, Gauss has) made quadrature twice as good.

Theorem 10.15 (Gaussian Quadrature Theorem). Let x; be the n 4+ 1 roots of a (nontrivial)
polynomial, g(x), of degree n + 1 which has the property

/bxkq(w)dx:O (0<k<n).

Let A; be the coefficients for these nodes chosen by integrating the Lagrange Polynomials. Then the
quadrature rule for this choice of nodes and coefficients is exact for polynomials of degree < 2n+ 1.

10.4.4 Determining Gaussian Nodes

We can determine the Gaussian nodes in the same way we determine coefficients. The example is
illustrative

Example Problem 10.16. Find the two Gaussian nodes for a quadrature rule on the interval
[0,2].

Solution: We will find the function ¢(z) of degree 2, which is “orthogonal” to 1,z under the inner
product of integration over [0,2]. Thus we let ¢(z) = cp + c12 + cox?. The orthogonality condition
becomes

2 2
/ lg(z)dx = / zq(z)dz =0 that is,
0 0
2 2
/ co+ 1z + cpr?da = / cox + 1z + cox®dz =0
0 0
Evaluating these integrals gives the following system of linear equations:
8
2c0 + 2¢1 + 302 = 0,

8
2co + gcl + 4co = 0.

This system is “underdetermined,” that is, there are two equations, but three unknowns. Notice,
however, that if ¢(x) satisfies the orthogonality conditions, then so does §(z) = ag(x), for any real
number a. That is, we can pick the scaling of ¢(z) as we wish.

With great foresight, we “guess” that we want ¢y = 3. This reduces the equations to

2co + 2¢1 = =8,

8
200 + gCl = —12.
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Simple Gaussian Elimination (¢f. Chapter 5) yields the answer ¢g = 2,¢; = —6,c2 = 3.
Then our nodes are the roots of g(z) = 2 — 6z + 322. That is the roots

6i\/36—24_1i\/§
6 I

These nodes are a bit ugly. Rather than construct the Lagrange Polynomials, we will use the
method of undetermined coefficients. Remember, we want to construct Ag, A7 such that

2
[ swrae = ausa = %2+ a4 %

is exact for polynomial f(x) of degree < 1. It suffices to make this approximation exact for the
“building blocks” of such polynomials, that is, for the functions 1 and x. That is, it suffices to find
Agp, A1 such that

/02 ldz = Ag + Aq
/::pdm:Ao(l— ?)4—141(1—1—?)
This gives the equations
2=A0+ 4
2=Ap(1—- %) + A1 (1+ %)

This is solved by Ag = 41 = 1.
Thus our quadrature rule is

? V3 V3
0
We expect this rule to be exact for cubic polynomials. o

Example Problem 10.17. Verify the results of the previous example problem for f(z) = 3.

Solution: We have ) )
/ f(z)dz = (1/4) w4‘0 =4
0

The quadrature rule gives

3 3
-4 pae ﬁ>=<l—ﬁ> +<1+§>

3 3 3 3
V3 .3 3V3 V3 3V3
—<1—3?+3§—7 1+3?+39+7

= (2-v3-V3/9) + (2+ V3 + V3/9) =4

Thus the quadrature rule is exact for f(x). -
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10.4.5 Reinventing the Wheel

While it is good to know the theory, it doesn’t make sense in practice to recompute these things all
the time. There are books full of quadrature rules; any good textbook will list a few. The simplest
ones are given in Table 10.1.

See also http://mathworld.wolfram.com/Legendre-GaussQuadrature.html

n T; A;

0 9 =0 Ag =2

1 o = — 1/3 A():l
l’lz\/m A1:1
20 =—/3/5 | Ag=5/9

2 :E1:0 A1:8/9
o = 3/5 A1:5/9

Table 10.1: Gaussian Quadrature rules for the interval [—1,1]. Thus f_ll flz)dz ~ 3770 o A f(x),
with this relation holding exactly for all polynomials of degree no greater than 2n + 1.

