## Markowitz Portfolio Covariance, Elliptical Returns

In a previous blog post, I looked at asymptotic confidence intervals for the Signal to Noise ratio of the (sample) Markowitz portfolio, finding them to be deficient. (Perhaps they are useful if one has hundreds of thousands of days of data, but are otherwise awful.) Those confidence intervals came from revision four of my paper on the Asymptotic distribution of the Markowitz Portfolio. In that same update, I also describe, albeit in an obfuscated form, the asymptotic distribution of the sample Markowitz portfolio for elliptical returns. Here I check that finding empirically.

Suppose you observe a \(p\) vector of returns drawn from an elliptical distribution with mean \(\mu\), covariance \(\Sigma\) and 'kurtosis factor', \(\kappa\). Three times the kurtosis factor is the kurtosis of marginals under this assumed model. It takes value \(1\) for a multivariate normal. This model of returns is slightly more realistic than multivariate normal, but does not allow for skewness of asset returns, which seems unrealistic.

Nonetheless, let \(\hat{\nu}\) be the Markowitz portfolio built on a sample of \(n\) days of independent returns:

where \(\hat{\mu}, \hat{\Sigma}\) are the regular 'vanilla' estimates of mean and covariance. The vector \(\hat{\nu}\) is, in a sense, over-corrected, and we need to cancel out a square root of \(\Sigma\) (the population value). So we will consider the distribution of \(Q \Sigma^{\top/2} \hat{\nu}\), where \(\Sigma^{\top/2}\) is the upper triangular Cholesky factor of \(\Sigma\), and where \(Q\) is an orthogonal matrix (\(Q Q^{\top} = I\)), and where \(Q\) rotates \(\Sigma^{-1/2}\mu\) onto \(e_1\), the first basis vector:

where \(\zeta\) is the Signal to Noise ratio of the population Markowitz portfolio: \(\zeta = \sqrt{\mu^{\top}\Sigma^{-1}\mu} = \left\Vert …

read more