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Portfolios

Portfolio Basics I

Consider the case of p assets which can be held long or short.

A portfolio, ν, is a p-vector of dollar-wise allocations.

Let xi be the p-vector of simple returns from i − 1 to i .

If you held ν at time i − 1, your portfolio’s return is ν>xi .
(n.b., this does not hold for log returns.)

If

E [x] = µ, Var (x) = Σ,

then

E
[
ν>x

]
= ν>µ, Var

(
ν>x

)
= ν>Σν.
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Portfolios

Portfolio Basics II

The signal-noise ratio of a portfolio ν is

ζ (ν) :=
E
[
ν>x

]
− r0√

Var (ν>x)
=

ν>µ− r0√
ν>Σν

.

(We will often ignore the ‘risk-free’ rate, r0 = 0.)

Like the Sharpe ratio, but uses population parameters.

The Sharpe ratio is the sample mean of ν>x1,ν
>x2, . . . ,ν

>xn

divided by the sample standard deviation.

For large n, the Sharpe ratio converges to the signal-noise ratio.
Barring bad luck, if you could maximize signal-noise ratio, you would
increase Sharpe ratio. (But µ and Σ are unknown!)

For a small fund, a high achieved Sharpe ratio in early trading can
make a big difference!
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Portfolios

Maximizing signal-noise ratio I

The Markowitz portfolio maximizes the signal-noise ratio:

ν∗ := Σ−1µ

The signal-noise ratio of the Markowitz portfolio is

ζ∗ :=
√
µ>Σ−1µ.

This portfolio, up to rescaling, solves many portfolio problems:

“Maximize expected return subject to a cap on volatility.”

“Minimize volatility subject to a minimum expected return.”

“Maximize signal-noise ratio with a risk-free rate:”

ν∗ ∝ argmax
ν:ν>Σν≤R2

ν>µ− r0√
ν>Σν

,
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Portfolio Inference

A weird trick

Prepend a ‘1’ to the vector: x̃ :=
[
1, x>

]>
.

The second moment of x̃ contains the first two moments of x:

Θ := E
[
x̃x̃>

]
=

[
1 µ>

µ Σ + µµ>

]
.

then: Θ−1 =

[
1 + µ>Σ−1µ −µ>Σ−1

−Σ−1µ Σ−1

]

=

 1 + ζ2
∗ −ν∗>

−ν∗ Σ−1

 ,
ν∗ is the Markowitz portfolio,

ζ∗ is the signal-noise ratio of ν∗.

Σ−1 is the ‘precision matrix’.
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Portfolio Inference

Sample estimator

Since Θ = E
[
x̃x̃>

]
the simple estimator is unbiased:

Θ̂ :=
1

n

∑
1≤i≤n

x̃i x̃i
> =

[
1 µ̂>

µ̂ Σ̂ + µ̂µ̂>

]
.

The inverse contains the sample estimates:

Θ̂−1 =

 1 + ζ̂2
∗ −ν̂∗>

−ν̂∗ Σ̂−1

 .
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Portfolio Inference

Asymptotics I

By the Central Limit Theorem:

√
n
(

vech
(

Θ̂
)
− vech (Θ)

)
 N (0,Ω) ,

where Ω := Var
(
vech

(
x̃x̃>

))
.

We can estimate Ω from the sample, call it Ω̂:
It’s just sample covariance of vech

(
x̃i x̃i

>), for 1 ≤ i ≤ n.

Use the delta method:

√
n
(

vech
(

Θ̂−1
)
− vech

(
Θ−1

))
 N

(
0,UΩU>

)
.

Here U is some ‘ugly’ derivative, depending on Θ.
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Portfolio Inference

Asymptotics II

Ignoring details about symmetry, etc., the derivative is: [7, 14]

dX−1

dX
= −

(
X−> ⊗ X−1

)
.

(This generalizes the scalar derivative!)
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Portfolio Inference

I can make a hat or a brooch or a pterodactyl...

Θ̂−1 =

 1 + ζ̂2
∗ −ν̂∗>

−ν̂∗ Σ̂−1

 .
What is the use for Var

(
vech

(
Θ̂−1

))
?

Perform inference on elements of ν∗ via Wald statistic.
(Compare elements of ν∗ to their standard errors.)

Perform inference on the optimal signal-noise ratio, ζ∗.

Equivalently, Hotelling’s T 2 test. (tests hypothesis: µ is all zeros)

Portfolio shrinkage.