Quadrature rules are normally given for the interval [—1,1]. On first consideration, it would
seem you need a different rule for each interval [a, b]. This is not the case, as the following example
problem illustrates:

Example Problem 10.18. Given a quadrature rule which is good on the interval [—1, 1], derive
a version of the rule to apply to the interval [a, b].
Solution: Consider the substitution:

w:b_at+b+a, SO dx:b_adt.
2 2
Then ) .
b—a, b+a\b—a
/af(:n)dx—/_lf< 5 t+ 5 ) 5 dt.
Letting

b—a, [(b—a b+a
o) =571 (G ).
if f(x) is a polynomial, g(t) is a polynomial of the same degree. Thus we can use the quadrature
rule for [—1,1] on g(t) to evaluate the integral of f(x) over [a,b]. -

Example Problem 10.19. Derive the quadrature rules of Example Problem 10.16 by using the
technique of Example Problem 10.18 and the quadrature rules of Table 10.1.
Solution: We have a = 0,b = 2. Thus
b—a , (b—a b+a
at

5 St — >:f(t+1).

g(t) =

To integrate f(z) over [0, 2], we integrate g(t) over [—1,1]. The standard Gaussian Quadrature rule
approximates this as

1
/_ g(t)dt ~ g(—/173) + g(VI/3) = F(1 — VI/3) + F(L+ v/1/3).

1

This is the same rule that was derived (with much more work) in Example Problem 10.16. =
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| EXERCISES |

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

Use the composite trapezoidal rule, by hand, to approximate

/03352dx (=9)

Use the partition {a:,-}?zo ={0,1,3} . Why is your approximation an overestimate?
Use the composite trapezoidal rule, by hand, to approximate

1
1
dr (=In2~0.
/033+1 z (=1In 0.693)

Use the partition {332-}5’20 = {0, i,%,l}. Why is your approximation an overestimate?
(Check: 1 think the answer is 0.7)

Use the composite trapezoidal rule, by hand to approximate

1
4
[
o 1+=x

Use n = 4 subintervals. How good is your answer?

Use Theorem 10.8 to bound the error of the composite trapezoidal rule approximation of
f02 23 da with n = 10 intervals. You should find that the approximation is an overestimate.
How many equal subintervals of [0,1] are required to approximate fol cosx dx with error
smaller than 1 x 107 by the composite trapezoidal rule? (Use Theorem 10.8.)

How many equal subintervals would be required to approximate

1
4
[

0o 1+=x

to within 0.0001 by the composite trapezoidal rule? (Hint: Use the fact that |f”(x)] < 8 on
0,1] for f(z) = 4/(1 + a2))

How many equal subintervals of [2, 3] are required to approximate f23 e® dz with error smaller
than 1 x 1073 by the composite trapezoidal rule?

Simpson’s Rule for quadrature is given as

b X
/ f(z)dz ~ % [f(z0) +4f(w1) +2f (z2) +4f(23) + ... + 2f (2n—2) + 4f (Tn-1) + f(20)],

where Az = (b —a)/n, and n is assumed to be even. Show that Simpson’s Rule for n = 2
is actually given by Romberg’s Algorithm as R(1,1). As such we expect Simpson’s Rule to
be a O (h4) approximation to the integral.

Find a quadrature rule of the form

1
/O F(x)da ~ AF(0) + BF(1/2) + CF(1)

that is exact for polynomials of highest possible degree. What is the highest degree polyno-
mial for which this rule is exact?
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(10.10) Determine a “quadrature” rule of the form

1
/_1 F(z)da ~ AF(0) + Bf (—1) + Cf(1)

that is exact for polynomials of highest possible degree. What is the highest degree polyno-
mial for which this rule is exact? (Since this rule uses derivatives of f, it does not exactly
fit our definition of a quadrature rule, but it may be applicable in some situations.)

(10.11) Determine a “quadrature” rule of the form

1
/0 F(z)da ~ AF(0) + BF(0) + CF(1)

that is exact for polynomials of highest possible degree. What is the highest degree polyno-
mial for which this rule is exact?
(10.12) Consider the so-called order n Chebyshev Quadrature rule:

1 n
/ f(x) dx%anf(:Ei)
-1 i=0

Find the weighting ¢, and nodes x; for the case n = 2 and the case n = 3. For what order
polynomials are these rules exact?
(10.13) Find the Gaussian Quadrature rule with 2 nodes for the interval [1,5], i.e., find a rule

5
/1 f(x) da ~ Af(w0) + Bf (1)

Before you solve the problem, consider the following questions: do you expect the nodes to
be the endpoints 1 and 57 do you expect the nodes to be arranged symmetrically around
the midpoint of the interval?

(10.14) Find the Gaussian Quadrature rule with 3 nodes for the interval [—1, 1], i.e., find a rule

1
/_ @) e~ Af(ro) + B (1) + Cf(ra)

To find the nodes xg,x1, 2z you will have to find the zeroes of a cubic equation, which
could be difficult. However, you may use the simplifying assumption that the nodes are
symmetrically placed in the interval [—1, 1].