Estimate the covariance of ν̂∗ and Σ̂−1. (Attribute portfolio error to
returns or covariance.) [5]
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Portfolio Inference

Implementation: trust but verify

require(MarkowitzR)

set.seed(2014)

X <- matrix(rnorm(1000 * 5), ncol = 5) # toy data

ism <- MarkowitzR::mp_vcov(X)

walds <- function(ism) ism$W/sqrt(diag(ism$What))

print(t(walds(ism))) # Wald stats

## X1 X2 X3 X4 X5

## Intercept 0.89 -0.22 -1.6 -2.4 -0.49

# c.f. Britten-Jones, http://jstor.org/stable/2697722

y <- rep(1, dim(X)[1])

print(t(summary(lm(y ~ X - 1))$coefficients[, 3]))

## X1 X2 X3 X4 X5

## [1,] 0.89 -0.22 -1.6 -2.5 -0.48
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Portfolio Inference

Selling this weird trick

Why weird trick, not Britten-Jones, or Okhrin et al.? [4, 2, 15]

Fewer assumptions: fourth moments exist vs. normality of returns.

Straightforward to use HAC estimator for Ω.

Models covariance between return and volatility. (At a cost?)

Solves a larger problem, e.g., can use for inference on ζ2
∗ .

Real question: what’s wrong with vanilla Markowitz?

This trick can be adapted to deal with:

Hedged portfolios.

Heteroskedasticity.

Conditional expected returns.

Perhaps more ...
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Extensions

Hedged portfolios I

Hedging: the goal

Returns which are statistically independent from some random variables.

Hedging: a more realistic goal

A portfolio with zero covariance to some random variables.

Hedging: an achievable goal

A portfolio with zero sample covariance to some other portfolios of
tradeable assets.
(e.g., you may have to hold some Mkt to hedge out the Mkt.)
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Extensions

Hedged portfolios II

max
ν:GΣν=0,
ν>Σν≤R2

ν>µ− r0√
ν>Σν

,

where G is a pg × p matrix of rank pg .

Rows of G define portfolios against which we have 0 covariance.

Typically G consists of some rows of identity matrix.

i.e., “Maximize signal-noise ratio with risk bound and zero covariance to
some other portfolios.”
Solved by cνG,∗, with c to satisfy risk bound, and

νG,∗ :=
(

Σ−1µ− G>
(
GΣG>

)−1
Gµ
)
.
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Extensions

Hedged portfolios III

Use the weird trick! Let G̃ :=

[
1 0
0 G

]
, then,

Θ−1 − G̃>
(

G̃ΘG̃>
)−1

G̃ = µ>Σ−1µ− µ>G>
(
GΣG>

)−1
Gµ −νG,∗

>

−νG,∗ Σ−1 − G>
(
GΣG>

)−1
G

 .
−νG,∗ is the optimal hedged portfolio.

UL corner is squared signal-noise ratio of νG,∗.
Also used for portfolio spanning. [19, 9, 12, 13]

LR corner is loss of precision?
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Extensions

Hedged portfolios IV

Delta method gives the asymptotic distribution:

√
n
(

vech
(

∆G̃Θ̂−1
)
− vech

(
∆G̃Θ−1

))
 N

(
0,UΩU>

)
,

with more ugly derivatives.
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Extensions

Hedged portfolios V

Download the Fama-French 3 factor + Momentum monthly data
(1927-02-01 to 2015-01-01) from Quandl. [20]

Add risk-free rate back to market, compute (unhedged) Markowitz
portfolio, and Wald statistics.

w.stats <- rbind(do.both(ff4.xts[, 1:4]), wtrick.ws(ff4.xts[,

1:4], vcov.func = sandwich::vcovHAC))

rownames(w.stats)[3] <- c("weird trick w/ HAC")

xtable(w.stats)

Mkt SMB HML UMD

Britten Jones t-stat 6.31 0.60 5.01 8.18
weird trick Wald stat 5.40 0.63 4.48 6.04
weird trick w/ HAC 5.10 0.64 3.94 5.57
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Extensions

Hedged portfolios VI

Now hedge out Mkt:

walds <- function(ism) ism$W/sqrt(diag(ism$What))

Gmat <- matrix(diag(1, 4)[1, ], ncol = 4)

asymv <- MarkowitzR::mp_vcov(ff4.xts[, 1:4], fit.intercept = TRUE,

Gmat = Gmat)

xtable(t(walds(asymv)))

Mkt SMB HML UMD

Intercept 2.68 0.63 4.48 6.04

And compute the spanning Wald statistic:

ef.stat <- function(ism) ism$mu[1]/sqrt(ism$Ohat[1, 1])

print(ef.stat(asymv))

## [1] 3.8
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Extensions

Hedged portfolios VII

Now hedge out Mkt and RF:

# hedge out RFR too

Gmat <- matrix(diag(1, 5)[c(1, 5), ], ncol = 5)

asymv <- MarkowitzR::mp_vcov(ff4.xts[, 1:5], fit.intercept = TRUE,

Gmat = Gmat)

xtable(t(walds(asymv)))

Mkt SMB HML UMD RF

Intercept 0.78 1.86 2.31 3.47 -1.49

And the spanning statistic:

print(ef.stat(asymv))

## [1] 2.1
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Extensions

Heteroskedasticity

Prior to investment decision, observe si proportional to volatility.

Two competing ‘obvious’ models:

(constant): E [xi+1 | si ] = siµ Var (xi+1 | si ) = si
2Σ,

(floating): E [xi+1 | si ] = µ Var (xi+1 | si ) = si
2Σ.

For (constant), ζ∗ is
√
µ>Σ−1µ, independent of si .

(Volatility time vs. wall-clock time.)
For (floating), it is si

−1
√
µ>Σ−1µ, higher when volatility is low.

(Volatility drinks your milkshake.)

Why do I have to choose?

(mixed): E [xi+1 | si ] = siµ0 + µ1 Var (xi+1 | si ) = si
2Σ.
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Extensions

Market Heteroskedasticity
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As an aside, both of these models are inadequate for Mkt. Shown are
mean vs. stdev of daily log returns, 1927 through 2014.
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Extensions

Conditional expectation. I

Suppose f -vector f i observed prior to investment decision, and

(conditional): E [xi+1 | f i ] = Bf i Var (xi+1 | f i ) = Σ,

B is some p × f matrix. [6, 11, 3]

Conditional on observing f i , solve

argmax
ν: Var(ν>xi+1| f i )≤R2

E
[
ν>xi+1 | f i

]
− r0√

Var (ν>xi+1 | f i )
,

for r0 ≥ 0,R > 0.
“Maximize Sharpe, with bound on risk, conditional on f i .”
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Extensions

Conditional expectation. II

Optimal portfolio is cν∗ with

ν∗ := Σ−1B f i .

Σ−1B generalizes the Markowitz portfolio:
the coefficient of the Sharpe-optimal portfolio linear in features f i .
The ‘Markowitz coefficient.’

Conditional on f i , the squared signal-noise ratio of the Markowitz
portfolio is

ζ2
(
Σ−1Bf i

)
| f i = (Bf i )

>Σ−1 (Bf i ) .

Typically f i is random. Expected squared signal-noise ratio is

Ef

[
ζ2
(
Σ−1Bf i

)]
= tr

(
B>Σ−1B E

[
ff>
])
.

The Hotelling-Lawley Trace.
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Extensions

Conditional expectation. III

Same weird trick works! Let ˜̃xi+1 :=
[
f i
>, xi+1

>]>.
The uncentered second moment is

Θf := E
[
˜̃x˜̃x
>]

=

[
Γf Γf B>

BΓf Σ + BΓf B>

]
, where Γf := E

[
ff>
]
.

The inverse of Θf is

Θf
−1 =

[
Γf
−1 + B>Σ−1B −B>Σ−1

−Σ−1B Σ−1

]
.

Σ−1B appears in off diagonals.

B>Σ−1B related to HLT.
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Extensions

Conditional expectation. IV

Again, define sample estimator,

Θ̂f :=
1

n

∑
1≤i≤n

˜̃xi
˜̃xi
>
.

Use Central Limit theorem and delta method to get:

√
n
(

vech
(

Θ̂−1
f

)
− vech

(
Θf
−1
))
 N

(
0,UΩU>

)
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Examples

Examples. I

Take the Fama-French 3 factor + Momentum monthly returns
(1927-02-01 to 2015-01-01) from Quandl. [20]

Add risk-free rate back to market.

Use Shiller’s P/E ratio as predictive state variable.