(10.15) Write code to approximate the integral of a f on [a,b] by the composite trapezoidal rule
on n equal subintervals. Your m-file should have header line like:
function iappx = trapezoidal(f,a,b,n)
You may wish to use the code:
x =a .+ (b-a) .* (0:n) ./ n;
If £ is defined to work on vectors element-wise, you can probably speed up your computation
by using
bigsum = 0.5 * ( £(x(1)) + f£(x(n+1)) ) + sum( £(x(2:(n))) );

(10.16) Write code to implement the Gaussian Quadrature rule for n = 2 to integrate f on the
interval [a,b]. Your m-file should have header line like:
function iappx = gauss2(f,a,b)

(10.17) Write code to implement composite Gaussian Quadrature based on code from the previous
problem. Something like the following probably works:
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function iappx = gaussComp(f,a,b,n)
% code to approximate integral of f over n equal subintervals of [a,b]
x =a .+ (b-a) .* (0:n) ./ n;
iappx = O;
for i=1:n
iappx += gauss2(f,x(i),x(i+1));
end
Use your code to approximate the error function:

2 4
erf(z) = ﬁ/o €_t2 dt.

Compare your results with the octave/Matlab builtin function erf. (Try help erf in octave,
or see http://mathworld.wolfram.com/Erf.html)

The error function is used in probability. In particular, the probability that a normal random
variable is within z standard deviations from its mean is

erf(z/v/2)

Thus erf(1/v/2) ~ 0.683, and erf(2/v/2) a 0.955. These numbers should look familiar to
you.
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Chapter 11

Least Squares

11.1 Least Squares

Least squares is a general class of methods for fitting observed data to a theoretical model function.
In the general setting we are given a set of data

ylwol | v

and some class of functions, F. The goal then is to find the “best” f € F to fit the data to y = f(x).
Usually the class of functions F will be determined by some small number of parameters; the number
of parameters will be smaller (usually much smaller) than the number of data points. The theory
here will be concerned with defining “best,” and examining methods for finding the “best” function
to fit the data.

11.1.1 The Definition of Ordinary Least Squares

First we consider the data to be two vectors of length n + 1. That is we let

I I

x=[ro21 ... Tn] , and Yy=[yoy1 ... Yn

The error, or residual, of a given function with respect to this data is the vector r = y — f(x).
That is
-
r=[rory ... ™) , where r; =y; — f(z;).

Our goal is to find f € F such that r is reasonably small. We measure the size of a vector
by the use of norms, which were explored in Subsection 1.4.1. The most useful norms are the (P
norms. For a given p with 0 < p < 0o, the #P norm of r is defined as

n 1/P
Irll, = <Z 7’?)
i=0

For the purposes of approximation, the easiest norm to use is the ¢? norm:

Definition 11.1.1 ((Ordinary) Least Squares Best Approximant). The least-squares best approxi-
mant to a set of data, x, y from a class of functions, F, is the function f* € F that minimizes the
¢? norm of the error. That is, if f* is the least squares best approximant, then

ly = F@)ll; = minly - f(@)[,

121
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We will generally assume uniqueness of the minimum. This method is sometimes called the ordinary
least squares method. It assumes there is no error in the measurement of the data @, and usually
admits a relatively straightforward solution.

11.1.2 Linear Least Squares

We illustrate this definition using the class of linear functions as an example, as this case is reason-
ably simple. We are assuming

F={f(z)=ax+0bla,beR}.

We can now think of our job as drawing the “best” line through the data.
By Definition 11.1.1, we want to find the function f(z) = az + b that minimizes

n 1/2
(Z lyi — f(wz')]2) :

1=0

This is a minimization problem over two variables, z and y. As you may recall from calculus class,
it suffices to minimize the sum rather than its square root. That is, it suffices to minimize

n

Z l[az; +b— yi]2.

1=0

We minimize this function with calculus. We set

0:% = szk(axk—kb—yk)
a k=0
¢ -

O:T = ]§2(axk+b—yk)

These are called the normal equations. Believe it or not these are two equations in two unknowns.
They can be reduced to

daa+d wpb = Y apuk
dapat(n+1b = Yy

The solution is found by naive Gaussian Elimination, and is ugly. Let

d11 = Zl‘%
dig =dy = Zxk

d22 = n+1

er = Zxkyk
€2 = Zyk

We want to solve

diia+digb = e
dgla + d22b

€2
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Gaussian Elimination produces

daser — dyzes
daadyy — diada

di1es — dorey
daadyy — diada

The answer is not so enlightening as the means of finding the solution.
We should, for a moment, consider whether this is indeed the solution. Our calculations have
only shown an extrema at this choice of (a,b); could it not be a maxima?