# Z-score the P/E data

zsc <- function(x, ...) (x - mean(x, ...))/sd(x, ...)

features.z <- zsc(features, na.rm = TRUE)

asym <- MarkowitzR::mp_vcov(ff4.xts[, 1:4], features.z,

fit.intercept = TRUE, vcov.func = sandwich::vcovHAC)

xtable(signif(t(walds(asym)), digits = 2))

Mkt SMB HML UMD

Intercept 3.10 3.60 2.50 3.60
Cyclically Adjusted PE Ratio -1.90 -1.20 -0.24 3.70
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Examples

Examples. II

Now the same, but hedge out Mkt and RF:

# hedge out Mkt and RF

Gmat <- matrix(diag(1, 5)[c(1, 5), ], ncol = 5)

asym <- MarkowitzR::mp_vcov(ff4.xts[, 1:5], features.z,

fit.intercept = TRUE, Gmat = Gmat, vcov.func = sandwich::vcovHAC)

xtable(signif(t(walds(asym)), digits = 2))

Mkt SMB HML UMD RF

Intercept 0.63 2.20 2.10 2.10 -1.90
Cyclically Adjusted PE Ratio 2.60 -1.60 -0.04 5.50 -1.40
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Examples

Examples. III

Since we estimate the covariance jointly of ν̂∗ and Σ̂−1, we can estimate
the amount of error in ν̂∗ attributable to mis-estimation of Σ−1; the rest
is due to misestimation of µ. [5]
The squared coefficients of multiple correlation, in % of the vanilla
Markowitz portfolio:

x Mkt x SMB x HML x UMD

R.squared 38 % 18 % 37 % 60 %
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Segue

What else?

The same basic model can be adapted to:

Constrained estimation of Θ. (Linear constraints; rank constraints?)

Conditional covariance and conditional beta. [8]
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Segue

Segue
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Segue

A wrinkle

An objection against Hotelling’s test is that ζ2
∗ is unlikely to be 0:

Keep adding stocks and features and the ζ2
∗ cannot decrease.

However, this seems not to work in the real world:
Portfolio optimization not typically applied to 100’s of free variables.

Why? “Overfitting.”

Does it suffice to correct for biased estimates of ζ2
∗?

Does a large universe size negatively impact performance?

Can we just knock out near-zero elements of the Markowitz
coefficient?
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Portfolio Overfit

Portfolio on a sphere?

For any portfolio, ν, its signal-noise ratio can be written as:

ζ (ν) =
ν>µ√
ν>Σν

=

(
Σ1/2ν

)>
Σ−1/2µ√(

Σ1/2ν
)> (

Σ1/2ν
) ,

=

(
Σ1/2ν∥∥Σ1/2ν

∥∥
2

)>(
Σ−1/2µ∥∥Σ−1/2µ

∥∥
2

)
ζ∗.

So ζ (ν) /ζ∗ is the dot product of two vectors on Sp−1.
It is bounded from above when distance between vector tips is bounded
from below, as by Cramér-Rao bound.
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Portfolio Overfit

Portfolio on a sphere?

sample: Σ1/2ν

optimal: Σ−1/2µ
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Portfolio Overfit

A Theorem I

Consider portfolio construction technique as a function ν̂ (·):

Takes historical data, X, a T × p matrix.

Produces a portfolio, ν̂ = ν̂ (X), a p vector.

Assume it is not a ‘stopped clock’.

If rows of X are i.i.d. Gaussian (hold your objections), then

EX [ζ (ν̂ (X))] ≤

√
nζ2
∗

(p − 1) + nζ2
∗
ζ∗.

Roughly this is

Ehistorical data [portfolio SNR] ≤

√
effect size

# knobs + effect size
maximal SNR.

Steven Pav (gilgamath) Portfolio Inference ... Sep 10, 2015 33 / 52



Portfolio Overfit

A Theorem II

Generalizes to case of conditional expectation and hedge constraints.
Requires a slight redefinition of signal-noise ratio.

For f features and p assets, the bound becomes

EX [ζ (ν̂ (X))] ≤

√
nζ2
∗

(fp − 1) + nζ2
∗
ζ∗.

If we impose pg hedge constraints, this becomes

EX [ζ (ν̂ (X))] ≤

√
nζ2
∗

(f (p − pg )− 1) + nζ2
∗
ζ∗.

In summary,

Ehistorical data [portfolio SNR] ≤

√
effect size

# knobs + effect size
maximal SNR.
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Portfolio Overfit

No Stopped Clocks

Stopped clock condition prevents e.g., the ‘one-over-n allocation’
from breaking the theorem when the population Markowitz portfolio
is nearly equal allocation.

The technical condition is that EX [ζ (ν̂ (X))] is a function only of ζ∗.

This is implied by ‘rotational equivariance’: if Q is non-singular, then

ν̂
(

XQ>
)

= Qν̂ (X) up to leverage.

(Seems reasonable if returns are images of latent factor returns.)

(If you believe in rotational equivariance, check how you do
dimensionality reduction and regularization!)

Steven Pav (gilgamath) Portfolio Inference ... Sep 10, 2015 35 / 52



Portfolio Overfit

Some depressing math

The Cramér-Rao bound explains why portfolio optimization is not
performed on 100’s of unknowns:
If ζ∗ = 1.1yr−1/2, observing 5yr−1/2 of data:

for 10 stocks, the bound is 0.7yr−1/2.

for 40 stocks, the bound is 0.4yr−1/2.

for 160 stocks, the bound is 0.21yr−1/2.

But maximal signal-noise ratio should grow with universe size.
Can it grow fast enough?
The ‘fundamental law of Active Management’ [10] suggests

ζ∗ = ζ0p
1/2.

So explore power law relationships.
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Portfolio Overfit

Power law bound I
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Figure : Bound vs. p for ζ∗ = ζ0p
γ , with γ between 0.15 and 0.35. ζ∗ must grow

at rate faster than γ = 1/4, otherwise bound will decrease.
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Portfolio Overfit

Power law bound II

Idea: estimate γ from data. On the S&P 100 universe, it looks like γ = 0:
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Figure : Estimated ζ∗ vs. p for S&P 100 names, over 1000 order permutations.
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Portfolio Overfit

Philosophical Q&A

“What does this say about my portfolio?”

Nothing. It is a frequentist argument about your method of constructing
portfolios. It does not condition on e.g., ζ̂2

∗ . If ζ̂2
∗ is ‘large’ compared to

degrees of freedom, the bound may not be an issue.

“Can I use historical data to reduce the degrees of freedom, and escape
the bound?”

Probably not. By using historical data, you subject yourself to the bound
or your meta-method is a stopped clock.

“A rational agent cannot be harmed by more data, opportunities.”

This is a bad definition, or rational agents cannot exist, or they hold only
the market portfolio.
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Portfolio Overfit

Future work

Compute confidence intervals on signal-noise ratio of a portfolio?

Is there a sensible Bayesian version of this result?

Can we sensibly perform dimensionality reduction using historical data
and avoid this ‘overfitting’?

Is there a more general result which really captures ‘effect size’ and
‘number of knobs’?

Get a bound on variance of signal-noise ratio of portfolios?

Prove the bound is worse for returns with fatter tails?

Thank You.
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Appendix

Common Questions (Inference) I

Doesn’t this require fourth order moments?

I always use relative (or ‘percent’) returns. These are bounded. All
moments exist. Identical distribution is a much more questionable
assumption.

Isn’t the complexity Ω
(
p4
)
?

Portfolio optimization for large p (bigger than 20?) is not typically
recommended.

Won’t estimating a large number of parameters hurt performance?

The covariance Var
(
vech

(
x̃x̃>

))
has Ω

(
p4
)

elements, but the portfolio is
constructed only from Ω

(
p2
)

elements, as with vanilla Markowitz.
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Appendix

Common Questions (Inference) II

I want to hedge out exposure to a non-asset.

I want that as well. It does not appear to be a simple modification of the
weird trick, but it may be one discovery away.

I want to maximize signal-noise ratio with a time-dependent risk-free rate.

I suspect that the ‘right’ way to do this is to include the RFR as an asset,
then hedge out exposure to it. This effectively allows each asset to have a
non-unit ‘beta’ to the risk-free, which seems like a higher bar than just
hedging a constant unit of the risk-free.

What was the quote about the pterodactyl?

It was from the movie, Airplane.
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Appendix

Common Questions (Inference) III

I want to hedge out an asset, but I do not want the mean of that asset to
be estimated.

I believe this can be done with constrained estimation of Θ̂. Briefly, if there
are linear constraints one believes Θ satisfies, you can solve a least-squares
problem to get a sample estimate which satisfies the constraints and is not
too ‘far’ from the unconstrained estimator. I have not done the analysis,
but believe it is another simple application of the delta method.

The conditional expectation model is many-to-many. How do I sparseify it?

Similar to the above, but I believe one would want to specify linear
constraints on the Cholesky factor of Θ. This might be more complicated.
Or maybe not.