11.1.3 Least Squares from Basis Functions

In many, but not all cases, the class of functions, F, is the span of a small set of functions. This
case is simpler to explore and we consider it here. In this case F can be viewed as a vector space
over the real numbers. That is, for f,g € F, and o, 5 € R, then af 4+ Bg € F, where the function
af is that function such that (af)(z) = af(z).

Now let {gj(a:)};.”zo be a set of m + 1 linearly independent functions, i.e.,

cogo(x) + c1g1(x) + ...+ emgm(z) =0 VY = c¢=c1=...=¢,=0

Then we say that F is spanned by the functions {g; (x)};nzo if

:E):chgj(xﬂcjGR,ij,l,...,m

In this case the functions g; are basis functions for F. Note the basis functions need not be unique:
a given class of functions will usually have more than one choice of basis functions.

Example 11.1. The class F = {f(z) = ax + b| a,b € R} is spanned by the two functions go(x) =
1, and g1 () = x. However, it is also spanned by the two functions go(x) = 2z+1, and g1 (x) = z—1.

To find the least squares best approximant of F for a given set of data, we minimize the square
of the £2 norm of the error; that is we minimize the function

2
n

¢ (co 1y yCm) :Z chgj(xk) — Yk (11.1)
J

k=0

Again we set partials to zero and solve
0 "
0="= Y2 Do cigilmn) | — k| gilan)
(A k‘: J

This can be rearranged to get

m
> [Z 95 (k) gi(wr ] Zykgz )

J=0
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If we now let
n

dij = Zgj(iﬂk)gz(xk), e; = Zykgz(wk),
k=0

k=0
Then we have reduced the problem to the linear system (again, called the normal equations):

doo dor do2 -+ dom co €o

dio dinn diz - dim c1 el

dyo dn dao -+ dom 2 | = | e (11.2)
L dmo dm1 dm2 - dmm 1 L S%n | L Em |

The choice of the basis functions can affect how easy it is to solve this system. We explore this
in Section 11.2. Note that we are talking about the basis {gj};”:m and not exactly about the class
of functions F.

For example, consider what would happen if the system of normal equations were diagonal. In
this case, solving the system would be rather trivial.

Example Problem 11.2. Consider the case where m = 0, and go(x) = Inz. Find the least squares
approximation of the data

z| o5 | o7 | 10 | 150 | 20 | 225 | 275 | 30 |
y || —1.187098 | —0.452472 | —0.068077 | 0.713938 | 1.165234 | 1.436975 | 1.725919 | 1.841422 |

Solution: Essentially we are trying to find the ¢ such that clnx best approximates the data. The
system of equation 11.2 reduces to the 1-D equation:

[Ek In? a:k] c = Xpyr Inxyg
For our data, this reduces to:
4.0960c = 6.9844

so we find ¢ = 1.7052. The data and the least squares interpolant are shown in Figure 11.1. =

Example 11.3. Consider the awfully chosen basis functions:

go(z) = (%—1)3:2—§x+1

g(e) = o+ (5-1) (P +a)+1

€
5
where € is small, around machine precision.

Suppose the data are given at the nodes zog = 0,21 = 1,29 = —1. We want to set up the normal
equations, so we compute some of the d;;. First we have to evaluate the basis functions at the nodes
x;. But this example was rigged to give:

After much work we find we want to solve

1+ €2 1 co | _ | Yotey2
1 1+ €2 c1 Yo + €Y1
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Figure 11.1: The data of Example Problem 11.2 and the least squares interpolant are shown.

However, the computer would only find this if it had infinite precision. Since it does not, and since
€ is rather small, the computer thinks €2 = 0, and so tries to solve the system

11 co | _ | Yoteye
1 1 C1 Yo + €Y1
When y; # yo, this has no solution. Bummer.

This kind of thing is common in the method of least squares: the coefficients of the normal
equations include terms like

9i(7k)g; (k).
When the g; are small at the nodes xj, these coefficients can get really small, since we are squaring.

Now we draw a rough sketch of the basis functions. We find they do a pretty poor job of
discriminating around all the nodes.

11.2 Orthonormal Bases

In the previous section we saw that poor choice of basis vectors can lead to numerical problems.
Roughly speaking, if g;(x)) is small for some i’s and k’s, then some d;; can have a loss of precision
when two small quantities are multiplied together and rounded to zero.

Poor choice of basis vectors can also lead to numerical problems in solution of the normal
equations, which will be done by Gaussian Elimination.

Consider the case where F is the class of polynomials of degree no greater than m. For simplicity
we will assume that all x; are in the interval [0,1]. The most obvious choice of basis functions is
gj(z) = x7. This certainly gives a basis for F, but actually a rather poor one. To see why, look
at the graph of the basis functions in Figure 11.3. The basis functions look too much alike on the
given interval.

A Dbetter basis for this problem is the set of Chebyshev Polynomials of the first kind, i.e.,
g;(2) = Ty(a), where

To(x) =1, Ti(x) =z, Ti1(z)=2aT;(z)—T;—1(x).
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15 I I I I I

-1 -0.5 0 0.5 1
Figure 11.2: The basis functions go(z) = (§ — 1) 2 — §z+ 1, and g1(z) = 23+ (§ — 1) (2 + z) +1
are shown for € = 0.05. Note that around the three nodes 0,1, —1, these two functions take nearly
identical values. This can lead to a system of normal equations with no solution.

Figure 11.3: The polynomials z* for s = 0,1,...,6 are shown on [0,1]. These polynomials make a
bad basis because they look so much alike, essentially.

These polynomials are illustrated in Figure 11.4.

11.2.1 Alternatives to Normal Equations

It turns out that the Normal Equations method isn’t really so great. We consider other methods.
First, we define A as the n x m matrix defined by the entries:

aij = gj(z;), i=0,1,...,n,j=0,1,...,m.
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Figure 11.4: The Chebyshev polynomials Tj(x) for j = 0,1,...,6 are shown on [0,1]. These
polynomials make a better basis for least squares because they are orthogonal under some inner
product. Basically, they do not look like each other.
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We write it in this way since we are thinking of the case where n > m, so A is “tall.”
After some inspection, we find that the Normal Equations can be written as:

ATAc=ATy. (11.3)

Now let the vector ¢ be identified, in the natural way, with a function in F. That is ¢ is
identified with f(z) = >"""¢;g;(x). You should now convince yourself that

Ac = f(x).

And thus the residual, or error, of this function is r = y — Ac.
In our least squares theory we attempted to find that ¢ that minimized

ly —Acll3 = (y —Ac)" (y — Ac)

We can see this as minimizing the Euclidian distance from y to A c. For this reason, we will have
that the residual is orthogonal to the column space of A, that is we want

Alr=AT(y—Ac)=0.
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This is just the normal equations. We could rewrite this, however, in the following form: find ¢, r

ERIHEH

This is now a system of n + m variables and unknowns, which can be solved by specialized means.
This is known as the augmented form. We briefly mention that naive Gaussian Elimination is not
appropriate to solve the augmented form, as it turns out to be equivalent to using the normal
equations method.

11.2.2 Ordinary Least Squares in octave/Matlab

The ordinary least squares best approximant is so fundamental that it is hard-wired into oc-
tave/Matlab’s system solve operator. The general equation we wish to solve is

Ac=uy.

This system is overdetermined: there are more rows than columns in A, i.e., more equations than
unknown variables. However, in octave/Matlab, this is solved just like the case where A is square:

octave:1> ¢ = A \ y;

Thus, unless specifically told otherwise, you should not implement the ordinary least squares solu-
tion method in octave/Matlab. Under the hood, octave/Matlab is not using the normal equations
method, and does not suffer the increased condition number of the normal equations method.

11.3 Orthogonal Least Squares

The method described in Section 11.1, sometimes referred to as “ordinary least squares,” assumes
that measurement error is found entirely in the dependent variable, and that there is no error in
the independent variables.

For example, consider the case of two variables, x and y, which are thought to be related by an
equation of the form y = mz + b. A number of measurements are made, giving the two sequences
{x;};—, and {y;};;. Ordinary least squares assumes, that

yi = mx; +b+ ¢,

where ¢;, the error of the i*" measurement, is a random variable. It is usually assumed that

Elei] = 0, i.e., that the measurements are “unbiased.” Under the further assumption that the

errors are independent and have the same variance, the ordinary least squares solution is a very
1

good one.

However, what if it were the case that
yi=m(x; + &) +b+ e,

i.e., that there is actually error in the measurement of the z;? In this case, the orthogonal least
squares method is appropriate.

1This means that the ordinary least squares solution gives an unbias