Steven Pav (gilgamath) Portfolio Inference ... Sep 10, 2015 45 / 52



Appendix

Common Questions (Inference) IV

I don’t want to deal with the headaches of symmetry!

The Cholesky factor of Θ is

[
1 0

µ Σ1/2

]
. This is a lower triangular

matrix and completely determines Θ. I suspect much of the analysis can
be re-couched in terms of this square root, but I do not know the matrix
derivative of the Cholesky factorization.

What about a mashup with Kalman Filters?

Sure! This should probably be expressed as an update on the Cholesky
factor, Θ1/2.

Which portfolio managers are using the weird trick?

All of them except you!
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Common Questions (Inference) V

I am not comforted by the fact that ζ̂2
∗  ζ2

∗ , since the portfolio ν̂∗ may
achieve a much lower Sharpe ratio than optimal.

Because ν∗ is the optimal population Sharpe ratio of any portfolio, it is an
upper bound on the Sharpe ratio of ν̂∗. To estimate the ‘gap’ requires, I
believe, the second-order multivariate delta method. I have not done the
analysis.

Can you shoehorn a short-sale constraint into the model?

I doubt it is feasible. It is known, for example, that Hotelling’s statistic
under a positivity constraint is not a similar statistic, indicating Sharpe
ratio is an imperfect yardstick for sign-constrained portfolio problems. [22]
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Appendix

Common Questions (Inference) VI

Why maximize Sharpe ratio? Everyone else maximizes ‘utility’.

No investor has ever told us their ‘risk aversion parameter,’ but they ask
about our Sharpe ratio all the time. Also, read Roy for the connection
between Sharpe ratio and probability of a loss. [21]

How do you deal with trade costs?

It is not clear. One hack would be to assume trade costs quadratic in the
target portfolio. I believe this merely leads to an inflation of the Σ̂, but
there are likely complications.

Isn’t independence of ˜̃xi suspicious?

If the state variables wi depend on the previous period returns, xi ,
independence will be violated. However, the CLT may apply if the
sequence is weakly dependent, or ‘strongly mixing’.
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Appendix

Common Questions (Inference) VII

How do you detect outliers?

This probably requires one to impose a likelihood on ˜̃xi .

Does the math simplify if you assume normal returns?

In this case nΘ̂ takes a conditional Wishart distribution.

But does it do big data?

Computation of Θ̂ is very simple, since it is just an uncentered moment...

How should a Bayesian approach estimation of Θ?

I don’t know. Ask one. I suspect they would assume normal returns, then
assume some kind of conditional Wishart prior.
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Appendix

Common Questions (Inference) VIII

Does the hedged portfolio involve a projection?

It does! The hedged portfolio is the optimal portfolio minus a projection
under the metric induced by Σ.

It seems that when I hedge out a single asset, only the holdings in that
asset change in the portfolio.

If you look at the projection operation, the change can only occur in the
column space of G̃>, which in this case means only the holdings in the
single asset will change. (This is all modulo adjustments to overall gross
leverage to meet the risk budget.)

Can you back out the traditional significance tests from the asymptotic
distribution of Θ̂?

Possibly, but probably a bit uglier than I can stomach.
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Appendix

Common Questions (Overfit) I

The proof assumes normal returns?

Indeed, however I suspect that a stronger upper bound holds for the case
of more fat-tailed distributions, though I do not have a proof yet.

This bound uses an unknown population parameter. Can you do better?

Not at the moment. This is a particularly interesting question: how to
construct confidence intervals on the Sharpe of the Markowitz portfolio. It
is different than the typical statistical analysis, which performs inference
on the maximal population Sharpe ratio.

What does this bound say about my portfolio?

Very little. It only gives a bound on the expected Sharpe based on repeated
draws of the historical data. You only got one draw of that historical data.
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Common Questions (Overfit) II

I don’t like this result: it seems I can be harmed by performing more
backtests.

It is commonly stipulated that a perfectly rational agent cannot be harmed
by the addition of new information or new optional courses of action.
Barring the fact that humans are not perfectly rational agents, a
quantitative trading scheme that can only improve with the addition of
new information sounds like the Holy Grail. Like the Holy Grail, it is
unlikely to exist.

This Cramér-Rao bound feels very Frequentist.

I suppose it does.

How did you estimate ζ∗ in the S&P 100 study?

I used the ‘KRS’ estimator from the SharpeR package.
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